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Multipoint and Multi-Objective Aerodynamic
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A gradient-based Newton–Krylov algorithm is presented for the aerodynamic shape optimization of single- and
multi-element airfoil configurations. The flow is governed by the compressible Navier–Stokes equations in conjunc-
tion with a one-equation transport turbulence model. The preconditioned generalized minimal residual method
is applied to solve the discrete-adjoint equation, which leads to a fast computation of accurate objective function
gradients. Optimization constraints are enforced through a penalty formulation, and the resulting unconstrained
problem is solved via a quasi-Newton method. The new algorithm is evaluated for several design examples, includ-
ing the lift enhancement of a takeoff configuration and a lift-constrained drag minimization at multiple transonic
operating points. Furthermore, the new algorithm is used to compute a Pareto front based on competing objectives,
and the results are validated using a genetic algorithm. Overall, the new algorithm provides an efficient approach
for addressing the issues of complex aerodynamic design.

Introduction

C URRENT algorithms for the solution of the two-dimensional
Navier–Stokes equations provide reasonable predictions of

aerodynamic performance for complex airfoil geometries.1 Al-
though still a subject of research, the solvers are becoming accurate,
robust, and computationally inexpensive. For the solution of the
aerodynamic shape optimization problem, the validated solvers are
typically combined with numerical optimization methods, in par-
ticular gradient- and nongradient-based methods. Perhaps the most
popular approach for the computation of the objective function gra-
dient is the adjoint method2−7 because its cost is virtually indepen-
dent of the number of design variables. Nongradient-based meth-
ods, such as genetic algorithms,8−10 are generally not as efficient
as gradient-based methods; however, they may be advantageous for
complex, nonsmooth, multi-objective problems.

A classic aerodynamic application of numerical optimization
methods is the design of cruise configurations for transonic flow11−13

and recently for supersonic flow.14,15 Furthermore, the application
of these methods to the design of high-lift configurations is also
an active area of research.16−21 An efficient high-lift configuration
can significantly improve the aerodynamic performance of an air-
craft, as well as provide weight savings and reductions in mechan-
ical complexity.22 Therefore, to address all aspects of aerodynamic
design, a practical algorithm requires effective capabilities for opti-
mization using multiple objectives, which may include multidisci-
plinary interactions,23 and multiple operating points.

A well-known approach for solving multipoint and multi-
objective problems is the weighted-sum method. Detailed examples
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of this method for the multipoint design of cruise configurations
are provided by Drela.24 The main shortcoming of this method
is the selection of appropriate design points and their associated
weights. The profile optimization method recently introduced by Li
et al.25 and the probabilistic approach suggested by Huyse et al.26

are promising robust design techniques that address this difficulty.
In Ref. 27, we presented an accurate and efficient algorithm for

the calculation of the gradient via the discrete-adjoint approach.
The adjoint equation is solved using the preconditioned generalized
minimal residual (GMRES) Krylov subspace method (see Ref. 28).
Furthermore, the same preconditioned GMRES method is also used
within a Newton–Krylov flow solver for fast solution of the Navier–
Stokes equations. Overall, the gradient is obtained in just one-fifth
to one-third of the time required for a flow solution.

The objectives of this paper are to extend and evaluate the
Newton–Krylov algorithm presented in Ref. 27 to the following
three areas of aerodynamic design: 1) optimization of high-lift
configurations, 2) multi-objective optimization, and 3) multipoint
optimization. Factors under consideration include efficiency of the
optimization, design robustness, global and local minima, and the
computation of Pareto fronts. A genetic algorithm, presented in
Ref. 10, is used to validate the multi-objective results.

