
Mesh Movement for a Discrete-Adjoint Newton-Krylov

Algorithm for Aerodynamic Optimization

Anh H. Truong∗, Chad A. Oldfield∗ and David W. Zingg†

Institute for Aerospace Studies, University of Toronto

4925 Dufferin St., Toronto, Ontario, Canada, M3H 5T6

A grid movement algorithm based on the linear elasticity method with multiple incre-

ments is presented. The method is computationally expensive, but is exceptionally robust,

producing high quality elements even for large shape changes. It is integrated with an

aerodynamic shape optimization algorithm that uses an augmented adjoint method for

gradient calculation. The discrete adjoint equations are augmented to explicitly include

the sensitivities of the mesh movement, resulting in an increase in efficiency and numer-

ical accuracy. This gradient computation method requires less computational time than

a function evaluation, and leads to significant computational savings as dimensionality is

increased. The results from application of these techniques to several large deformation

and optimization cases are presented.

I. Introduction

Dynamic meshes are required in the simulation of flow problems involving moving boundaries. These
problems occur in many engineering applications, including blood flow in arteries, induced vibrations of
suspension bridges, skyscrapers, and offshore structures, oscillating airfoils, aeroelastic response of wings, and
unsteady motion of rotor blades in forward flight.1–3 More recently, with rapid advancements in processing
speed and computing power and the extended use of computational fluid dynamics software as a design
tool, dynamic meshes have also been used in the process of aerodynamic shape optimization. In either area
of application, a new mesh has to be generated at each time step or iteration to fit the deformed surface,
or the existing mesh has to be allowed to move with the computational domain. Allowing the existing
mesh to evolve with the computational domain is generally more efficient than generating a new mesh. In
shape optimization, the boundary surface undergoes many small changes; it would be too time consuming
to regenerate the mesh in response to these deformations. Re-meshing usually requires manual adjustments
for complex geometries, and the projection of the solution from the old mesh to the new one, since the new
mesh may not have the same number of nodes and connectivity.4 A mesh perturbation approach, on the
other hand, will inherently preserve the original grid connectivity, hence assuring the consistency of any
mesh-induced errors in the flow solution (i.e. due to discretization error) between the initial and deformed
grid, provided that a consistent mesh quality is maintained. It also assures continuity in the sensitivity
derivatives. The robustness and efficiency of the mesh deformation tool is particularly important in gradient-
based optimization because any changes in the grid quality can have significant effects on these derivatives.5

Most importantly, mesh movement algorithms have the potential to significantly reduce engineering cost by
allowing the design process to be automated.

The focus of this work is on implementing a robust grid movement method and efficient gradient compu-
tation for an aerodynamic optimizer developed by Nemec and Zingg.6–8 The optimizer uses a Newton-Krylov
algorithm for aerodynamic shape optimization on structured meshes with the discrete adjoint method for the
computation of the objective function gradient. The flow is governed by the two-dimensional compressible
Navier-Stokes equations with a one-equation turbulence model and is solved using the preconditioned gen-
eralized minimal residual (GMRES) method in conjunction with an inexact-Newton approach. The discrete

∗Graduate Student
†Professor, Senior Canada Research Chair in Computational Aerodynamics, Associate Fellow AIAA.

1 of 18

American Institute of Aeronautics and Astronautics

adjoint equation is solved using the same preconditioned GMRES method. The geometry is defined by a set
of B-spline points, a subset of which is used as design variables. Geometric constraints are imposed on the
objective function as penalty terms. It is shown that augmenting the discrete adjoint equations to explicitly
include the grid perturbation can result in significantly improved run time and gradient convergence.

A. Mesh Movement Methods

A simple mesh movement technique for structured grids is to perturb each grid line running from the airfoil
surface to the outer boundary individually. Burgreen et al.9 computed the perturbation of each node on the
grid line by linearly interpolating the perturbation between the airfoil and the far field. The method was
later improved for highly curved grid lines by basing the interpolation on the arc length along the line.10 In
multiblock meshes, grid lines may not touch the airfoil or the far field boundary, and the method needs to
be modified. Nemec7 uses trigonometric functions to preserve orthogonality for 2D multi-element airfoils.
Jones and Samareh-Abolhassani11 implemented an algebraic perturber that perturbs the block boundaries
and interiors separately, using transfinite interpolation in an arc length parameter space. As they are strictly
algebraic, these methods have a very short run time. However, for large perturbations, they can generate
poor quality or tangled meshes. This can result in the need for the user to generate a new mesh during
the optimization process. This is a notable deficiency, as an optimizer using such a method lacks complete
automation.

A common technique is to model the mesh as a network of fictitious lineal springs whose stiffness is
inversely proportional to the spring length. A linear system that represents this network of fictitious springs
can be formulated and solved, yielding the interior nodal displacements due to a given boundary movement.
While it has been found to be fairly efficient and is applicable to unstructured or structured meshes, this
approach can give tangled meshes for large shape changes. Farhat et al.1 improved the robustness of
the method by adding torsional springs. This was later extended to three dimensions.12 Samareh4 used
quaternion algebra to improve the treatment of three-dimensional rotations and to help preserve the near-
surface quality of 2-dimensional viscous meshes.

