
Optimization of Diagonal-Norm Multidimensional
Summation-by-Parts Operators on Simplices

André L. Marchildon∗ and David W. Zingg†

University of Toronto Institute for Aerospace Studies, Toronto, Ontario, M3H 5T6

Finite-difference summation-by-parts (SBP) operators have recently been extended to non-
tensor-product multidimensional elements, thus allowing operators to be constructed on ele-
ments such as simplices. In the construction of multidimensional SBP operators there are often
free parameters that can be used to optimize the operators. This work introduces methods
to construct SBP operators using the minimum number of degrees of freedom such that the
remaining free parameters can be used to optimize the operators. This includes constructing
the cubature rules required for the SBP operators algebraically rather than numerically such
that the influence of the nodal locations and cubature weights on the SBP operators can be
investigated. The free parameters are used to meet objective functions such as minimizing the
element integration error, the Frobenius norm, the leading truncation term, or combinations
of these objective functions. The linear convection equation is solved with SBP operators
constructed on three-dimensional simplex elements to study the impact of optimizing the free
parameters for these various objective functions on the solution error. The results demonstrate
that increasing the degree of the cubature rule from 2p − 1 to 2p, where p is the degree of the
operator, is beneficial at reducing the solution error even when the operator has additional
nodes and is more computationally expensive. However, the results indicate that increasing the
degree of the cubature rule from 2p to 2p + 1 does not provide a similar benefit.

I. Introduction

Finite-difference summation-by-parts (SBP) operators are actively being researched for solving linear and non-linear
partial differential equations. In the field of aerodynamics for example, SBP operators have been used in aerodynamic
shape optimization of unconventional aircraft configurations [1, 2]. The attractive properties of SBP operators are their
robustness, provable stability, and straightforward extension to higher order [3]. SBP operators are provably stable for
linear problems thanks to their construction that allows them to discretely mimic integration-by-parts. Proving stability
of SBP operators for non-linear problems has also been shown by using entropy stability [4]. While SBP operators with
diagonal and dense-norm matrices have been derived, only the former has been proven stable for curvilinear grids [5].
Consequently, SBP operators with diagonal-norm matrices are more commonly considered [3]. The extension to higher
order is beneficial since some problems have been shown to be solved more efficiently with higher-order methods [6–9].
The mesh interface and boundary conditions for SBP operators are typically applied using simultaneous approximation
terms (SATs) that weakly enforce the boundary conditions and require only C0 continuity across block interfaces.

The construction of one-dimensional SBP operators was extended by Del Rey Fernández et al. to so called
generalized SBP operators [10] to allow for operators with non-uniform nodal distributions, with or without nodes
on the boundaries, and for non-repeating interior stencils. To extend SBP operators to two and three dimensions,
tensor-products have previously been used [11, 12]. The extension of SBP operators to multiple dimensions that are not
based on tensor-products was presented by Hicken et al. [13] as well as Del Rey Fernández et al. [14].

SBP operators of degree p are required to have a norm matrix that holds exclusively positive weights for a cubature
rule of degree at least 2p − 1 [15]. Cubature rules in one dimension, commonly referred to as quadrature rules, have
been extensively studied. For example, the Legendre-Gauss quadrature rule can be generated algebraically and is known
to exactly integrate polynomials of the highest possible degree for a given number of nodes [16]. Liu and Vinokur [17]
derived a set of equations to algebraically derive cubature rules with degrees of up to five for symmetrically located
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nodes in simplex elements of one, two and three dimensions. With these equations, Liu and Vinokur derived cubature
rules of a given degree with the minimum number of nodes. Additionally, Liu and Vinokur noted that many previously
published cubature rules could be found using their equations and setting the free parameters to a given value. However,
the equations that need to be solved for cubature rules are non-linear and get progressively more complicated as cubature
rules of higher degree are sought. Most cubature rules for triangles and tetrahedra have instead been found numerically
with an objective function that requires the error of the numerical integration of all polynomials of a given degree to be
less than a small set tolerance [18–21].