Problem Formulation
The aerodynamic shape optimization problem consists of deter-

mining values of design variables X, such that the objective function
J is minimized,

min
X

J (X, Q) (1)

subject to constraint equations C j ,

C j (X, Q) ≤ 0, j = 1, . . . , Nc (2)

where the vector Q denotes the conservative flow variables and Nc

denotes the number of constraint equations. The flow variables are
forced to satisfy the governing flow equations, F , within a feasible
region of the design space �,

F(X, Q) = 0, ∀ X ∈ � (3)

which implicitly defines Q = f (X).
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For the examples under consideration here, the objective function
is given by

J =






ωL

(
1 − CL

/
C∗

L

)2 + ωD

(
1 − CD

/
C∗

D

)2
if CD > C∗

D

ωL

(
1 − CL

/
C∗

L

)2
otherwise (4)

where C∗
D and C∗

L represent target drag and lift coefficients, respec-
tively. The weights ωD and ωL are user-specified constants. We find
this formulation of the objective function particularly useful be-
cause it provides an intuitive approach for the selection of weights
and additional terms, such as the moment coefficient, can be readily
included. The weighted-sum method is used for multipoint opti-
mization problems:

Jm =
Nm∑

i = 1

wiJi (5)

where Nm is the number of design points (typically Mach numbers)
and wi a user-assigned weight for each design point.

The design variables are based on a B-spline parameterization27,29

of the airfoil. An example is shown in Fig. 1, where a B-spline curve
is fitted over the upper surface of the main element, and also the up-
per surface of the flap for the National Aerospace Laboratory (NLR)
7301 configuration.30 The vertical coordinates of the B-spline con-
trol points are used as design variables. Depending on the problem
of interest, additional design variables may include the angle of at-
tack and the horizontal and vertical translation associated with each
high-lift element in multi-element configurations, labeled as Fx and
Fy in Fig. 1. The horizontal and vertical translation design variables
control the gap and overlap distances in the slot region of the airfoil,
as defined in Fig. 2.

The constraint equations (2) represent airfoil thickness constraints
that are used to ensure feasible designs. The constraints are given
by

h∗(z j ) − h(z j ) ≤ 0 (6)

where h∗(z j ) is the minimum allowable thickness at location z j

expressed as a fraction of the airfoil’s chord. For multi-element

Fig. 1 B-spline curves and flap translation design variables.

Fig. 2 Definition of gap and overlap distances.

configurations, it is also necessary to constrain the gap and over-
lap distances. These constraints are required to ensure a reason-
able computational grid and are usually inactive at the optimal
solution.

The governing flow equations are the compressible two-
dimensional thin-layer Navier–Stokes equations in generalized
coordinates:

∂Ê(X, Q̂)

∂ξ
+ ∂F̂(X, Q̂)

∂η
= Re−1 ∂Ŝ(X, Q̂)

∂η
(7)

where Q̂ = J −1Q = J −1[ρ, ρu, ρv, e]T is the vector of conservative
dependent state variables, ξ and η are the streamwise and normal
generalized coordinates, respectively, and J is the Jacobian of the
coordinate transformation from Cartesian coordinates. Vectors Ê
and F̂ represent the inviscid flux vectors, the viscous flux vector is
given by Ŝ, and Re is the Reynolds number. The equations are in
nondimensional form. For further details, see Ref. 31. The turbulent
viscosity is modelled with the Spalart–Allmaras turbulence model.32

All cases considered in this study are assumed to be fully turbulent,
and therefore the laminar–turbulent trip terms are not used.

Numerical Method
The aerodynamic shape optimization problem defined by

Eqs. (1–3) is cast as an unconstrained problem. This is accomplished
by lifting the side constraints (2), into the objective functionJ using
a penalty method. Furthermore, the constraint imposed by the flow
equations (3) is satisfied at every point within the feasible design
space, and consequently, these equations do not explicitly appear in
the formulation of the optimization problem.

The unconstrained problem is solved using the Broyden–
Fletcher–Goldfarb–Shanno quasi-Newton method in conjunction
with a backtracking line search (see Refs. 27 and 33). At each step of
the line search, the objective function value and gradient are required
to construct a local cubic interpolant. Note that the optimization
problem is based on the discrete form of the flow equations. Using
the discrete approach, we expect the gradient to vanish at the optimal
solution. In the following sections, we present the formulation for
the penalized objective function, as well as the algorithms used for
the flow solution, the gradient evaluation, and the grid-perturbation
strategy.