Another approach to mesh movement is to model the mesh as a continuum of elastic solid whose properties
are defined by the modulus of elasticity and Poisson ratio. Nodal movements are governed by the equations
of linear elasticity, and mesh distortion can be controlled through the elements in the elastic matrix.13

This method has been found to be much more robust than the spring analogy method, although relatively
inefficient.3, 5, 14 Like the spring analogy technique, the use of the linear elasticity method usually requires
some additional mesh stiffening mechanism to minimize the distortion of small elements, often by means
of nonlinear material properties and/or nonlinear geometric deformation. Tezduyar et al.15 introduced the
technique of controlling the element deformation based on its size. This is achieved by assigning the modulus
of elasticity to be inversely proportional to the cell volume. This way smaller elements will be more rigid
and more resistant to deformation. Stein et al.13 and Bar-Yoseph et al.3 augmented this method to include
a stiffening mechanism that stiffens the mesh with increasing mesh displacement for cases with even larger
amplitudes of displacement and rotation. The incremental approach is adopted here, wherein the deformed
shape is achieved through a series of equal increments. At each increment, the stiffness is locally increased
in highly strained areas. The result is a scheme that has a relatively high computational cost, yet is robust
even to large shape changes.

B. Gradient Evaluation Methods

While many optimization techniques make use of only the objective function value, the methods that are
most computationally efficient are generally those that also use the value of the objective function gradient.
Efficient gradient evaluation is essential to fast gradient-based optimizers.

The most straightforward way of computing a gradient is by means of finite differences. While this
has the advantage of simple implementation, it has limited accuracy due to truncation error for large step
sizes, and due to subtractive cancellation error for small step sizes. Additionally, the time required is long
when compared to a flow solve, and the total time scales linearly with the number of design variables.
The subtractive cancellation errors can be eliminated by using the complex step method. The theory for
this method is laid out by Squire and Trapp,16 and its implementation is discussed by Martins et al.17 It
allows very small step sizes to be used, thereby all but eliminating truncation error. However, the gradient
calculation time is similar to that of finite differences.

2 of 18

American Institute of Aeronautics and Astronautics

Alternatively, the gradient can be computed analytically. Differentiated code can be produced quickly
with algorithmic differentiation programs in either of the forward or reverse modes. Griewank18 provides
a thorough discussion of the methods. In the forward mode, the differentiated code must be run once for
each design variable, but in the reverse mode, the code must only be run once for each objective, so has a
run-time that is independent of the number of design variables. The speed advantages of the reverse mode
are offset by a very large memory requirement: the intermediate values of each variable must be stored.

A semi-analytic approach to derivative calculation is the adjoint method. It was originally introduced
to aerodynamic shape optimization by Pironneau19 and Jameson.20 As with reverse mode algorithmic
differentiation, it provides a gradient computation time that is independent of the number of design variables;
the time is typically on the order of the time taken by one function evaluation. The bulk of the computation
involves solving a linear system whose size is independent of the number of design variables. The memory
requirement is more reasonable than that of reverse mode algorithmic differentiation, but it takes considerable
development time to hand-code the derivatives required to form the adjoint equations.

The adjoint equations can be derived from the continuous or discretized flow equations. In the continuous
approach, the adjoint equations are derived, discretized, then solved. Any discretization of the continuous
adjoint equations may be used, and a carefully chosen discretization can result in computational savings.
However, the computed gradients are different for each possible discretization of the adjoint system. This
appears as an inconsistency between the computed gradient and the gradient one would expect when exam-
ining the discretized objective function; the discrepancy is on the order of the truncation error of the method
and disappears as the meshes for the flow and adjoint solvers are refined.

For the discrete adjoint approach, the process is reversed: the discrete adjoint equations are derived from
the discrete flow equations. The discrete adjoint equations are one of the possible discretizations of the
continuous ones and, by construction, this is the same discretization as was used for the objective function.
The aforementioned error is therefore nil, and the gradient accuracy is regulated by the tolerance to which
the equations are solved. As a result, the optimizer may be able to converge more tightly.21

In accordance with a philosophy favouring tightly converged solutions while maintaining the speed ad-
vantages of the adjoint method, the discrete adjoint method has been selected. For the optimization of the
objective function J of the flow variables, Q, and the design variables, X , the objective function gradient
can be evaluated as follows. First, the flow solver is converged, as represented by equating its residual to
zero.

R(Q,X) = 0 (1)

Next, the adjoint vector, ψ, is found by solving the linear system

[

∂R

∂Q

]T

ψ = −

[

∂J

∂Q

]T

(2)

where the derivatives are evaluated at the converged values of Q. Then, the gradient of the objective function
is found by evaluating

∂J

∂X
=

∂J

∂X

∣

∣

∣

∣

Q

+ ψT ∂R

∂X

∣

∣

∣

∣

Q

(3)

where the |Q notation indicates that Q is held constant in the differentiation. The solution of (2) represents
the bulk of the computational work required in the gradient evaluation; it is the size of this system that is
independent of the length of X , resulting in the speed benefits of the method.

C. Mesh Sensitivities in the Discrete Adjoint Method

Considering that the evaluation of an aerodynamic objective function involves perturbing the mesh, it is to
be expected that the sensitivities of the objective function to the design variables will involve sensitivities
of the mesh perturbation algorithm. When evaluating the gradient using the discrete adjoint method (2–3),
these mesh sensitivities are implicitly included in the terms ∂J /∂X |Q and ∂R/∂X |Q.

Within the discrete adjoint method, a number of different approaches to computing grid sensitivities have
been used. Kim et al.22, 23 found that it is possible to neglect the grid sensitivities for design variables that
do not involve the translation of a body, and when the flow is considered to be inviscid.

