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We investigate coordinate transformations, quadrature accuracy, and functional supercon-
vergence for diagonal-norm tensor-product generalized summation-by-parts operators. We
show that projection operators of degree r ≥ 2p are required to preserve quadrature accuracy,
and therefore functional superconvergence, in curvilinear coordinates when: (1) the Jacobian
of the coordinate transformation is approximated by the same generalized summation-by-
parts operator that is used to approximate the flux terms and (2) the degree of the generalized
summation-by-parts operator is lower than the degree of the polynomial used to represent the
geometry of interest. Legendre-Gauss-Lobatto and Legendre-Gauss element-type operators
are considered. When the aforementioned condition (2) is violated for the Legendre-Gauss
operators, there is an even-odd quadrature convergence pattern that is explained by the can-
cellation of the leading truncation error terms for the projection operators that correspond to
the odd-degree Legendre-Gauss operators.

I. Introduction

This paper examines some of the practical issues associated with using generalized summation-by-parts (SBP)
schemes to solve aerodynamic flows around complex geometries on curvilinear domains. In combination with

simultaneous approximation terms (SATs) [1–3], which allow boundary conditions to be enforced in a stable manner,
SBP methods [4, 5] provide a provably stable, conservative, and consistent way to numerically solve a wide class of
linear and nonlinear partial differential equations (PDEs) [6–8]. For classical diagonal-norm SBP operators, if the
discretization is dual consistent, then the underlying quadrature and solution functionals converge at the same rate as
the order of the interior operator [9, 10]. The objective of the present work is to develop the conditions necessary to
preserve quadrature accuracy and superconvergence on curvilinear domains discretized using generalized SBP operators
that do not include one or both boundary nodes.

II. Notation and Definitions

The notation is adapted from [6, 9, 11]. Upper case script letters, e.g.,U, denote continuous functions, while lower
case bold letters, e.g., u, indicate the restriction of these continuous functions onto a set of nodes. A sans-serif capital
letter, e.g., H, represents a matrix. Let Ω ⊂ Rd be a d-dimensional Lipschitz domain. The inner product and norm are
defined for two square-integrable real-valued functions,U,V ∈ L2(Ω), as

(U,V) ≡

∫
Ω

UV dΩ, and ‖U‖2 ≡

∫
Ω

U2 dΩ, (1)

which are approximated by the discrete inner product, (u, v)H ≡ uTHv , and norm, ‖u‖2H ≡ uTHu , respectively. We use
the following definition of a generalized SBP operator [11].

Definition 1. Generalized summation-by-parts operator for the first derivative: A matrix operator, D ∈ R(n+1)×(n+1),
is an SBP operator that approximates the derivative ∂

∂x , on the nodal distribution Ωx ∈ [a, b] having n + 1 nodes, of
degree p if
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1) Dxk = H−1Qxk−1 = kxk−1, k = 0, 1, . . . , p;
2) H, the norm matrix, is symmetric and positive definite; and

3) Q + QT = E, where
(
xi

)T Ex j = bi+j − ai+j , i, j,= 0, 1, . . . r, r ≥ p.

From Definition 1, we see that the accuracy of an SBP operator is expressed in terms of the maximum degree of
monomial for which it is exact. For operators constructed according to Definition 1 on tensor-product domains, it is
common to decompose E as

E = tR t
T
R − tL t

T
L, where tTLx

k = ak, tTRx
k = bk, k = 0, 1, . . . , r . (2)

Throughout this work we refer to tR and tL as projection operators.
We define two classes of SBP operators: classical SBP operators and generalized SBP operators [11]. Classical SBP

operators are constructed with a repeated interior stencil on a uniform nodal distribution that includes both boundary
nodes. Generalized SBP operators can be constructed on nonuniform nodal distributions that do not include one or both
boundary nodes. A classical diagonal-norm SBP operator of degree p is associated with a degree τ = 2p − 1 quadrature
rule, while a generalized diagonal-norm SBP operator of degree p is associated with a degree τ ≥ 2p − 1 quadrature
rule [11]. The order of a quadrature is equal to τ + 1. Note that classical SBP operators are a subset of generalized SBP
operators.

III. Analysis

Solving PDEs on complex geometries normally requires the use of a curvilinear coordinate transformation which
relates points in the physical domain to points in a reference space. For classical SBP operators, the impact that the
geometric terms introduced by the coordinate transformation have on the accuracy of diagonal-norm SBP quadrature
was studied in [12]. It was found that classical diagonal-norm SBP quadrature retains its order 2p theoretical accuracy
in curvilinear coordinates when the Jacobian of the transformation is constructed using the SBP derivative operator
associated with the quadrature (i.e., the norm, H). For tensor-product domains, besides retaining quadrature accuracy
for classical SBP operators, the motivation for constructing the Jacobian using the SBP derivative operator associated
with the norm arises from studies by, for example, [13], that imply that the derivative operators used to approximate the
fluxes should also be used to compute the metrics to satisfy the metric invariants.