Objective with Constraints
A penalty method is used to combine the objective function with

the constraint equations. For example, the formulation for the thick-
ness constraints is given by

J = Jd + ωT

Nc∑

j = 1

C j (8)

where Jd is to the design objective given by Eq. (4), JT denotes the
thickness penalty terms, and ωT is a user-specified constant. The
penalty terms are based on Eq. (6) and are cast using the following
quadratic function:

C j =
{[

1 − h(z j )
/

h∗(z j )
]2

if h(z j ) < h∗(z j )

0 otherwise (9)

A similar formulation is used to enforce the lower and upper bounds
for the gap and overlap distances.

Flow Evaluation
The spatial discretization of the flow equations (7) is the

same as that used in ARC2D31 and TORNADO34 for multiblock
H-topology grids. The discretization consists of second-order
centered-difference operators with second- and fourth-difference
scalar artificial dissipation. The Spalart–Allmaras turbulence model
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is discretized as described in Ref. 32 (also see Ref. 35). Overall, the
spatial discretization leads to a nonlinear system of equations

R(X, Q̂Q) = 0 (10)

where Q̂Q is the discrete vector of conservative dependent flow vari-
ables including the turbulence model variable ν̃. Hence, at each
node ( j, k) within the computational domain, Q̂Q j,k = (J −1QQ) j,k =
J −1[ρ, ρu, ρv, e, ν̃]T

j,k . The turbulence model equation is scaled
by J −1. On multiblock grids, the block interfaces are overlapped
in the streamwise direction and averaged in the normal direction.
Two columns of halo points are used at the streamwise block inter-
faces. Although R is written as a function of the design variables,
we emphasize that during a flow solution the design variables, and
consequently the computational grid, are constants.

Equation (10) is solved in a fully coupled manner, where conver-
gence to steady state is achieved using the preconditioned GMRES
algorithm in conjunction with an inexact-Newton strategy (see
Refs. 27, 36, and 37). The main components include matrix-free
GMRES and a block-fill incomplete lower–upper (LU) factoriza-
tion (BFILU) preconditioner. The matrix–vector products required
at each GMRES iteration are formed with first-order finite dif-
ferences. On the basis of numerical experiments, the number of
GMRES search directions is limited to 40 [GMRES(40)], and we
do not allow GMRES restarts.37 Right preconditioning is used, and
the preconditioner is based on an approximate flow Jacobian matrix.
The level of fill in the BFILU factorization for most cases is two
[BFILU(2)], but difficult multi-element cases may require a level
of fill of four [BFILU(4)]. The approximate-factorization algorithm
of ARC2D in diagonal form31,34 in conjunction with a subiteration
scheme32 for the turbulence model equation is used to reduce the
initial residual by three orders of magnitude to avoid Newton startup
problems.

The approximate flow Jacobian matrix used for the precondi-
tioner is identical to the flow Jacobian matrix, ∂R/∂QQ, except for
the treatment of the artificial-dissipation coefficients.27 Hence, the
preconditioner contains the contributions from all components of the
residual vector, namely, inviscid and viscous fluxes, boundary con-
ditions, block interfaces, and the turbulence model. The artificial-
dissipation coefficients, which include the spectral radius and the
pressure switch, are assumed to be constant with respect to the flow
variables. Furthermore, the preconditioning matrix is formed with
only second-difference dissipation, but the second-difference coef-
ficient is combined with the fourth-difference coefficient as

d (2)

l = d (2)
r + φd (4)

r (11)

where the subscript r denotes the contribution from the right-hand
side and the subscript l denotes the resulting left-hand-side value
used in forming the preconditioner. This modification does not af-
fect the steady-state solution. Fast convergence is obtained with the
value of φ set to 6.0, which has been determined through numerical
experiments.

Equation (11) improves the diagonal dominance of the precon-
ditioning matrix and reduces the work and storage requirements of
the incomplete factorization. This approach is similar to the “di-
agonal shift” strategy suggested by Chow and Saad.38 The present
preconditioning matrix is a compromise between a preconditioner
based on a first-order upwind discretization of the flow equations
and a preconditioner based on the actual second-order discretiza-
tion. This novel intermediate preconditioner is significantly more
effective than either of these more commonly used approaches.