Nemec and Zingg6 and Martins et al.24 used finite differences for partial derivatives with respect to
the design variables, thus implicitly incorporating mesh sensitivities. Since their optimizers both use alge-
braic grid perturbation, it is not computationally onerous to repeatedly perturb the grid when forming the

3 of 18

American Institute of Aeronautics and Astronautics

derivatives in this way. Burgreen and Baysal10 and Le Moigne and Qin25 hand differentiated arc length-
based algebraic grid perturbers analytically. Bischof et al.26 used automatic differentiation to reduce the
human effort required to differentiate the more complicated algebraic grid perturbation method of Jones and
Samareh.11

More computationally expensive grid perturbation algorithms, such as the spring analogy and elasticity
methods, have been differentiated using an adjoint approach. Maute et al.29 present an aeroelastic optimizer
for three-dimensional Euler flows. They use the spring analogy mesh perturber of Farhat et al.1 The adjoint
problem is posed as a large linear system that includes the coupled aerodynamic, structural, and mesh
movement terms. It is solved using a staggered procedure, giving adjoint variables for each of the flow, grid
perturbation, and structural solvers. The method is shown to be efficient, but it is noted that both the time
and memory requirements for the derivative of the flow residual with respect to the interior node locations
are considerable.

Recently, Nielsen and Park30 presented an adjoint method for aerodynamic optimization. It computes
an adjoint vector for the flow solver and then another for the grid perturber. This was performed for an
unstructured grid that is perturbed using an algorithm based on linear elasticity. The accuracy of the
sensitivities was comparable to that obtained using direct differentiation, and the computational time was
reduced dramatically. Mavriplis31 took a similar approach using the spring analogy for grid perturbation.

While mesh movement is more popular than regeneration in optimization, analytic and semi-analytic
methods have also been used to differentiate grid generation codes. Sadrehaghighi et al.32 use an algebraic
grid generator to regenerate a grid at each optimizer iteration. Their sensitivity analysis includes analytic
differentiation of the grid generation equations. Korivi et al.33 provide grid sensitivities through algorithmic
differentiation of the algebraic grid generator of Barger et al.34 For aerodynamic sensitivity analysis, Pa-
galdipti and Chattopadhyay35 differentiated the equations governing elliptic and hyperbolic grid generation,
yielding a system of equations that can be solved for the sensitivities of the grid generator.

II. Linear Elasticity Mesh Perturbation Algorithm

A. Solving for the Displacement of Interior Nodes

The displacement of the interior nodes in the spatial domain, Ω, bounded by Γ, is governed by the equilibrium
equation:

∆ · σ + f = 0 on Ω (4)

subject to the displacement boundary condition

u = û on Γ (5)

where σ is the stress vector consisting of normal, σx,y,z, and shear, τxy,yz,xz, stresses; f is the vector of
external forces; u is the vector of element displacement, and û is the vector of prescribed displacement on
the boundary. The final deformation is achieved in a series of equal increments,

A(i) = A(0) +
i

n

(

A(n) −A(0)
)

(6)

where A(i) is the vector of coordinates on the airfoil surface for the ith increment in a perturbation having
a total of n increments. A(0) is the parent airfoil, and A(n) = A is the fully perturbed airfoil. The modulus
of elasticity, E, is set to be proportional to the inverse of cell area at the ith increment, V (i). In addition, a
stiffening mechanism that varies with the distortion measures is applied to enhance control of the geometric
distortion of the elements, including aspect ratio, taper, and skew. The change in stiffness from one increment
to the next is based on cell distortion, defined as the ratio of the element shape quality, Φ̂, to its reference
value, such that E increases to infinity as mesh entanglement is approached:

E(i) =
1

V (i)

(

Φ̂
(i)
e

Φ̂
(0)
e

)2

(7)

For a quadrilateral element, the element distortion measure is defined in terms of the 2-norm of the

4 of 18

American Institute of Aeronautics and Astronautics

1

2

3

4
3

l

2l
1

l

Figure 1. Quadrilateral element with subtriangular element ∆123 and side lengths l1, l2, l3

element aspect ratios of its sub–triangular elements:

Φ̂(i)
e =

√

√

√

√

4
∑

i=1

(

Φ̂
(i)
∆

)2

(8)

∆i is the sub–triangular element inside the quadrilateral shown in Fig. 1. ∆1 = ∆1,2,4, ∆2 = ∆1,2,3,
∆3 = ∆2,3,4, ∆4 = ∆1,3,4, The element aspect ratio of a triangular element is defined as:

Φ̂
(i)
∆ =

R∆

r∆
(9)

where R∆ is the radius of the smallest circumscribed circle, and r∆ is the radius of the largest inscribed
circle:

R∆

r∆
=
s∆l1l2l3

4A2
∆

(10)

where A∆ =
√

s∆ (s∆ − l1) (s∆ − l2) (s∆ − l3) is the area of the triangle ∆, s∆ = 0.5 (l1 + l2 + l3) is the
semi-perimeter, and l1,2,3 are the lengths of the sides of the triangle. These formulations were suggested by
Bar-Yoseph et al.,3 and have been demonstrated to work well for large deformation problems.

The total strain energy stored in the elastic medium is given by

Ep =
1

2

∑

e

UT
e KeUe (11)

where Ue is an 8-element vector containing the x- and y-direction displacements of each of the corner nodes
of the quadrilateral element e with stiffness Ke. This can also be written in terms of the total strain of the
system:

1

2
UT

t KtUt = Π + UT
t Ft (12)

The total strain energy is the sum of the potential energy, Π, and the external work, UT
t Ft, where Ft is the

vector of external forces acting on each of the nodes. Ut and Kt are the displacement vector and stiffness
matrix for the entire system. The force is known at the boundary, as it is the product of nodal displacement
and stiffness. The dimension of these quantities is the number of degrees of freedom in the system (2 ×
number of nodes in two dimensions). Each entry in Kt is formed by summing the corresponding entries in
each overlapping Ke, and F is zero except at the boundary where the displacement is known.

The steady solution of this system is such that the potential energy is minimized. This is obtained by
setting the derivative of Π with respect to Ut to 0, which yields the following linear system:

KtUt = Ft (13)

For the purposes of the sensitivity analysis, the grid movement equations are written as setting a residual,
r(i), to zero.