To see the effect of curvilinear transformations on the quadrature accuracy of generalized SBP schemes that do
not include one or both boundary nodes, we first formalize the coordinate transformation in a one-dimensional setting,
similar to [12]. We decompose the physical domain, Ωx ∈ [a, b], into ne non-overlapping elements Ki , such that
Ωx = ∪

ne
i=1Ki , Ki ∩ Kj = ∅, i , j. Suppose there exists an invertible transformation that maps the projection of the

physical domain onto the element Ki , (Ωx)Ki , to the reference domain, Ωξ ∈ [0, 1]. The change of variable theorem
gives ∫ b

a

U dx =
ne∑
i=1

∫ 1

0
UKiJ dξ, (3)

where J = dxKi

dξ is the Jacobian of the inverse transformation, andUKi isU on the element Ki . The right-hand side of
Eq. (3) can be approximated as

ne∑
i=1

uT
Ki

HDξxKi =

ne∑
i=1

uT
Ki

QξxKi . (4)

Here, Dξ and Qξ are defined on the reference domain. For classical SBP operators, to show that Eq. (4) is a 2p-order
accurate approximation to the right-hand side of Eq. (3), [12] introduces and proves the following theorem.

Theorem 1. Let D = H−1Q be an SBP operator of degree p approximating the first derivative. Then

(z,Du)H = zTQu

is a 2p-order accurate approximation to the integral∫ 1

0
Z

dU
dx

dx,

whereZ dU
dx ∈ C2p−1[0, 1].
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Remark 1. The first derivative SBP operator in Theorem 1 is a classical SBP operator constructed on a uniform domain
that includes both boundary nodes.

Remark 2. The accuracy of the discrete quadrature, (z,Du)H, in Theorem 1 is defined in terms of order rather than
degree. In this case, the quadrature rule associated with the norm matrix, H, is a degree τ = 2p − 1 quadrature rule.
For classical diagonal-norm SBP operators that include both boundary nodes, if (z,Du)H is a 2p-order approximation
to the integral ∫ 1

0
Z

dU
dx

dx,

this means that ∫ 1

0
Z

dU
dx

dx = (z,Du)H + O(h2p),

where h is the uniform mesh spacing. Thus, the order of the quadrature is equal to the degree of the quadrature plus one.

For generalized SBP operators, we can prove an analogous theorem, which is essentially the same as Theorem 3.4 in
[14], where the proof is similar to that given in [12] for Theorem 1 above. The theorem and proof follow.

Theorem 2. Let D = H−1Q be a generalized SBP operator of degree p approximating the first derivative operator, as in
Definition 1. Then

(z,Du)H = zTQu =

∫ 1

0
Z

dU
dx

dx, i, j ≤ r, i + j ≤ 2p,

whereZ dU
dx ∈ C2p−1[0, 1], z = xi , and u = x j .

Proof. Let u′ and z ′ be the exact derivatives ofU andZ evaluated at the nodes, respectively. Due to the accuracy of H,
the result will follow if we can show that

(z, u′)H = (z,Du)H, i, j ≤ r, i + j ≤ 2p. (5)

First take j ≤ p, this gives
Du = jx j−1 = u′, (6)

which means (z, u′)H = (z,Du)H for j ≤ p. Next, we consider j ≥ p, which means that i ≤ p and Dz = ixi−1 = z ′.
Using Dz = z ′ along with the SBP property, Q + QT = E, gives

(z,Du)H = zTHDu

= zT(E − QT)u

= zTEu − zTQTu

= zTEu − (u,Dz)H

= zTEu − (u, z ′)H

= zTEu −
∫ 1

0
U

dZ
dx

dx,

or, taking i, j ≤ r and using the accuracy condition on E gives,

(z,Du)H = zTEu −
∫ 1

0
U

dZ
dx

dx

=

∫ 1

0

d(UZ)
dx

dx −
∫ 1

0
U

dZ
dx

dx

=

∫ 1

0
Z

dU
dx

dx.