Gradient Evaluation
Using the discrete-adjoint method, the expression for the gradient

GG of the objective function J [X,QQ(X)] is given by

GG = dJ
dX

= ∂J
∂X

− ψT ∂R
∂X

(12)

where we reduce the vector of design variables X to a scalar to
clearly distinguish between partial and total derivatives. For prob-
lems with multiple design variables, it may be helpful to note that GG
and ∂J /∂X are [1 × ND] row vectors, ψ is a [NF × 1] column vec-
tor, and ∂R/∂X is a [NF × ND] matrix, where ND is the number of
design variables and NF is the number of flow variables. We assume
that the implicit function QQ(X) defined by Eq. (10) is sufficiently
smooth even in the presence of flow discontinuities such as shock
waves.39−41

The vector ψ represents adjoint variables, which are given by the
adjoint equation

∂R
∂QQ

T

ψ = ∂J
∂QQ

T

(13)

This is a large, sparse, linear system of equations that is indepen-
dent of the design variables. The GMRES strategy from the flow
solver is adopted to solve the adjoint equation. Fast solutions are
obtained with GMRES(85), and for the preconditioning matrix we
use BFILU(6) and φ = 3.0. Multi-element airfoil cases with com-
plex flowfields may require φ = 6.0, which improves the robustness
of the adjoint solver. Because of the transpose on the left-hand side
of Eq. (13), the matrix-free approach used in the flow solver is not
possible for the adjoint equation. The flow Jacobian matrix is stored
explicitly, where we include the contribution from the spectral ra-
dius, but we treat the pressure switch associated with the artificial-
dissipation scheme as a constant.

The remaining terms in Eqs. (12) and (13), namely, the objective
function sensitivities ∂J /∂X and ∂J /∂QQ, as well as the residual
sensitivity ∂R/∂X, are evaluated using centered differences. The use
of centered differences for the evaluation of the partial derivative
terms is not computationally expensive. For example, the centered-
difference formula for the residual sensitivities is given by

∂R
∂X i

= R(X + hei ,QQ) − R(X − hei ,QQ)

2h
(14)

where

h = max
(
ε · |Xi |, 1 × 10−8

)
(15)

and i = 1, . . . , ND . The i th unit vector is ei , and a typical value of
ε is 1 × 10−5. Note that Eq. (14) involves two evaluations of only
the residual vector per design variable and not two flow solutions.
Furthermore, the evaluation of residual sensitivities includes the
evaluation of grid sensitivities because the design variables do not
explicitly appear in the residual equations except for the angle-of-
attack design variable.

Grid-Movement Strategy
As the shape and position of an airfoil evolve during the opti-

mization process, the location of the grid nodes is adjusted from
the baseline configuration to conform to the new configuration. In
Ref. 27, we use an algebraic grid-perturbation strategy that preserves
the distance to the outer boundary and relocates the grid nodes in
the normal direction proportional to the distance from the airfoil
boundary. When the optimization problem involves the horizontal
and vertical translation of a slat or a flap, the use of this strategy can
result in significantly skewed grid cells near the boundary.37

To improve the quality of the modified multiblock grids, we
present a new grid-perturbation strategy given by

ynew
k = yold

k + (
y/2)[1 + cos(π Sk)] (16)

where 
y is the airfoil shape change. Sk is the normalized arclength
distance given by

Sk = 1

Lg

k∑

i = 2

Li , k = 2, . . . , kmax − 1 (17)

where S1 = 0, Li is the length of a segment between nodes k and
k − 1, and Lg is the grid-line length from the body to the outer
boundary.
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Results and Discussion
Before presenting aerodynamic design examples, we carefully

validate the performance of the flow solver and the gradient com-
putation algorithm. C-topology grids for single-element configu-
rations consist of 257 × 57 nodes, where the distance to the outer
boundary is 24 chords (c), the off-wall spacing is 2 × 10−6c, the
leading-edge clustering is 5 × 10−4c, and the trailing-edge cluster-
ing is 2 × 10−3c. For multi-element configurations, the H-topology
grids contain approximately 31,000 nodes. The off-wall spacing
is 2 × 10−6c, the distance to the outer boundary is 12c, the spac-
ing at the grid stagnation points is 2 × 10−5c, and the trailing-
edge clustering is 2 × 10−3c. The reported CPU times are ob-
tained on a 667-MHz Alpha 21264 processor (SPECfp 2000 rating
of 562 peak).