0 = r(i) = r(i)(G(i), G(i−1), A(i)(X)) = K
(i)
t U

(i)
t − F

(i)
t (14)

where G(i−1) is the solution for the coordinates of the interior nodes at increment i− 1.

5 of 18

American Institute of Aeronautics and Astronautics

Figure 2. Cubic polynomial fitting at the trailing edge

B. Trailing Edge Treatment

For a C-grid topology, the grid line extending from the trailing edge to the farfield is treated as a moving
boundary. For large deformation problems involving changes in the slope of the trailing edge, the location
of this grid line is computed separately. The streamwise displacement of this grid line is determined using
the algebraic method,7 while the normal displacement is obtained by fitting it to a cubic polynomial passing
through four points: the midpoint between the two nodes on the upper and lower surface of the airfoil just
before the trailing edge, the node at the trailing edge and the two last node on the farfield boundary, as
shown in Fig 2. The special treatment of the trailing edge is used to prevent the rotational response of
the small, elongated elements extending from the trailing edge as they resist deformation. The result is a
smooth, gradual change in slope of the elements at the trailing edge propagating all the way to the far field
region.

III. Augmented Adjoint Formulation

Since the linear elasticity mesh movement method is much more expensive than the original algebraic mesh
movement method, it is no longer practical or efficient to use finite differences to compute partial derivatives
with respect to the design variables, which involves repeated mesh movement. The adjoint approach taken
here augments the method of Nemec and Zingg through the explicit inclusion of mesh sensitivities in the
adjoint equations. A rigorous method of deriving the discrete adjoint equations is through the use of Lagrange
multipliers, as presented by Gunzburger.36 Using this method, the variables X , G(i), and Q are considered
to be independent. The optimization problem can then be posed as minimizing the design objective with
respect to all these variables, subject to the constraint that the flow solver and mesh movement algorithm
must have converged. This is expressed as

min J (Q,G(n), X)

w.r.t. Q,G(n), X

s.t. r(i)(G(i), G(i−1), A(i)(X)) = 0, i ∈ {1, 2, . . . , n}

R(Q,G(n), X) = 0

To enforce the constraints, let the Lagrangian, L, be defined as follows:

L = L(λ(i), ψ, Q, G(i), X), i ∈ {1, 2, . . . , n}

= J +

n
∑

i=1

λ(i)Tr(i) + ψTR (15)

where ψ and λ(i) are the Lagrange multipliers.
Setting each of the partial derivatives of the Lagrangian to zero then provides optimality conditions for

the objective function:

∂L

∂λ(i)
= 0 = r(i), i ∈ {1, 2, . . . , n} (16)

∂L

∂ψ
= 0 = R (17)

∂L

∂Q
= 0 =

∂J

∂Q
+ ψT ∂R

∂Q
(18)

∂L

∂G(n)
= 0 =

∂J

∂G(n)
+ λ(n)T ∂r(n)

∂G(n)
+ ψT ∂R

∂G(n)
(19)

6 of 18

American Institute of Aeronautics and Astronautics

∂L

∂G(i)
= 0 = λ(i)T ∂r(i)

∂G(i)
+ λ(i+1)T ∂r

(i+1)

∂G(i)
, i ∈ {n− 1, n− 2, . . . , 1} (20)

∂L

∂X
= 0 =

∂J

∂X
+

n
∑

i=1

(

λ(i)T ∂r(i)

∂A(i)

∂A(i)

∂X

)

+ ψT ∂R

∂X
(21)

A number of approaches can be taken to find a solution to these optimality conditions to minimize
the Lagrangian, including possibilities such as solving for all of the variables simultaneously—the approach
that defines simultaneous analysis and design (SAND). Using this one-shot approach, a large-scale solver
sets the entire gradient of the Lagrangian (the KKT system) to zero. This is not practical for multipoint
optimization.

The sequential approach taken here delegates a great deal of the computation to the existing specialized
solvers. For a given X , (16) can be solved using the mesh movement code to yield each G(i). Using that
solution, the flow solver can be used to solve (17) to yield Q. The linear systems in (18–20) can then be
solved in the order they appear to give ψ and each λ(i). Finally, the right-hand side of (21) can be evaluated
to yield a value for ∂L/∂X .

This process sets most of the entries in the gradient of the Lagrangian to zero, leaving only ∂L/∂X
nonzero:

∂L

∂
{

λ(i), ψ,Q,G(i), X
} =

[

0 0 0 0
∂L

∂X

]

(22)

The optimizer therefore only needs to consider X , L, and ∂L/∂X . This can be denoted as the following
objective function:

F(X) = L,

{

λ(i), ψ,Q,G(i)

∣

∣

∣

∣

∣

∂L

∂
{

λ(i), ψ,Q,G(i)
} = 0

}

, i ∈ {1, 2, . . . , n} (23)

having a gradient given by

∂F

∂X
=
∂L

∂X
=
∂J

∂X
+

n
∑

i=1

(

λ(i)T ∂r
(i)

∂A(i)

∂A(i)

∂X

)

+ ψT ∂R

∂X
,

{

λ(i), ψ,Q,G(i)

∣

∣

∣

∣

∣

∂L

∂
{

λ(i), ψ,Q,G(i)
} = 0

}

(24)

The function F and the gradient ∂F/∂X are sent to the optimizer.
Notice that in evaluating the gradient, the adjoint equations, (18–20), are linear systems whose sizes are

independent of the number of design variables. In evaluating the gradient, the only step whose computational
time depends on the number of design variables is the evaluation of ∂L/∂X in (21). This step requires only
matrix multiplication and addition, so is not computationally demanding. The time required to evaluate the
gradient should therefore be nearly independent of the number of design variables.