Therefore, (z, u′)H = (z,Du)H for j ≥ p and i, j ≤ r , with i + j ≤ 2p. We have thus shown the desired result.
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From Theorems 1 and 2, we can see that, for generalized SBP operators, zTQu is at least a 2p-order approximation
of

∫ 1
0 Z

dU
dx dx if and only if r ≥ 2p. This is a more stringent condition compared to Definition 1 where the accuracy

requirement on r is r ≥ p. The implication of Theorem 2 when considered along with the preceding one-dimensional
example is that quadrature accuracy in curvilinear coordinates is decreased for generalized SBP operators if: (1) r < 2p,
(2) the Jacobian of the transformation is approximated by the same SBP operator that is associated with the norm,
and (3) an element uses a higher degree representation of the geometry compared to the degree of the SBP operator
associated with that element.

The practical implication of this theoretical decrease in quadrature accuracy under the preceding conditions is the loss
of superconvergent functionals in curvilinear coordinates under the above conditions. To appreciate this, we take a small
detour and examine functional superconvergence without a curvilinear transformation for tensor-product SBP operators.
We build upon [9], which explains functional superconvergence for classical tensor-product SBP discretizations, and
[15], which extends the theory of superconvergent linear functionals to generalized SBP time-marching methods.

Consider the one-dimensional problem

dU(x)
dx

= F (x) ∀x ∈ Ω = [0, 1],

U(x = 0) = UL,

(7)

and the associated discretization

Duh = f −

SAT︷                  ︸︸                  ︷
H−1 tL(t

T
Luh −UL) . (8)

We introduce the linear functional,
I(U) =

∫
Ω

GU dx + α(U)|x=1, (9)

and the discrete approximation of the preceding functional,

Ih(uh) = gTHuh + αt
T
Ruh . (10)

Here, α is a scalar constant. The dual problem associated with this PDE and linear functional is [9]

−
dψ(x)

dx
= G(x) ∀x ∈ Ω = [0, 1],

ψ(x = 1) = α.
(11)

The question we are interested in is: how well does Ih(uh) approximate I(U)? To answer this question we require the
following two lemmas.

Lemma 1. The term tTRuh is a degree τ and order τ + 1 approximation ofU|x=1.

Proof. We have

U|x=1 − tTRuh =

∫
Ω

dU
dx

dx +U|x=0 − tTRuh (expandU|x=1)

=

∫
Ω

F dx +UL − tTRuh (definition of PDE)

= 1TH f + 1T tLUL − tTRuh + O(h
τ+1), (insert H)

since 1T tL = 1 and, using the accuracy of H,

1TH f =

∫
Ω

F dx + O(hτ+1).

Also, from the definition of the discretization of the PDE we have

H f + tLUL = (Q + tL t
T
L)uh
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and using the summation-by-parts (SBP) property gives

H f + tLUL = (−QT + tR t
T
R)uh .

Therefore,

U|x=1 − tTRuh = 1T(H f + tLUL) − tTRuh + O(h
τ+1) (collect terms)

= 1T(Q + tL t
T
L)uh − tTRuh + O(h

τ+1) (definition of discrete PDE)

= 1T(−QT + tR t
T
R)uh − tTRuh + O(h

τ+1), (SBP property)

or, since 1T tR = 1 and Q1 = 0,
U|x=1 − tTRuh = O(h

τ+1).

This concludes the proof.

Remark 3. Lemma 1 is essentially a variant of Theorem 4 in [15].

Lemma 2. Suppose we have ψ dU
dx ∈ Cmin (2p,τ), where ψ and U are the dual and primal solutions, respectively,

associated with the PDE and functional defined by Eq. (7) and Eq. (9), respectively. Then,

ψTH(Du + H−1 tL(t
T
L u −UL)) − αt

T
Ru + αUR

is a degree min(2p, τ) and order min(2p + 1, τ + 1) approximation of∫
Ω

ψ
dU
dx

dx,

i.e.,
ψTH(Du + H−1 tL(t

T
L u −UL)) − αt

T
Ru + αUR =

∫
Ω

ψ
dU
dx

dx + O(hmin(2p+1,τ+1)).

Proof. We approach this proof in the same manner as the proof of Theorem 2. From the accuracy of H we have∫
Ω

ψ
dU
dx

dx = (ψ, u′)H + O(hτ+1). (12)

Here, u′ is dU
dx at the nodes. Based on the accuracy of H, we would like to show

(ψ, u′)H = ψ
TH(Du + H−1 tL(t

T
Lu −UL)) − αt

T
Ru + αUR + O(hmin(2p+1,τ+1)). (13)

Using a similar argument as in [12], it is sufficient to show that the preceding equation is exact for polynomial integrands
of degree less than 2p + 1. To this end, we consider ψ = pk and u = pm as degree k and m polynomials, respectively,
where k + m ≤ 2p + 1 defines the highest permissible degree of the combined integrand. We begin by taking m ≤ p,
which gives

ψTH(Du + H−1 tL(t
T
Lu −UL)) − αt

T
Ru + αUR = ψ

THu′ = (ψ, u′)H.