Unlike finite-element methods, which often have separate interpolation and cubature nodes, SBP operators usually
have only one set of nodes. Unfortunately, the requirements for good interpolation nodes are different than for cubature
nodes. For example, equidistant nodes are used to generate the Newton-Cotes quadrature rule. However, equidistant
nodes are undesirable interpolation nodes since they are susceptible to the Runge phenomenon. Furthermore, valid
cubature rules, and by extension valid SBP operators, of a desired degree could be generated with all the nodes arbitrarily
close together. However, these nodes would not be good interpolation nodes since they would not be representative of
the solution across the entire element. A good indicator of the quality of a set of interpolation nodes is the Lebesgue
constant, which bounds the interpolation error using the infinity norm [22]. It can be shown that maximizing the
determinant of the Vandermonde matrix evaluated at the interpolation nodes reduces the size of the Lebesque constant
[22]. The nodes that maximize the Vandermonde matrix are called Fekete nodes and in one dimension they are known
to be the Legendre-Gauss-Lobatto quadrature nodes [23].

The impact of the nodal locations for flux reconstruction schemes, which only use one set of nodes like SBP schemes,
with triangular elements was investigated by Witherden and Vincent [24]. The requirements for the cubature rules
included having a unisolvent point set, the nodes symmetrically located in the element and for the number of nodes to
match the cardinality of the basis for the degree of the operator. With these criteria, hundreds of cubature rules were
generated and the flux reconstruction operators were constructed. The two-dimensional Euler equations were solved for
an isentropic Euler vortex problem. The operators for degrees three to seven that had the lowest average and final L2

error were found to have both a low Lebesque constant and a low integration error for basis functions one degree higher
than were integrated exactly. A similar study was performed for flux reconstruction schemes with tetrahedral elements
by Witherden et al. [25]. The Euler equations were solved for two test cases: a manufactured sinusoidal solution and an
isentropic Euler vortex. Witherden et al. found that the cubature rule that had the lowest final L2 error for one test case
did not have the best result for the other test case. This indicated that optimizing the operator for one test case does not
necessarily provide the ideal operator for all cases.

In the construction of one-dimensional SBP operators there are free parameters that have been used to optimize for
various objective functions such as minimizing the truncation error, the spectral radius, the bandwidth, or combinations
of these objectives [26, 27]. Mattsson et al. [27] optimized the nodal locations for three boundary nodes as well as the free
parameters gained by adding additional boundary stencils in order to minimize the norm of the leading truncation error.
The optimized operators were found to have a solution error an order of magnitude smaller than the one-dimensional
operators constructed with all equidistant nodes and the minimum number of boundary stencils. The optimization
of free parameters in the construction of multidimensional SBP operators has not previously been considered. The
objective of the current work is to investigate how free parameters in the construction of multidimensional SBP operators
with diagonal-norm matrices can be used to optimize the operators. A review of the construction of multidimensional
SBP operators and of symmetrical cubature rules is provided in Section II. The following section shows how the SBP
operators can be constructed such that they have free parameters that can be used to optimize them. The objective
functions and the test case that are used to evaluate the optimized SBP operators are presented in Section IV. Sections
V, VI and VII present the results for the optimized operators.

II. Review of multidimensional summation-by-parts operators

The notation and construction of SBP operators, which is based on [14], are presented in Section II A. Three
different families of SBP operators constructed on simplices are then presented in Section II B.

A. Notation and construction of summation-by-parts operators
The physical domain and its boundary are denoted by Ω and Γ, respectively, while the computational domain is

denoted by Ω̂ and Γ̂, respectively. Facets indicate edges for two-dimensional elements and faces for three dimensional
elements. The coordinates for the physical space are indicated by (x, y, z) ∈ Ω, while in the computational space they
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are given by (ξ, η, ζ) ∈ Ω̂. The construction of two-dimensional operators is only shown for one direction since it is
analogous in the other directions. Also, it is straightforward to extend the generation of operators to three dimensions
using the methodology in this section as well as the one presented in Section III.

Capital letters with a script type denote functions. For example, U(ξ) ∈ C0[ξ1, ξn] represents a continuous
function from ξ1 to ξn. The set of n volume nodes on which the functions and operators are discretized is given by
S
Ω̂
= {(ξi, ηi)}

n
i=1 ⊂ Ω̂. The set of facet nodes where boundary and interface conditions are imposed pointwise is given

by SΓ̂j = {(ξ
(j)
i , η

(j)
i )}

n j

i=1, where j is the local facet number. A lower-case bold font is used to represent the restriction of
a function to the nodes in a column vector. For example, the restriction of the k-th basis function to the nodes is written
as

pk ≡ [Pk(ξ1, η1), . . . ,Pk(ξn, ηn)]
T ,

and similarly, the first derivative ∂
∂ξ of the k-th polynomial is denoted by

p′k ≡

[
∂Pk
∂ξ
(ξ1, η1), . . . ,

∂Pk
∂ξ
(ξn, ηn)

]T
.