IV. Results

Several cases involving pure mesh deformation and deformation in an optimization cycle are presented
below. The first two are pure large deflection cases consisting of translational and rotational deformations,
demonstrating the robustness of the mesh movement algorithm. The next two are aerodynamic shape
optimization cases examining the performance of the mesh movement algorithm with the augmented adjoint
method compared to that of the original method. In the optimization cases, the wake cut is treated as part
of the interior of the mesh rather than as a boundary defined by a cubic.

A. Mesh Movement for Large Deformations

Translational and rotational displacements are examined. In the first case, the RAE 2822 airfoil is deformed
and given a translation of one chord length in both the x- and y- directions, as shown in Figure 3. The final
configuration was achieved using only one increment, and the element quality (as defined in equation 8) of
the deformed mesh is equivalent to that of the original.

Figure 4 shows the result of rotating the NACA0012 airfoil by 60◦ about the trailing edge. The mesh
has 201 × 45 nodes, and the final deformation is achieved using 5 increments. It can be observed that the
smoothness and orthogonality of the original mesh are maintained even for such a large rotation, and the

7 of 18

American Institute of Aeronautics and Astronautics

0 1 2 3

0

1

2

(a) RAE 2822 airfoil C-mesh

1.998 1.999 2 2.001 2.002 2.003

0.998

1

1.002

(b) Modified mesh at the trailing edge

Figure 3. Original and deformed mesh of the RAE 2822 airfoil consisting of 10,550 nodes

quality of smaller elements in the boundary layer of the airfoil is preserved. The deformation is propagated
to larger elements in the farfield region. Again, using equation (8), the quality of the deformed mesh is
determined to be 0.836, which is quite exceptable considering the large degree of rotation the mesh has
undergone.

-1 0 1 2 3
-2

-1

0

1

2

(a) NACA 0012 airfoil C-mesh

0.98 0.99 1 1.01 1.02

-0.03

-0.02

-0.01

0

0.01

(b) Modified mesh at the trailing edge

Figure 4. Original and rotated mesh (by 60◦) of the NACA 0012 airfoil consisting of 9,045 nodes

B. Optimization Cases

1. Test Case Details

Two test cases are presented. In case A, the design objective is to minimize the drag to lift ratio for an airfoil
in a subsonic flow. The Mach number is 0.25, and the Reynolds number is 2.88× 106. The turbulent flow is
computed on a 225× 49 mesh (11,025 nodes). The initial airfoil is the NACA0012, which is parametrized by
a B-spline curve having 13 control points, as shown in Figure 5. The three control points at the leading edge
and the two at the trailing edge are held fixed, while the y-coordinates of the remaining 8 control points are
used as design variables. The angle of attack, initially 4◦, is also a design variable. Six minimum thickness

8 of 18

American Institute of Aeronautics and Astronautics

NACA0012

control points

design variables

Figure 5. Airfoil parameterization and design variables, cases A and B

Table 1. Thickness constraints (case A)

Chordwise coordinate Thickness constraint NACA0012 thickness

0.05 0.04 0.0706

0.35 0.11 0.1177

0.65 0.04 0.0809

0.75 0.03 0.0612

0.85 0.026 0.0389

0.95 0.012 0.0137

0.99 0.002 0.0028

constraints, given in Table 1, are used. A piecewise linear distribution for the radius of curvature constraint
is given in Table 2, and is shown graphically in Figure 6. The respective properties of the NACA0012 airfoil
are included for reference. The minimum radius of curvature constraint was chosen to be less than the radius
of curvature of the NACA0012. In the critical areas of the nose and tail, the specified minimum radius of
curvature is relatively close to the radius of curvature of the RAE2822 airfoil.

In the second case, the design objective is to minimize drag at a fixed lift coefficient under transonic flow
conditions. The Mach and Reynolds numbers are 0.78 and 2.0× 107, respectively. The target lift coefficient
is 0.75. An enclosed minimum area constraint of 0.8 times the area of the initial airfoil, the NACA0012,
is enforced. Thickness constraints are 0.012 at a chordwise coordinate of 0.95, and 0.11 anywhere between
chordwise coordinates 0.15 and 0.4. Radius of curvature constraints are the same as in case A. The test
cases were run using an Athlon64 3500+ processor with a clock speed of 2.2 GHz.

2. Optimizer Convergence

The convergence history for case A is shown in Figure 7 for the algebraic mesh movement with and without the
augmented adjoint, and in Figures 8 and 9 for the elasticity mesh movement with n = 1 and 2, respectively.
The figures show the norm of the objective function gradient, and a normalization of objective function,

Table 2. Radius of curvature constraint

Chordwise coordinate Radius of curvature constraint NACA0012 radius of curvature

0 0.01 0.016

0.005 0.01 0.030

0.2 0.3 1.357

0.8 0.3 7.528

1 0.2 5.551

9 of 18

American Institute of Aeronautics and Astronautics

Chordwise coordinate

R
ad

iu
s

of
cu

rv
at

ur
e

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Target
NACA0012

Leading edge detail

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

Figure 6. Radius of curvature constraint

0 5 10 15 20 25 30 35 40 45 50
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Figure 7. Optimizer convergence for case A: algebraic method

given by

Fnormalized =
F

Fmin
− 1 (25)

where Fmin is the minimum objective function value found. This accentuates the difference between the
objective function at a given increment and the optimal value.

The curves for the normalized objective function show that the first two nonzero digits of the objective
function value are determined after the first 15–20 iterations. At the end of the optimization, between 5 and
10 digits of the objective function are unchanging.