Next, we reverse the situation and take m > p, which means we must have k < p + 1 due to the condition that
k + m ≤ 2p + 1. For this case we have

ψTH(Du + H−1 tL(t
T
Lu −UL)) − αt

T
Ru + αUR = ψ

T(E − QT)u + ψT tL(t
T
Lu −UL) − αt

T
Ru + αUR (SBP property)

= ψT(tR t
T
R − QT)u − ψT tLUL − αt

T
Ru + αUR (definition of E)

=�
��αtTRu − ψ

TQTu − ψLUL −�
��αtTRu + ψRUR (tTRψ = ψR = α)

= −(Dψ)THu + ψRUR − ψLUL

= −(ψ ′)THu + ψU|x=1
x=0

= −

∫
Ω

dψ
dx
U dx + ψU|x=1

x=0 + O(h
τ+1) (accuracy of H)

=

∫
Ω

ψ
dU
dx

dx + O(hτ+1) (integ. by parts)

Since k + m ≤ 2p + 1, we see that ψTH(Du + H−1 tL(t
T
Lu − UL)) − αt

T
Ru + αUR is an order min(2p + 1, τ + 1)

approximation of
∫
Ω
ψ dU

dx dx, which concludes the proof.
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Remark 4. Lemma 2 is similar to Lemma 12 in [15], however here we consider general α rather than α = 0.

We now return to our initial question and state the following theorem as an answer.

Theorem 3. Let uh be the discrete solution that satisfies Eq. (8). Then Ih(uh) (defined by Eq. (10)) is an order
min(2p + 1, τ + 1) approximation of I(U) (defined by Eq. (9)).

Proof. Consider

I(U) − Ih(uh) =

∫
Ω

GU dx + α(U)|x=1 − gTHuh − αt
T
Ruh

=

∫
Ω

GU dx − gTHuh + α((U)|x=1 − tTRuh)

=

∫
Ω

GU dx − gTHuh + O(hτ+1) (using Lemma 1)

= gTH(u − uh) + O(hτ+1). (accuracy of H)

Next, we must determine the order of the term gTH(u − uh). To do this, we first note that the discretization of the dual
problem associated with the primal PDE is

− Dψh = g − H−1 tR(t
T
Rψh − α). (14)

Based on our PDEs, we can define the truncation error associated with the primal and dual problems, respectively, as

eu = Du − u′ + H−1 tL(t
T
Lu −UL)

eψ = −Dψ + ψ ′ + H−1 tR(t
T
Rψ − α).

Multiplying eu by H and rearranging gives

Heu − (Q + tL t
T
L)u + (H f + tLUL) = 0

Heu − A(u − uh) = 0,

where we have introduced A ≡ Q + tL t
T
L (note that from the definition of the discretization of the primal problem we can

write Auh = H f + tLUL). Adding ψT
h
0 = 0 = ψT

h
Heu − ψT

h
A(u − uh) to the discrete integral equation, gTH(u − uh),

gives

gTH(u − uh) = gTH(u − uh) + ψ
T
hHeu − ψT

hA(u − uh)

= gTH(u − uh) − ψ
T
hAH−1H(u − uh) + ψ

T
hHeu (insert I = H−1H)

= (gT − ψT
hAH−1)H(u − uh) + ψ

T
hHeu

= (g − H−1ATψh)
TH(u − uh) + ψ

T
hHeu

= (g − H−1(−Q + tR t
T
R)ψh)

TH(u − uh) + ψ
T
hHeu (AT = −Q + tR t

T
R)

= (Dψh + g − H−1 tR t
T
Rψh)

TH(u − uh) + ψ
T
hHeu

= (Dψh + g − H−1 tR(t
T
Rψh − α))

TH(u − uh) − α(H−1 tR)
TH(u − uh) + ψ

T
hHeu

= ψT
hHeu − α(H−1 tR)

TH(u − uh),

where the first term in the final line above is zero due to the definition of the discretization of the dual problem.
Continuing by adding and subtracting ψTHeu , we have

gTH(u − uh) = −α(H−1 tR)
TH(u − uh) + ψ

T
hHeu + ψTHeu − ψTHeu

= (ψh − ψ)
THeu + ψTHeu − αtTR(u − uh).