The cardinality of polynomials of degree p is indicated by

N∗p,d ≡
(
p + d

d

)
,

where d is the number of spatial dimensions. The cardinality evaluates to N∗
p,1 = (p + 1), N∗

p,2 = (p + 1)(p + 2)/2, and
N∗
p,3 = (p + 1)(p + 2)(p + 3)/6. The rectangular Vandermonde matrix of degree p evaluated at the nodes is

V = [p1, . . . , pN∗
p,d
],

while the ξ derivative of the polynomials evaluated at the nodes is

Vξ = [p′1, . . . , p
′
N∗

p,d
].

We now provide the following definition for a multi-dimensional SBP operator [13]:

Definition 1. Two-dimensional summation-by-parts operator: The matrix Dξ is an approximation to the first derivative
∂
∂ξ on the nodes S

Ω̂
, where Ω̂ is an open and bounded domain ∈ R2 with a piecewise linear boundary Γ̂, if

1) Dξ pk = p′
k
, ∀k ∈ {1, 2, . . . , N∗

p,d
};

2) Dξ = H−1Qξ, where H is symmetric positive-definite; and
3) Qξ = Sξ + 1

2 Eξ, where ST
ξ = −Sξ , ET

ξ = Eξ , and Eξ satisfies

pTk Eξ pm =
∮
Γ̂

PkPmnξdΓ̂, ∀k,m ∈ {1, 2, . . . , N∗r,d},

where nξ is the ξ component of the unit outward pointing normal n = [nξ, nη]T on Γ̂ and r ≥ p. The integer r is the
degree of the interpolation/extrapolation operator R, which is presented shortly.

It is shown in [13] that a cubature rule of degree at least 2p − 1 with exclusively positive weights along with a
generalized Vandermonde matrix with linearly independent columns is necessary and sufficient for a diagonal-norm
SBP operator of degree p to exist that approximates the first derivative ∂

∂ξ and ∂
∂η on the set of nodes S

Ω̂
.

Remark 1. For one-dimensional operators, the requirement that the columns of the Vandermonde matrix need to be
linearly independent is equivalent to requiring that each nodal location is unique. However, in multiple dimensions,
having unique nodal locations is insufficient to ensure that the columns of the Vandermonde matrix are linearly
independent [28]. Furthermore, the requirement that the columns of the Vandermonde matrix be linearly independent is
similar but not as stringent as requiring a unisolvent nodal set. The latter requires that the Vandermonde matrix be
invertible and thus that n = N∗

p,d
, while the former allows for n ≥ N∗

p,d
[13].

The norm matrix H has exclusively positive weights and is a cubature rule satisfying

pTk Hpm =

∫
Ω̂

PkPmdΩ̂,
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where the maximum degree of PkPm is 2p − 1. Therefore, the norm matrix is also a 2p − 1 degree approximation to the
L2 norm

| |u | |2H ≡ utHu ≈

∫
Ω̂

U2dΩ̂.

It is common in numerical analysis of SBP operators to quantify the error using a broken norm [29]

| |u | |2Hg
=

K∑
i=1
| |ui | |

2
H,

where K is the number of non-overlapping elements, and the norm matrix H for each element is scaled by the determinant
of the appropriate mapping Jacobian. To proceed further in the construction of SBP operators we first require [13]:

Assumption 1. The reference element Ω̂ is a polygon with piecewise linear boundaries Γ̂ = ∪NΓ̂
j=1Γ̂j and ∩

N
Γ̂

j=1Γ̂j = ∅.
Additionally, there exists a cubature rule on each Γ̂j with nodes SΓ̂j and weights {b(j)i }

n j

i=1 that exactly integrates all
polynomials of degree q ≥ 2p.

To apply the boundary and interface conditions on facet j of the reference element, an interpolation/extrapolation
operator of at least degree r is required to interpolate/extrapolate the solution from S

Ω̂
to SΓ̂j

RjVΩ̂ = VΓ̂j . (1)

Del Rey Fernández et al. [14] showed that Assumption 1 ensures that the interpolation/extrapolation operator, Rj , can
be constructed as

Rj = VΓ̂j (VΩ̂)
†, (2)

where (·)† indicates the Moore-Penrose pseudoinverse. The directional surface operator, Eξ , can be constructed using
the interpolation/extrapolation operator:

Eξ =
N
Γ̂∑

j=1
nξ, jRT

j BjRj, (3)

where nξ, j is the ξ component of the outward pointing unit normal on facet j and Bj = diag
(
b(j)1 , . . . , b

(j)
n j

)
.