In all cases, the original and augmented adjoint methods are very similar for the first several iterations. As
the optimization progresses, the differences between the methods accumulate and their convergence histories
diverge. In the end, it can be seen that the gradient converges to about the same level for both gradient
calculation methods, when using the algebraic grid perturbation scheme.

When the elasticity method is used to perturb the grid, however, the augmented adjoint method allows
much tighter convergence of the gradient than does the original adjoint method (about 4 orders of magnitude
difference). This is due to convergence difficulties experienced when using the original adjoint method, and
can be explained by gradient inaccuracy. Considering the gradient evaluation (3), some accuracy is lost in
the finite differencing used to find ∂F/∂X|Q and ∂R/∂X |Q. The two quantities are then added together.

10 of 18

American Institute of Aeronautics and Astronautics

0 10 20 30 40 50 60 70
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Figure 8. Optimizer convergence for case A: elasticity method with n = 1

0 10 20 30 40 50 60 70 80
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Figure 9. Optimizer convergence for case A: elasticity method with n = 2

11 of 18

American Institute of Aeronautics and Astronautics

algebraic
elasticity, n=1
elasticity, n=2

Figure 10. Optimized airfoils for case A

Table 3. Optimized airfoil performance using perturbed and regenerated meshes

Perturbation Objective function

method Perturbed mesh Regenerated mesh Difference

Algebraic 0.016993 0.016685 0.000307

Elasticity (n = 1) 0.016694 0.016744 0.000050

Elasticity (n = 2) 0.016681 0.016668 0.000013

Near convergence of the optimizer, their sum is a near-zero quantity, and so several of the leading digits
cancel, and more cancellation error is incurred.

Despite the fact that the convergence histories are different when using the original and augmented
adjoint methods, they result in very similar optimized airfoils. The largest vertical displacement between the
optimized airfoils is less than 10−6 chords, when the algebraic grid perturbation is used. For the elasticity
grid perturbation, the difference is less than 10−3 chords; this is expected, given the loose convergence
obtained with the original adjoint method.

The optimized airfoils found using the augmented adjoint method, for case A, are shown in Figure 10.
While the optimal airfoil shape does not depend much on the gradient calculation method, the figure shows
that the shape is dependent on the grid perturbation technique used. The two variants of the elasticity give
very similar results, but the algebraic method gives a somewhat different shape.

To explore this, a new mesh was regenerated for each of the optimized airfoils, and the objective functions
were recomputed on the new meshes. These objective functions include the constraint penalties; to maintain
consistency, the penalties are not recomputed on the regenerated mesh, but are retained from the optimized
result. These values, given in Table 3, show that the elasticity method with n = 2 provides the shape
having the best performance, as computed on the regenerated mesh. Also, the comparison between the
result computed on the perturbed and regenerated meshes is best for the elasticity method with n = 2, and
worst for the algebraic method. This suggests that the mesh obtained using the elasticity method with n = 2
has the highest quality, i.e. it is most similar to the original mesh.

The optimizer convergence for case B shows trends similar to those found in case A. The normalized
function and gradient convergence for the case where the elasticity method is used with n = 2 is shown in
Figure 11. The figure shows that the augmented adjoint method converges about three orders of magnitude
more tightly.

Using the same mesh movement method, the difference between the y-coordinates of the optimized
airfoils obtained using the original and augmented adjoint methods is less than 10−4 chords. The shape of
the optimized airfoil is shown in Figure 13. The difference between the airfoils obtained with different mesh
movement methods is not significant in this case—less than 10−3 chords. This differs from case A, where
using the algebraic mesh movement method gave a noticeably different airfoil. The reason for the difference
is likely that shock elimination dominates the transonic problem, whereas viscous drag is more important
for the subsonic airfoil—and thus so is mesh orthogonality. The optimized airfoil for case B is shock-free, as
can be seen in the pressure distribution, Figure 12.

12 of 18

American Institute of Aeronautics and Astronautics

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Figure 11. Optimizer convergence for case B: elasticity method with n = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

1.5

Chordwise coordinate

P
re

ss
ur

e
co

ef
fic

ie
nt

Figure 12. Optimized pressure distribution for case B

Figure 13. Optimized airfoil for case B

13 of 18

American Institute of Aeronautics and Astronautics

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 14. Gradient calculation time: algebraic method, case A

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 15. Gradient calculation time: elasticity method with n = 1, case A

3. Gradient Evaluation Time

The CPU time required to evaluate the gradient was investigated, considering different mesh movement
techniques, gradient evaluation methods, and numbers of design variables. In each of Figures 14–16, the
gradient evaluation time for the second iteration in case A is plotted against the number of B-spline design
variables, and the augmented adjoint method is contrasted with the original adjoint method. In Figure 14,
algebraic mesh movement is used. This shows little difference between the two gradient evaluation techniques,
although the original method is slightly slower. This difference is indicative of the speed of the analytic
calculation of ∂R/∂G. The time taken by the augmented method actually decreases some with an increasing
number of design variables; this is likely noise due to slightly different convergence of the solvers.

Figures 15 and 16 use the elasticity mesh movement method, with the number of increments, n, being 1
and 2, respectively. The time taken by the augmented method varies by less than 5% with differing numbers
of design variables, and does not show an increasing trend. Additionally, the augmented adjoint method is
several times faster than the original adjoint method, whose time requirements increase linearly with the
number of design variables. The evaluation time for the original adjoint method is several times longer than
that of a flow solve (near 50 seconds).