But, note that AT(ψ − ψh) = Heψ , which means

gTH(u − uh) = −(A−THeψ)THeu + ψTHeu − αtTR(u − uh).
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Furthermore, making the assumption that
A−TH


∞
≤ C, where C is a constant, gives

gTH(u − uh) = ψ
THeu − αtTR(u − uh) + O(hτ+1).

Alternatively, we can substitute eu into the above and write,

gTH(u − uh) = ψ
THeu − αtTR(u − uh) + O(hτ+1)

= ψTH(Du + H−1 tL(t
T
Lu −UL)) − αt

T
R(u − uh) − ψ

THu′ + O(hτ+1)

= ψTH(Du + H−1 tL(t
T
Lu −UL)) − αt

T
R(u − uh) −

∫
Ω

ψ
dU
dx

dx + O(hτ+1).

Furthermore, using Lemma 1, we can substitute tTRuh = UR + O(hτ+1) into the above and write

gTH(u − uh) = ψ
TH(Du + H−1 tL(t

T
Lu −UL)) − αt

T
Ru + αUR −

∫
Ω

ψ
dU
dx

dx + O(hτ+1)

= O(hmin(2p+1,τ+1)) + O(hτ+1) (Lemma 2)

= O(hmin(2p+1,τ+1))

Therefore,
I(U) − Ih(U) = O(hmin(2p+1,τ+1)), (15)

which concludes the proof.

To summarize, thus far we have seen that we can prove the superconvergence of linear functionals without a
curvilinear transformation for the PDE defined by Eq. (7) without invoking Theorem 2. This changes in Section 4 of [9]
when Theorem 1 of the present paper (Lemma 3 of [9] and Theorem 2 of [12]) is invoked to prove Theorem 6 (involving
a curvilinear transformation) of [9], which concerns the accuracy of quadratures of the form

Ih(u) = uT(H ⊗ H)J ≈
∬
Ωx

U dx dy, (16)

based on the uniform discretization of the computational domain. The proof of Theorem 6 is in Appendix A of [9], and
it involves the repeated application of Theorem 1 to show that

Ih(u) = uT(H ⊗ H)J (17)

is an order 2p approximation of

I(U) =

∬
Ωx

U dx dy. (18)

Because Theorem 1 does not apply to generalized SBP operators with r < 2p, we do not expect superconvergent
functionals when: (1) r < 2p, (2) the Jacobian of the transformation is approximated by the same SBP operator that is
associated with the norm, and (3) an element uses a higher degree representation of the geometry compared to the
degree of the SBP operator associated with that element.

IV. Results

We can confirm the quadrature accuracy of different generalized SBP operators numerically by examining a
two-dimensional quadrature on a curvilinear domain. We take the test problem from Section 4.2 of [12] and restate it
here for completeness. Consider the domain

Ω = {(x, y) ∈ R2 | 1 ≤ xy ≤ 3, 1 ≤ x2 − y2 ≤ 4},

and the integral

` =

∬
Ω

(x2 + y2)e
1−x2+y2

3 sin
(

xy − 1
2

)
dx dy

= 3(1 − e−1)(1 − cos(1)).
(19)
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Fig. 1 Example grid for Ω with ne = 8 non-overlapping elements in the x̃ and ỹ directions. The p = 3 LGL
nodes are used in each element.

We can compute this integral numerically by introducing the global mapping coordinates

x̃ =
x2 − y2 − 1

3
and ỹ =

xy − 1
2

.

For a given number of non-overlapping elements, ne, with n + 1 nodes in the x̃ and ỹ directions in each element, we
partition the square [0, 1]2 with ne elements in the x̃ and ỹ directions. Figure 1 shows the grid for ne = 8 using the
p = 3 Legendre-Gauss-Lobatto (LGL) nodes in each element. We note here that although x̃ = x̃(x, y) and ỹ = ỹ(x, y)
are polynomial functions, x = x(x̃, ỹ) and y = y(x̃, ỹ) are not. This means that the geometry representation in each
element is not a polynomial; however the geometry in each element corresponds to the analytical geometry.

On the ith element, the Jacobian of the transformation is constructed as

J = [(I ⊗ D)xi] ◦ [(D ⊗ I)yi] − [(I ⊗ D)yi] ◦ [(D ⊗ I)xi], (20)

where ⊗ denotes the Kronecker product and ◦ denotes the Hadamard product. For a given ne, the approximation of Eq.
(19) is summed over all elements to obtain

`ne =

ne∑
i=1

ne∑
j=1

JT(H ⊗ H) f , (21)

where f is the integrand of Eq. (19) computed using the x and y coordinates for each element. The error associated with
the quadrature approximation is computed as Ene = |` − `ne |. Table 1 lists the generalized SBP operators that are used
throughout this paper. Note that the LGL nodal distributions include the boundary nodes; and therefore the projection
operators associated with this class of nodal distributions are exact (i.e., r = ∞). Details regarding the construction of
the operators listed in Table 1 can be found in [11].