In order to construct the SBP derivative operator, an invertible square matrix that holds the Vandermonde matrix
V as well as a square matrix that holds the matrix Vξ are required [14]. If n = N∗

p,d
, then both of these matrices are

already square and the Vandermonde matrix is already invertible (since the columns of V are linearly independent).
However, for n > N∗

p,d
we construct

Ṽ = [V W],

where W is a matrix of size n × (n − N∗
p,d
) with columns that are linearly independent to each other and to the columns

of V. This ensures that the matrix Ṽ is invertible. For the matrix that holds Vξ , we construct

Ṽξ = [Vξ Wξ ],

where Wξ has the same size as W but its entries are used to ensure Sξ is skew symmetric. Condition 1 of Definition 1
can be recast as

DṼ = Ṽξ .

Now, by using conditions 2 and 3 of Definition 1 we find the following relation for Sξ

Dξ Ṽ = Ṽξ
H−1Qξ Ṽ = Ṽξ(

Sξ +
1
2

Eξ
)

Ṽ = HṼξ (4)

Sξ = HṼξ
(
Ṽ
)−1
−

1
2

Eξ

Sξ = Hξ ([Vξ Wξ ])
(
[V W]

)−1
−

1
2

Eξ . (5)
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(a) Ω (6 nodes) (b) Γ (7 nodes) (c) diagonal-E (10 nodes)

Fig. 1 p = 2 operators for three SBP families on triangles where are the element nodes and are the facet
nodes.

The only requirement that remains to be shown is that Sξ can be constructed to be skew symmetric using the
undefined matrix Wξ . This is demonstrated in [14]. The operators Qξ and Dξ can then be constructed from Sξ and Eξ
from the relations in Definition 1.

B. SBP families
There have been three general families of SBP operators that have been previously created on two and three

dimensional simplex elments, the Ω, Γ and the diagonal-E families [13, 14, 30, 31]. The Ω family does not require any
of its element nodes to be on its facets and as such, typically only has nodes that are within the element. The Ω family
often has the minimum required number of nodes and has the cubature rule of the highest degree or with the lowest
leading truncation error. The Γ family has nodes on the facets and only uses these element nodes on a given facet to
interpolate/extrapolate the solution to the facet nodes of the same facet. Since the solution is interpolated/extrapolated
from the volume nodes that are on the facets, only Np,d−1 nodes are used for the interpolation/extrapolating instead of
the Np,d required for the Ω operator. While the Γ operator typically has more nodes than the Ω operator, it has a lower
interpolation/extrapolation cost. Finally, for the diagonal-E family, each of its facet nodes is collocated with one of
its element nodes. This collocation of the nodes eliminates the need to interpolate/extrapolate the solution from the
element nodes to the facet nodes since the solution is already known at the facet nodes. However, the diagonal-E family
generally has the largest number of element nodes out of the three SBP families. Examples of the three SBP families are
shown in Fig. 1.

III. Construction of optimized multidimensional summation-by-parts operators

The method presented in the previous section creates valid SBP operators, but they may not necessarily be optimal.
When n > N∗

p,d
, there are generally free parameters that can be used to optimize the SBP operator. This section shows

how the construction of SBP operators can be modified such that the free parameters become available for optimization.
While the methodology of the previous section is applicable to non-symmetrical nodal distributions, the optimization of
SBP operators in this paper utilizes exclusively symmetrical nodal distributions. This has several advantages, such as
being able to use the equations from [17] to derive cubature rules algebraically in order to have free parameters for the
nodal locations and cubature weights to optimize the SBP operators.

A. Algebraic construction of symmetric cubature rules
In order to investigate the impact of the nodal locations and the cubature weights on the properties of the SBP

operators it is beneficial to construct the cubature rules symbolically rather than numerically. Liu and Vinokur [17]
derived equations to generate cubature rules for simplex elements with symmetrically located nodes. Examples of
symmetric cubature rules in one dimension would be the Legendre-Gauss and Legendre-Gauss-Lobatto cubature rules.
For the nodes to be symmetrically located in the simplex element they need to be part of a symmetry group. Table 1
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Table 1 Primary symmetry groups for simplices.