Validation
Flow-Solver Performance

A fast solution of the flow equations is a critical component of
an effective design algorithm because an evaluation of the objective
function is required at each iteration of the optimizer. The perfor-
mance of the flow solver is examined for the NLR 7301 configuration
at M∞ = 0.25, α = 8 deg, and Re = 2.51 × 106. Figure 3 shows that
the Newton–Krylov (NK) flow solver is approximately two to three
times faster than the approximate-factorization (AF) flow solver.
For many cases, this speedup can be even larger. Initially, the con-
vergence rate of both flow solvers is identical because AF is used
as a startup procedure for the NK flow solver.

One of the main difficulties associated with Newton’s method is
the startup procedure. The NK flow solver is particularly well suited
for the design problem because once we obtain the solution for the
initial airfoil shape, we warm-start the remaining flow solves. Hence,
the flow solution from the current design iteration is used as the
initial guess for the next design iteration. If the stepsizes during the
line-search procedure are sufficiently small, the startup procedure
using approximate factorization is not necessary. The warm-started
flow solves typically converge in two-thirds of the original flow
solve time.

Accuracy and Efficiency of Gradient Computation
Finite difference gradients provide a benchmark that is used to

establish the accuracy of the gradient computation using the adjoint
method. A subsonic lift-enhancement problem for the NLR 7301
configuration is considered. During the computation of the finite
difference gradient, the flow solution is converged 14 orders of mag-
nitude. The adjoint equation is converged eight orders of magnitude.

The freestream conditions are M∞ = 0.25, α = 4 deg, and
Re = 2.51 × 106. We compute the gradient of the objective func-

Fig. 3 Flow-solver performance.

Table 1 Gradient accuracy

Design Finite Adjoint,
variable difference % differencea

5M −0.01228 0.02
4F −0.08533 −0.19
Fx −0.02591 0.06
Fy −0.03363 −0.05

a(G−GFD)/GFD × 100.

Fig. 4 Comparison of adjoint and flow solve convergence times.

tion, Eq. (4), with respect to control point 5 on the main airfoil
(denoted as 5M), control point 4 on the flap (denoted as 4F), and the
horizontal and vertical flap displacements Fx and Fy , respectively
(Fig. 1). The target drag coefficient C∗

D is set equal to the initial
drag coefficient, whereas the target lift coefficient C∗

L is set equal
to 2.2, which represents a 2.5% increase from the initial value. The
values of ωL and ωD in Eq. (4) are both set to 1.0, and there are no
side constraints. Table 1 shows that there is an excellent agreement
between the finite-difference and adjoint gradients.

Figure 4 compares the convergence history of the adjoint and flow
equations with respect to CPU time. The time for the formation of
the preconditioning matrices is included in Fig. 4. (In Fig. 4, the “flat
step” in the convergence of the flow solver after a three order-of-
magnitude decrease in the residual indicates the formation time of
the preconditioner. For the adjoint equation, this time is indicated at
the start of the convergence history.) It is necessary to converge the
adjoint equation only three orders of magnitude to obtain gradients
of sufficient accuracy.42−44 This level of convergence is achieved in
approximately 45 s, as shown in Fig. 4. For the flow equations, we
typically reduce the residual by 10 orders of magnitude to prevent
stalling of the line searches once the solution is close to the optimum.
This convergence level is achieved in 245 s, and consequently, the
gradient is obtained in less than one-fifth of the flow solve time.