Figure 2 plots Ene as a function of (DOF)−1 for the operators listed in Table 1, and Table 2 gives the associated
convergence rates. Here, DOF = ne(n + 1), i.e., DOF is the square root of the total number of degrees of freedom used
to discretize the domain Ωx . The convergence rates were computed using data points from the three finest grid levels,
except for the LGLp4 operator. The data point on the finest grid level for the LGLp4 operator was ignored due to
round-off error and the slope was instead computed using the three preceding data points.

As expected based on Theorem 2, the quadratures computed using the LGL operators, which have r = ∞ > 2p, all
converge at a rate of approximately order τ + 1, where τ ≥ 2p − 1 denotes the degree of the quadrature rule associated
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Operator Nodal distribution Operator degree, p Projection degree, r Quadrature degree, τ

LGLp1 Legendre-Gauss-Lobatto 1 ∞ 1
LGLp2 Legendre-Gauss-Lobatto 2 ∞ 3
LGLp3 Legendre-Gauss-Lobatto 3 ∞ 5
LGLp4 Legendre-Gauss-Lobatto 4 ∞ 7
LGp1 Legendre-Gauss 1 1 3
LGp2 Legendre-Gauss 2 2 5
LGp3 Legendre-Gauss 3 3 7
LGp4 Legendre-Gauss 4 4 9

Table 1 Some generalized summation-by-parts operators that satisfy Definition 1.

10-2 10-1 100
10-15

10-10

10-5

100

Fig. 2 Convergence of the error when using the generalized SBP operators in Table 1 to approximate Eq. (19).

with each operator. These results agree with [11]. In contrast, the LG operators all converge at rates less than 2p, which
is also expected since for these operators r = p < 2p, the Jacobian is computed using the same SBP operator associated
with the norm, and the geometry representation is non-polynomial. Specifically, there is an even-odd convergence
pattern associated with the LG operators. The even-degree LG operators converge at a rate of p while the odd-degree LG
operators converge at a rate of approximately p + 1. This even-odd quadrature convergence behaviour can be explained
by considering the interactions between the leading truncation error terms associated with the respective even- and
odd-degree LG projection operators. Consider decomposing E in terms of the projection operators tL and tr

E = tR t
T
R − tL t

T
L . (22)

Next, recall the accuracy condition on E from Definition 1. Namely, for some Ωx ∈ [a, b], we have(
xi

)T
Ex j = bi+j − ai+j, i, j = 0, 1, . . . , r, r ≥ p. (23)

With Eq. (22) and Eq. (23) established, we take Ωx ∈ [−1, 1]. Substituting Ωx , i.e., a = −1 and b = 1, into Eq. (23) and
moving all the terms to the right-hand side gives us an expression for the error in E, EE, for different values of i and j.

EE =
(
xi

)T
Ex j − (1)i+j + (−1)i+j . (24)
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Operator Convergence Rate

LGLp1 2.00994
LGLp2 4.00502
LGLp3 6.01197
LGLp4 8.60466
LGp1 1.99889
LGp2 1.99984
LGp3 4.29535
LGp4 4.05604

Table 2 Convergence rates when using the generalized SBP operators in Table 1 to approximate Eq. (19).

LGp1 i 0 1 2
j 3 2 1
i+j 3 3 3

LGp2 i 0 1 2 3 4
j 3 4 3 0 1
i+j 3 5 5 3 5

LGp3 i 0 1 2 3 4 5 6
j 5 4 5 4 1 0 1
i+j 5 5 7 7 5 5 7

LGp4 i 0 1 2 3 4 5 6 7 8
j 5 6 5 6 5 0 1 0 1
i+j 5 7 7 9 9 5 7 7 9

Table 3 Values of i, j, and i + j when the first nonzero value of EE occurs. The values of i and j in Eq. (24) are
increased with j running first.

For LG operators, based on Eq. (23), Eq. (24) will be equal to zero for i, j ≤ r. Therefore, we are interested in the
behaviour of Eq. (24) when i, j > r . Table 3 gives the values of i, j, and i + j when the first nonzero value of EE (i.e.,
Eq. (24)) occurs. For each operator, the minimum value of i + j is boxed . For the odd-degree LG operators, the
minimum value of i + j is equal to p + 2. For the even-degree LG operators, the minimum value of i + j is equal to
p + 1. To understand why this pattern occurs, we can examine Eq. (24) for the minimum values of i + j for each LG
operator, as reported in Table 3.