In an entire optimization, the gradient evaluation time is essentially constant, despite warm-starting each
λ(i). This is shown in Figure 17, for case A with 8 design variables, using the elasticity grid perturbation

14 of 18

American Institute of Aeronautics and Astronautics

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 16. Gradient calculation time: elasticity method with n = 2, case A

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

Optimizer iteration

E
va

lu
at

io
n

tim
e

[s
]

Function

Gradient

Figure 17. Change in evaluation times during optimization

with n = 2. The figure also shows that the function evaluation (grid perturbation plus flow solution) grows
increasingly faster as the optimization progresses. This is due to warm-starting; the flow solve gradually
becomes faster, while the mesh movement accelerates abruptly near the end of the optimization. The gradient
calculation initially requires about 80% as much time as the function evaluation.

V. Conclusions

We have presented a mesh movement technique that models the mesh through the equations of linear
elasticity. In order to maintain mesh quality, cells are stiffened in inverse proportion to their area and
quality. Multiple mesh movement increments can be used so that the stiffening can be adjusted based
on intermediate quality measures. This mesh movement approach requires more computation than simpler
techniques, such as algebraic methods, but is very robust, producing high quality meshes even for large shape
changes. An augmented adjoint approach is used to calculate adjoint variables associated with the mesh
movement algorithm. Adjoint variables are computed for each increment used. The use of the augmented
adjoint method allows the optimizer to converge much more tightly than was possible using the original
adjoint method. This is indicative of increased gradient accuracy. The augmented adjoint method has a run
time that is independent of the number of design variables. With the augmented adjoint approach, the cost

15 of 18

American Institute of Aeronautics and Astronautics

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 18. Gradient calculation time: algebraic method, case B

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 19. Gradient calculation time: elasticity method with n = 1, case B

0 5 10 15 20 25 30 35
0

500

1000

1500

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e

[s
]

Augmented adjoint
Original adjoint

Figure 20. Gradient calculation time: elasticity method with n = 2, case B

16 of 18

American Institute of Aeronautics and Astronautics

of computing the gradient is about 70–80% of that of a function evaluation (grid movement plus flow solve).

Acknowledgments

This work was sponsored by the Natural Sciences and Engineering Research Council of Canada, the
Canada Research Chairs Program, Bombardier Aerospace, the Society of Naval Architects and Marine
Engineers, and the University of Toronto. Their financial support is gratefully acknowledged.

References

1Farhat, C., Degand, C., Koobus, B., and Lesoinne, M., “Torsional Springs for Two-Dimensional Dynamic Unstructured
Fluid Meshes”, Computer Methods in Applied Mechanics and Engineering, Vol. 163, 1998, pp. 231–245.

2Allen, C. B., “An Unsteady Flow Solver with Algebraic Grid Motion for Aeroelastic Simulations”, International Council
of the Aeronautical Sciences, ICAS 2002, Bristol, U.K., 2002. URL=http://lu.fme.vutbr.cz/icas2002/PAPERS/R3.PDF.

3Bar-Yoseph, P. Z.,Mereu, S., Chippada S., and Kalro, V. K., “Automatic Monitoring of Element Shape Quality in 2-
D and 3-D Computational Mesh Dynamics”, Computational Mechanics, Vol. 27, No. 5, May 2001, pp. 378–395. URL =
http://dx.doi.org/10.1007/s004660100250

4Samareh, J. A., Application of Quaternions for Mesh Deformation, NASA TM–2002–211646, Apr. 2002. URL =
http://hdl.handle.net/2002/14780.

5Martineau, D. G. and Georgala, J. M., “A Mesh Movement Algorithm for High Quality Generalised Meshes”, 42nd AIAA

Fluid Dynamics Conference and Exhibit, AIAA Paper 2004–0614, Reno, NV, Jan. 2004.
6Nemec, M., and Zingg, D. W., “Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations”,

AIAA Journal, Vol. 40, No. 6, 2002, pp. 856–859.
7Nemec, M., “Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov Approach”, Ph.D Thesis, Univer-

sity of Toronto, 2003. URL = http://oddjob.utias.utoronto.ca/marian/
8Nemec, M., Zingg, D. W., and Pulliam, T., “MultiPoint and Multi-Objective Aerodynamic Shape Optimization”, AIAA

Journal, Vol. 42, No. 6, Jun. 2004, pp. 1057–1065.
9Burgreen, G. W., Baysal, O., and Eleshaky, M. E., “Improving the Efficiency of Aerodynamic Shape Optimization”, AIAA

Journal, Vol. 32, No. 1, 1994, pp.69–76.
10Burgreen, G. W. and Baysal, O., “Three-Dimensional Aerodynamic Shape Optimization Using Discrete Sensitivity Anal-

ysis”, AIAA Journal, Vol. 34, No. 9, 1996, pp. 1761–1770.
11Jones, W. T., and Samareh, J. A., “A Grid Generation System for Multidisciplinary Design Optimization”, Proceedings

of the AIAA 12th Computational Fluid Dynamics Conference, AIAA Paper 1995–1689, Washington, DC,
12Degand, C. and Farhat, C., “A Three-Dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes”,

Computers and Structures, Vol. 80, 2002, pp. 305–316. URL=http://hdl.handle.net/2002/15410
13Stein, K., Tezduyar, T., and Benney, R., “Mesh Moving Techniques for Fluid-Structure Interactions with Large Displace-

ments”, Journal of Applied Mechanics, Vol. 70, No. 1, Jan 2003, pp. 58–63.
14, Neilson, E. J. and Anderson, W. K., “Recent Improvements in Aerodynamic Design Optimization on Unstructured

Meshes”, AIAA Journal, Vol. 40, No. 6, June 2002, pp. 1155–1163.
15Tezduyar, T. E., Behr, M., Mittal, S., and Johnson, A. A., “Computation of Unsteady Incompressible Flows with the

Stabilized Finite Element Methods: Space-time Formulations, Iterative Strategies and Massively Parallel Implementations”,
New methods in Transient Analysis, Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers,
ASME, Anaheim, CA, Nov. 1992.