Design Examples
Optimization of High-Lift Configurations

The first design example demonstrates the performance of the
NK algorithm for the optimization of complex high-lift aerody-
namic configurations. This optimization is based on a single op-
erating point and objective function, but we consider the issue of
local vs global minima. The goal is to determine the optimal gap
and overlap distances for the NLR 7301 configuration, such that
the modified configuration achieves a higher lift coefficient while
maintaining the same (or lower) drag coefficient as the original con-
figuration. The freestream conditions are M∞ = 0.25, α = 4 deg,
and Re = 2.51 × 106. The initial values of CL and CD are 2.145 and
0.04720, respectively. The objective function is given by Eq. (4),
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Table 2 Gap-overlap optimization summary

Design CL CD Gap, %c Overlap, %c

NLR 7301 2.145 0.04720 2.40 −5.31
1 2.165 0.04687 1.99 −4.28
2 2.173 0.04677 1.95 −3.30
Final 2.175 0.04675 2.02 −2.68
Target 2.180 ≤0.0472

Fig. 5 Flap position summary.

Fig. 6 Cp distribution for main element and flap.

where we set C∗
L = 2.180 and C∗

D equal to the initial drag coeffi-
cient. The weights ωL and ωD are set to 1.0. The design variables
are the horizontal and vertical displacements of the trailing edge of
the flap, as indicated in Fig. 1. The gap and overlap limits are set to
±0.5%c and ±1.0%c, respectively, based on the initial configura-
tion. The weight associated with the gap and overlap constraints is
set to 0.05.

Table 2 and Fig. 5 summarize the results. Within a few flow and
gradient evaluations, the flap reaches the maximum allowable over-
lap distance of approximately −4.3%c, at which point the overlap
penalty function becomes active. The optimization converges to de-
sign 1 configuration, shown in Fig. 5. A new grid is generated for
this configuration, and the corresponding values of CL and CD are
given in Table 2. The optimization is restarted from the new grid
with the same objective function. This procedure is continued until
convergence to the final design is obtained (Fig. 5), where the gap
and overlap constraints are no longer active. Note that the drag ob-
jective is satisfied for all of the designs. Consequently, the optimiza-
tion is purely attempting to maximize the lift coefficient. Overall,
a 1.4% increase in the value of the lift coefficient is obtained. This
is achieved by an increased loading on the main element as well as
the flap, as shown in Fig. 6.

Example convergence histories for design 2 and final configura-
tions are shown in Fig. 7. The oscillations in the L2 norm of the

Fig. 7 Convergence histories for gap-overlap optimization.

Fig. 8 Convergence to optimal gap-overlap distances from two distinct
initial conditions.

gradient for design 2 are due to the presence of the gap and overlap
constraints. The norm of the gradient is reduced by several orders
of magnitude, which indicates that the optimization converged to a
local minimum. Note that the approximate CPU time for each flow
and gradient computation indicated in Fig. 7 is shown in Fig. 4. For
additional high-lift design examples using the NK algorithm, see
Ref. 45.

Given that the target value of the lift coefficient is not achieved
at the final design configuration (Table 2), it is somewhat surprising
that further design improvements cannot be realized by further ex-
tending the effective chord of the configuration. The convergence of
the gradient in Fig. 7 indicates that a local optimum has been found,
but a global optimum is not guaranteed. To verify the uniqueness of
the optimal solution, the optimization is restarted from a different
initial condition. The flap is repositioned to a gap of 2.9%c and an
overlap of −0.5%c, that is, the leading edge of the flap is almost
aligned with the trailing edge of the main element. Figure 8 shows
that the optimization converges to the same optimal solution. The
data labeled G24-O53 show the convergence to the optimal solu-
tion from the original configuration, with designs 1 and 2 indicated,
whereas the data labeled G29-O05 show the convergence to the
same optimal solution from the new initial conditions.
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Multi-Objective Optimization
The performance of the NK algorithm is presented for the com-

putation of a Pareto front that is based on two competing objective
functions. In particular, we consider the design of an airfoil shape to
achieve specified lift and drag coefficients using the following two
objectives:

JL = (
1 − CL

/
C∗

L

)2
(18)

JD = (
1 − CD

/
C∗

D

)2
(19)

The target lift and drag coefficients are chosen such that, for a given
set of design variables and constraints, the two objectives cannot
be satisfied simultaneously. The objectives are competing because a
reduction in drag will typically result in a reduction in lift due to the
decrease in the thickness and camber of the airfoil. Consequently,
this problem does not have a unique solution. Instead, we seek to find
a set of noninferior solutions (referred to as a Pareto front) where
an improvement in one of the objectives results in a degradation of
the other.