From Table 3, the minimum value of i + j occurs for each operator when i = 0. Therefore, we substitute i = 0 and
Eq. (22) into Eq. (24), this gives

EE |i=0 =
(
x0

)T
(tR t

T
R − tL t

T
L)x

j − (1)0+j + (−1)0+j

= 1T(tR t
T
R − tL t

T
L)x

j − (1)j + (−1)j

= tTRx
j − tTLx

j − 1 + (−1)j,

where we have used 1 to denote a vector of ones. Note also that 1T tR = 1T tL = 1 since the projection operators
interpolate the constant function exactly. We now introduce two additional error metrics. Let

EtR = tTRx
j − 1, (25)

EtL = tTLx
j − (−1)j, (26)
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Operator j EE |i=0 EtR EtL

LGp1 0 0.00000e + 00 −2.22045e − 16 −2.22045e − 16
j = r 1 −1.11022e − 15 −2.22045e − 16 2.22045e − 16

j = 2p 2 0.00000e + 00 −6.66667e − 01 −6.66667e − 01
3 −1.33333e + 00 −6.66667e − 01 6.66667e − 01

LGp2 0 0.00000e + 00 0.00000e + 00 0.00000e + 00
1 8.88178e − 16 0.00000e + 00 0.00000e + 00

j = r 2 0.00000e + 00 2.22045e − 16 2.22045e − 16
3 −8.00000e − 01 −4.00000e − 01 4.00000e − 01

j = 2p 4 0.00000e + 00 −4.00000e − 01 −4.00000e − 01

LGp3 0 0.00000e + 00 0.00000e + 00 0.00000e + 00
1 0.00000e + 00 −5.55112e − 16 5.55112e − 16
2 0.00000e + 00 0.00000e + 00 0.00000e + 00

j = r 3 0.00000e + 00 −4.44089e − 16 4.44089e − 16
4 0.00000e + 00 −2.28571e − 01 −2.28571e − 01
5 −4.57143e − 01 −2.28571e − 01 2.28571e − 01

j = 2p 6 0.00000e + 00 −4.24490e − 01 −4.24490e − 01

LGp4 0 2.22045e − 16 0.00000e + 00 2.22045e − 16
1 0.00000e + 00 0.00000e + 00 2.22045e − 16
2 1.11022e − 16 −2.22045e − 16 −2.22045e − 16
3 −4.44089e − 16 −2.22045e − 16 4.44089e − 16

j = r 4 1.11022e − 16 −1.11022e − 16 −1.11022e − 16
5 −2.53968e − 01 −1.26984e − 01 1.26984e − 01
6 1.11022e − 16 −1.26984e − 01 −1.26984e − 01
7 −5.36155e − 01 −2.68078e − 01 2.68078e − 01

j = 2p 8 1.11022e − 16 −2.68078e − 01 −2.68078e − 01

Table 4 Projection error associated with LG operators.

be the error associated with the projection operators tR and tL, respectively. Note that we can recast EE |i=0 in terms of
EtR and EtL as

EE |i=0 = EtR − EtL . (27)

Table 4 numerically tabulates these error terms for the LG operators listed in Table 1 for different j.
First note that all error terms are zero (or machine zero) up to j = r . This is expected from the accuracy condition

on E associated with Definition 1. Therefore, we expect that EtR and EtL will be non-zero for j > r . The first non-zero
(or non-machine-zero) values of EtR and EtL that appear when increasing j from 0 to 2p are boxed , and this occurs
for each operator when j = r + 1. Similarly, the first non-zero value of EE |i=0 for each operator is boxed . For the
even-degree operators, the first non-zero values of EtR and EtL are equal and opposite in sign, which results in the first
non-zero value of EE |i=0 occurring at j = r + 1. In contrast, the first non-zero values of EtR and EtL are equal and of the
same sign, which causes them to cancel when j = r + 1. As a result of this cancellation, the first non-zero value of
EE |i=0 for the odd-degree operators occurs at j = r + 2, i.e., one value of j higher than for the even-degree operators.
This explains the even-odd quadrature convergence behaviour observed in Figure 2 and Table 2 with the even-degree
LG operators converging at a rate of p and the odd-degree LG operators converging at a rate of p + 1. Essentially, in
curvilinear coordinates, when the Jacobian is approximated using the same SBP derivative operator associated with the
norm and the geometry representation is either non-polynomial or of a degree higher than that of the SBP operator, the
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Polynomial Degree Mesh Function Abbreviation