16Squire, W. and Trapp, G., “Using Complex Variables to Estimate Derivatives of Real Functions”, SIAM Review, Vol. 40,
No. 1, Mar. 1998, pp. 110–112

17Martins, J. R. R. A., Sturdza, P., and Alonso J. J., “The Complex-Step Derivative Approximation”, ACM Transactions

on Mathematical Software, Vol. 29, No. 3, Sep. 2003, pp. 245–262. URL=http://doi.acm.org/10.1145/838250.838251
18Griewank,A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial

and Applied Mathematics, Philadelphia, 2000.
19Pironneau, O., “On Optimum Design in Fluid Mechanics”, Journal of Fluid Mechanics, Vol. 64, 1974, pp. 97–110.
20Jameson, A., “Aerodynamic Design via Control Theory”, Journal of Scientific Computing, Vol. 3, No. 3, 1988, pp.

233–260.
21Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic Design Optimization on Unstructured Grids with a Continuous

Adjoint Formulation”, Computers & Fluids, Vol. 28, 1999, pp. 443–480.
22Kim, H. and Nakahashi, K., “Flap-Deflection Optimization for Transonic Cruise Performance Improvement of Supersonic

Transport Wing”, Journal of Aircraft, Vol. 38, No. 4, 2001, pp. 709–717.
23Kim, H., Obayashi, S., and Nakahashi, K., “Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured

Adjoint Method”, AIAA Journal, Vol. 39, No. 6, 2001, pp. 1011–1020.
24Martins, J. R. R. A., Alonso J. J., and Reuther J. J., “A Coupled-Adjoint Sensitivity Analysis Method for

High-Fidelity Aero-Structural Design”, Optimization and Engineering, Vol. 6, No. 1, Mar. 2005, pp. 33–62. URL =
http://www.kluweronline.com/issn/1389-4420/contents.

25Le Moigne, A. and Qin, N., “Variable-Fidelity Aerodynamic Optimization for Turbulent Flows Using a Discrete Adjoint
Formulation”, AIAA Journal, Vol. 42, No. 7, 2004, pp. 1281–1292.

17 of 18

American Institute of Aeronautics and Astronautics

26Bischof, C. H., Mauer, A., Jones, W. T., and Samareh, J., “Experiences with Automatic Differentiation Applied to a
Volume Grid Generation Code”, Journal of Aircraft, Vol. 35, No. 4, 1998, pp. 569–573.

27Samareh, J. A., “Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization”,
AIAA Journal, Vol. 39, No. 5, 2001, pp. 877–884.

28Samareh, J. A., “Novel Multidisciplinary Shape Parameterization Approach”, Journal of Aircraft, Vol. 38, No. 6, 2001,
pp. 1015–1024.

29Maute, K., Nikbay, M., and Farhat, C., “Sensitivity Analysis and Design Optimization of Three-Dimensional Non-Linear
Aeroelastic Systems by the Adjoint Method”, International Journal for Numerical Methods in Engineering, Vol. 56, No. 6,
Feb. 2003, pp. 911–933.

30Nielsen, E. J. and Park, M. A., “Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design”,
AIAA Journal, Vol. 44, No. 5, May 2006, pp. 948–953.

31Dimitri J. M., “Multigrid Solution of the Discrete Adjoint for Optimization Problems on Unstructured Meshes”, AIAA

Journal, Vol. 44, No. 1, Jan. 2006.
32Sadrehaghighi, I., Smith, R. E., and Twari, S. N., “Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils”,

Journal of Aircraft, Vol. 32, No. 6, 1995, pp. 1234–1239.
33Korivi, V. M., Newman, P. A., and Taylor, III, A. C., “Aerodynamic Optimization Using Sensitivity Derivatives From a

Three-dimensional Supersonic Euler code”, Journal of Aircraft, Vol. 35. No. 3, 1998, pp. 405–411.
34Barger, R. L., Adams, M. S., and Krishnan, R. R., “Automatic Computation of Euler Marching Grids and Subsonic

Grids for Wing-Fuselage Configurations”, NASA TM 4573, Jul. 1994.
35Pagaldipti, N. and Chattopadhyay, A., “A Discrete Semianalytical Procedure for Aerodynamic Sensitivity Analysis

Including Grid Sensitivity”, Computers & Mathematics with Applications, Vol. 32, No. 3, 1996, pp. 61–71.
36Gunzburger, M., “Introduction to the Mathematical Aspects of Flow Control and Optimisation”, Inverse Design and

Optimisation Methods, von Karman Institute of Fluid Dynamics, Brussels, Belgium, Apr. 1997.
37Chattopadhyay, A. and Pagaldipti, N., “Multidisciplinary Optimization Using Semi-analytical Sensitivity Analysis Pro-

cedure and Multilevel Decomposition”, Computers & Mathematics with Applications, Vol. 29, No. 7, Apr. 1995.
38Dongarra, J., Lumsdaine, A., Pozo, R., and Remington, K., “A Sparse Matrix Library in C++ for High Per-

formance Architectures”, Proceedings of the Second Object Oriented Numerics Conference, 1992, pp. 214–218. URL =
ftp://math.nist.gov/pub/pozo/papers/sparse.ps.Z.

18 of 18

American Institute of Aeronautics and Astronautics

	Introduction
	Mesh Movement Methods
	Gradient Evaluation Methods
	Mesh Sensitivities in the Discrete Adjoint Method

	Linear Elasticity Mesh Perturbation Algorithm
	Solving for the Displacement of Interior Nodes
	Trailing Edge Treatment

	Augmented Adjoint Formulation
	Results
	Mesh Movement for Large Deformations
	Optimization Cases
	Test Case Details
	Optimizer Convergence
	Gradient Evaluation Time

	Conclusions