There are numerous techniques to solve multi-objective
problems.46,47 The technique used here is the weighted-sum method.
The vector of the objective functions is converted to a scalar by as-
signing a weight to each objective and then forming a sum of the
objectives. The resulting objective function is similar to Eq. (8) and
is given by

J = ωLJL + (1 − ωL)JD + ωT

Nc∑

j = 1

C j (20)

where ωT = 1.0.
The results are presented for the following transonic design ex-

ample. The freestream conditions are M∞ = 0.7 and Re = 9 × 106.
We specify a target lift coefficient of 0.55 and a target drag coef-
ficient of 0.0095. The initial airfoil is the NACA 0012 airfoil. The
airfoil shape is described with 15 B-spline control points, and we
use 10 control points as design variables, as shown in Fig. 9. The
angle of attack is also a design variable, resulting in a total of 11
design variables. In addition, we specify three thickness constraints
as summarized in Table 3.

The computed Pareto front is shown in Fig. 10, where the tradeoff
between the competing objectives is clearly captured. The label
TC denotes the thickness-constraint penalty value. Also shown are
two sample airfoil shapes obtained at the end-points of the front.
Aerodynamic coefficients for a few selected solutions are provided
in Table 4.

Table 3 Thickness constraints

TC number Location, %c Thickness, %c

1 25.0 11.8
2 92.0 0.9
3 99.0 0.2

Table 4 Aerodynamic coefficients
for selected Pareto optimal solutions

ωL CL CD α

0.9 0.5440 0.01204 0.264
0.7 0.5291 0.01187 0.222
0.5 0.5074 0.01169 0.167
0.3 0.4693 0.01145 0.0906
0.1 0.3681 0.01099 −0.0557

Fig. 9 B-spline control points and design variables (shaded control
points) for the NACA 0012 airfoil.

Fig. 10 Pareto front.

Fig. 11 Gradient convergence histories for selected Pareto front
solutions.

To ensure that an optimal solution is attained for each value of ωL ,
we require a reduction of at least three orders of magnitude in the
L2 norm of the gradient. Example convergence histories are shown
in Fig. 11. The first optimal solution is obtained for ωL = 0.9, which
requires approximately 130 flow and gradient evaluations. The oscil-
lations in the L2 norm of the gradient are mainly due to the activation
of thickness constraints during the line-search procedure. The so-
lutions for the remaining values of ωL are computed in decreasing
order by warm-starting the optimization from the previous solution.
The warm-started solutions are typically obtained in 65 to 90 flow
and gradient evaluations, as indicated in Fig. 11. An example con-
vergence history of the objective function is shown in Fig. 12 for
ωL = 0.9. The values of the objective function are plotted at the end
of each search direction, that is, when the line-search exit criteria
are satisfied. Note that, within 25 flow and gradient evaluations, the
objective function is converged to engineering accuracy. On aver-
age, the CPU times required for each flow and gradient computation
are roughly 30 and 9 s, respectively.

Because the Pareto front shown in Fig. 10 has been obtained us-
ing a gradient-based method, the convergence to a true, or global,
Pareto front is not guaranteed. To investigate whether a global front
has been captured, we solve this multi-objective problem using a ge-
netic algorithm developed by Holst and Pulliam.10 Note that the NK
algorithm and the genetic algorithm use identical spatial discretiza-
tion of the flow equations, objective functions and constraints, as
well as design variables.

The results are summarized in Fig. 13, where we show the orig-
inal, gradient-based front (Gradient; Fig. 13) and a front computed
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Fig. 12 Objective function convergence history for ωL = 0.9.