1 ξ MFD1

2 1
2ξ

2 + 1
2ξ MFD2

3 1
3ξ

3 + 1
3ξ

2 + 1
3ξ MFD3

4 1
4ξ

4 + 1
4ξ

3 + 1
4ξ

2 + 1
4ξ MFD4

5 1
5ξ

5 + 1
5ξ

4 + 1
5ξ

3 + 1
5ξ

2 + 1
5ξ MFD5

non-polynomial (exp(4ξ) − 1)/(exp(4) − 1) MFNP

Table 5 Mesh functions.

LG quadrature accuracy is limited by the accuracy of the projection operators, and the even-odd quadrature convergence
behaviour is associated with the leading truncation error cancellation of the projection operators that occurs for the
odd-degree LG operators.

To examine functional superconvergence, consider the steady one-dimensional linear convection equation with unit
wave speed on the domain Ωx ∈ [0, 1]

∂U

∂x
= S(x), (28)

where S(x) is a source term. The source term

S(x) =
πex

e − 1
cos

(
πex − π + e − 1

e − 1

)
(29)

gives the steady-state solution

U(x) = sin
(
π(ex − 1)

e − 1
+ 1

)
. (30)

We use the mesh functions, x(ξ), in Table 5 to introduce a non-constant metric Jacobian into integral functionals on Ωx ,
which simulates the effect of a curvilinear coordinate transformation.

Consider the integral functional

I(U) =

∫ 1

0
Udx =

∫ 1

0
U

dx
dξ

dξ, (31)

discretized as

Ine (u) =
ne∑
i=1

JTHu. (32)

Table 6 gives the convergence results when using Eq. (32) to discretize Eq. (31) with the mesh functions in Table
5. Figure 3 shows the visual results when using the non-polynomial mesh function. The convergence rates were all
computed using data from the asymptotic region prior to round-off error. Upwind SATs were used.

From Table 6, as for the two-dimensional quadrature example, the LGL operators converge at a rate of approximately
the quadrature degree, τ, plus one, i.e., τ + 1. In contrast, the LG operators converge at a rate of τ + 1 only when the
mesh function is a polynomial whose degree is less than or equal to the degree of the SBP operator used to compute the
Jacobian. When a mesh function is used that does not satisfy this condition, the odd- and even-degree LG operators
converge at rates of p + 1 and p, respectively. These convergence rates are boxed in Table 6. As before, the even-odd
convergence behaviour can be explained by considering the error cancellation associated with the leading truncation
error terms of the odd-degree LG projection operators.

V. Conclusion

We have shown that, for tensor-product generalized SBP operators, projection operators of degree r ≥ 2p are
required to preserve quadrature accuracy and therefore superconvergent functionals in curvilinear coordinates when (1)
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10-4 10-3 10-2 10-1
10-20

10-15

10-10

10-5

100

Fig. 3 Convergence of the error when using the generalized SBP operators in Table 1 to approximate Eq. (31)
via Eq. (32) using the non-polynomial mesh function.

Operator MFD1 MFD2 MFD3 MFD4 MFD5 MFNP

LGLp1 2.00306 2.00912 1.97688 1.98138 1.98822 1.99188
LGLp2 4.00483 4.19932 4.00088 4.00030 4.00005 3.99982
LGLp3 6.00458 5.98032 6.05277 5.79955 5.65710 6.88729
LGLp4 8.40074 8.63669 8.01160 7.91618 7.82547 7.84233
LGp1 4.00515 2.00105 1.98979 1.97327 1.97019 1.94877
LGp2 6.00316 5.95041 1.99924 2.00003 2.00003 2.00004
LGp3 8.69240 7.96493 8.22565 3.96046 4.01958 4.01082
LGp4 9.48193 9.38194 10.39338 10.74542 3.99982 4.01261

Table 6 Convergence rates when using the generalized SBP operators in Table 1 to approximate Eq. (31) via
Eq. (32) with the mesh functions defined in Table 5.

the Jacobian of the transformation is approximated by the same SBP operator that is associated with the norm and (2)
when a higher degree representation of the geometry is used compared to the degree of the SBP operator. Furthermore,
when the geometry condition is violated for the LG SBP operators, which have r = p < 2p, there is an even-odd
quadrature convergence behaviour that can be explained by considering the cancellation of the leading truncation error
terms for the LG projection operators associated with the odd-degree LG operators.
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