Line Triangle Tetrahedron
Description Degrees of freedom (DOF) n n

DOF n n
DOF n n

DOF

scent Centroid 1 1 1 1 1 1 1
sc-vert Vertex centered 2 2 1 3 1.5 4 2
sc-edge Edge centered 3 6 2 12 4
sc-mid-edge Mid-edge centered 2 6 3
sc-face Face centered 4 24 6

Table 2 Minimum number of required degrees of freedom to have a cubature rule of degree one to five on a
simplex element with nodes in symmetry groups.

Required number of DOF

pcub 1 2 3 4 5

Line 1 2 2 3 3
Triangle 1 2 3 4 5
Tetrahedron 1 2 3 5 6

shows the different symmetry groups that exist for one, two and three dimensional simplex elements.
All the nodes in a symmetry group have the same cubature weight and have at least one degree of freedom. The

other degrees of freedom come from the nodal locations of the symmetry group. The symmetry groups with the smaller
ratio of nodes to degrees of freedom are desirable in order to create cubature rules of the highest degree with the fewest
nodes. However, Liu and Vinokur [17] demonstrated that just using the symmetry groups with the smallest ratio of
nodes to degrees of freedom does not always satisfy all of the required equations in multiple dimensions. For example,
a cubature rule of degree four or higher on a tetrahedron requires at least one sc-edge or sc-mid-edge (or possibly sc-face,
the authors in [17] did not consider this symmetry group and hence it may be applicable) symmetry group to be used.
The number of degrees of freedom required to achieve a cubature rule of a given degree is shown in Table 2. Having
the minimum required number of degrees of freedom does not guarantee that there is a cubature rule of the desired
degree since SBP operators require the nodal locations to be real and the cubature weights to be both real and positive.
Additionally, only SBP operators that have all of their nodes within the element are considered in this paper.

The Γ and diagonal-E operators require some of their element nodes to be on the facets. These nodes lie in one of
the degenerate symmetry groups listed in Table 3. These symmetry groups have one fewer degree of freedom than their
primary symmetry group counterpart listed in Table 1 since one degree of freedom is used to have the nodes on the
facets. However, if the element nodes for a symmetry group are required to be collocated with the facet nodes, then this
symmetry group only has one degree of freedom from its cubature weight. The three symmetry groups for a triangle and
their degenerate groups that lie on the facets are plotted in Fig. 2. The shape of the reference triangle is not important for
the nodal locations since a linear mapping can be used to transform the right triangle to a triangle of any size or shape.
The nodes for the sc-vert symmetry group vary along the dotted symmetry lines that connect the vertices to the centroid
of the opposing facets. Meanwhile, for the sc-edge symmetry group, there is one node in each of the six quadrants of the
triangle as divided by the dotted symmetry lines. Examples of the symmetry groups for a tetrahedron are shown in Fig.
3. Only the nodes centered along one vertex, mid-edge or edge are plotted for clarity. The sc-face and sface symmetry
groups are not plotted but are similar to the sc-edge and sedge symmetry groups for the triangle shown in Fig. 2b.

Combinations of these symmetry groups will be used to construct operators on tetrahedron element and cubature
rules on triangular facets in the subsequent sections. One advantage of exclusively using nodes in symmetry groups is
that the directional operators S,E,Q, and D only need to be constructed and optimized for one computational direction
(e.g. ξ) and can then be transformed to the other directions (η and ζ). For this paper, a trirectangular tetrahedron (a
tetrahedron that has three of its faces as right triangles) with vertices at (0,0,0), (1,0,0), (0,1,0) and (0,0,1) is used as the
reference element to construct the cubature rules and SBP operators.
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Table 3 Symmetry groups for simplices that have the nodes on the facets.

Sym groups on facets Nodal locations Primary sym group Facet equiv. sym group line tri tet

svert On the vertices sc-vert svert 3 3 3

sedge On the edges sc-edge sc-vert(line) sedge(tri) 3 3

smid-edge On the mid-edges sc-mid-edge(tet) sc-vert(tri) smid-edge 3 3

sface-cent Centroid of the faces sc-vert scent 3

sc-face-vert Vertex centered on the faces sc-edge sc-vert 3

sface On the faces sc-face sc-edge 3

s
cent

s
c-vert

s
vert

s
mid-edge

(a) Vertex centered

s
cent

s
c-edge

s
edge

(b) Edge centered

Fig. 2 Nodal symmetry groups for triangles.