Fig. 13 Comparison of Pareto fronts obtained using the gradient al-
gorithm and GA.

by the genetic algorithm (GA; Fig. 13) using a dominance-based
approach.46 The dominance-based approach is specifically designed
to capture global Pareto fronts; however, its computational cost is
greater when compared to other techniques. When the GA is used,
the Pareto front is obtained in 150 generations, which requires ap-
proximately 3000 flow evaluations. Overall, the GA results confirm
that the gradient-based front is a global Pareto front. Furthermore, it
is well known that GAs exhibit slow convergence rates when close
to an optimal solution. This is indicated in Fig. 13, where slightly
better results are obtained by the NK algorithm.

Multipoint Optimization
To investigate the performance of the NK algorithm for multi-

point optimization problems, the design of a low-drag airfoil for
transonic flight conditions at a specified lift coefficient is consid-
ered. This example is based on one of the cases studied by Drela.24

The objective function is given by Eq. (4), where the target drag
coefficient C∗

D is set to 0.013, the target lift coefficient C∗
L is set

to 0.733, and the Reynolds number is 9.0 × 106. The initial airfoil
is the Royal Aircraft Establishment (RAE) 2822 airfoil. The airfoil
shape is described with 25 control points, and we use 19 control
points as design variables, as well as the angle of attack. The B-
spline control points together with the active design variables are
shown in Fig. 14. The values of ωL and ωD are set to 1.0 and 0.1,
respectively. In addition, three airfoil TCs are specified, as summa-

Table 5 Thickness constraints

TC number Location, %c Thickness, %c

1 35.0 12.04
2 96.0 0.5
3 99.0 0.12

Fig. 14 B-spline control points and design variables (shaded control
points) for the RAE 2822 airfoil.

a) Pressure distribution and airfoil shapes (M = 0.74)

b) Drag coefficient at CL = 0.733

Fig. 15 Single-point optimization.

rized in Table 5. The constraint at 35%c represents the initial airfoil
thickness, whereas the constraints near the trailing edge are used to
prevent airfoil surface crossover. The value of ωT is set to 1.0.

First, we consider a single-point optimization problem for the
design Mach number of 0.74. Figure 15a shows the initial and fi-
nal pressure distributions and the corresponding airfoil shapes. Fig-
ure 15b shows the values of the drag coefficient over a range of Mach
numbers for CL = 0.733. The drag coefficient is reduced by 36.4%
at the design Mach number. The final thickness at 35%c is 12.0%c,
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a) Pressure distribution and airfoil shapes (M = 0.74)

b) Drag coefficient at CL = 0.733

Fig. 16 Four-point optimization.

which is very close to the desired thickness. However, for Mach
numbers below 0.71, the optimized airfoil performs significantly
worse than the original airfoil.

Next, we consider a four-point optimization problem, where the
design Mach numbers are 0.68, 0.71, 0.74, and 0.76. The weights as-
signed to each design Mach number for the weighted-sum method,
Eq. (5), are 1.0, 1.0, 2.0, and 3.0, respectively. Figure 16a shows the
initial and final pressure distributions and the corresponding airfoil
shapes for the design point M = 0.74. Figure 16b shows the values
of the drag coefficient over a range of Mach numbers for CL = 0.733.
When compared with the initial RAE 2822 airfoil, the new design
achieves significantly lower drag values for Mach numbers above
0.71. The drag-divergence Mach number is increased by 7.0%. The
drag coefficient is reduced by 33.8% at M = 0.74, which is only
slightly less than the reduction obtained for the single-point opti-
mization problem. Although the resulting airfoil is not suitable for
practical use, with judicious definition of objectives and constraints
for a specific application, the NK algorithm can provide realistic
designs.

Conclusions
An NK algorithm for the design of single- and multi-element

airfoil configurations has been presented. The accuracy of the ob-
jective function gradient, based on the discrete-adjoint method, is

excellent. Furthermore, the gradient is obtained in approximately
one-third to one-fifth of the flow solve time. The design exam-
ples demonstrate that the new algorithm provides an effective ap-
proach for aerodynamic design problems with multiple objectives
and operating points. Future work should concentrate on more de-
tailed comparisons between the gradient-based algorithms and GAs
for complex multi-objective problems. In addition, the capabilities
of the new algorithm need to be investigated for practical three-
dimensional design problems with more complex objectives and
constraints (preferably defined by industry experts).
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