B. Construction of SBP operators with free parameters
When n > N∗

p,d
the system of equations is underdetermined and could therefore be solved for free parameters.

However, Eq. (2) uses the Moore-Penrose pseudoinverse to solve for Rj , which returns a unique solution with no free
parameters. Taking the transpose of Eq. (1) gives

VT

Ω̂︸︷︷︸
A

RT
j︸︷︷︸
x

= VT
Γ̂j︸︷︷︸
b

. (6)

The matrices V
Ω̂
, Rj , and VΓ̂j are of size n × N∗

p,d
, nj × n, and nj × N∗

p,d
, respectively, where nj is the number of nodes

on facet j. A separate system of equations can be solved for each column of RT
j independently. In this way, the equations

are solved like a typical system of linear equations. Each column of RT
j is used to interpolate/extrapolate the solution

from the volume nodes to one facet node.
The operator Eξ can be constructed using Eq. (3), which use the previously constructed R. In the construction of

Sξ in the previous section, the matrix W was selected with the only criterion that it ensures that Ṽ has independent
columns. When n > N∗

p,d
, there are an infinite number of matrices W that fit this criterion. In order to construct the

matrices Dξ and Qξ with all of the free parameters undefined, we begin with Eq. (4) but replace Ṽ and Ṽξ with V and
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s
cent

s
c-vert

s
mid-facet

s
vert

(a) Vertex centered

s
cent

s
c-mid-edge

s
mid-edge

(b) Mid-edge centered (c) Edge centered

Fig. 3 Nodal symmetry groups along one vertex, mid-edge or edge for tetrahedra.

Vξ , respectively, (
Sξ +

1
2

Eξ
)

V = HVξ(
SξV

)T
=

(
HVξ −

1
2

EξV
)T

VT︸︷︷︸
A

Sξ︸︷︷︸
x

=
1
2

VTEξ − VT
ξH︸            ︷︷            ︸

b

, (7)

where we used the symmetry of H and Eξ as well as the skew-symmetric form of Sξ to simplify the final result. The
matrix Sξ is skew symmetric and has n(n−1)

2 independent entries that are used to satisfy Eq. (7). There are a total of
n × N∗

p,d
linear equations in Eq. (7) that need to be solved to identify any free parameters. There are more equations

than unknowns, but not all of the equations are linearly independent and thus the problem is not overdetermined [13].

IV. Objective functions and numerical test case

To investigate the optimization of the SBP operators, objective functions are evaluated and a numerical test case is
run with SBP operators evaluated with a range of values for the free parameters. This process identifies whether there is
a connection between optimizing the SBP operators for certain objective functions and minimizing the solution error for
the test cases.

A. Objective functions
The element integration error is defined as

eelem-int =

√√√√√ N∗
p+1,d∑

k=N∗
p,d
+1

(
1THpk − I

Ω̂,k

)2
, (8)

where 1 is a vector of ones of length n, I
Ω̂,k is the exact integration of the k-th polynomial over Ω̂, and eelem-int is the L2

norm of the error of the numerical integration over Ω̂. This objective function is used when there are free parameters in
the cubature rule, either from the nodal locations or the cubature weights.
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The interpolation/extrapolation error is calculated as

eint/ext =

√√√√√ N∗
p+1,d∑

k=N∗
p,d
+1
(R1pk − p f ,k)

TB(R1 pk − p f ,k), (9)

where p f ,k is the evaluation of the k-th basis function to the facet cubature nodes on facet one.
The facet integration error is calculated by considering the integration error over facet one

efacet-int =

√√√√√ N∗
p+1,d−1∑

k=N∗
p,d−1+1

(
1TB1R1 pk − IΓ̂1,k

)2
, (10)

where 1 is of length nj , IΓ̂1,k
is the exact integration of the k-th polynomial over Γ̂1, and efacet-int is the L2 norm of

the error of the numerical integration over Γ̂1. This objective function is used when there are free parameters in the
interpolation/extrapolation operator R1.

When there are free parameters in the skew-symmetric matrix Sξ , the objective function that is used is the leading
truncation term, which is calculated as

ederivative =

√√√√√ N∗
p+1,d∑

k=N∗
p,d
+1
(Dξ pk − p′

k
)TH(Dξ pk − p′

k
). (11)

The Frobenius norm of a matrix is defined as

| |A| |F =
√
Tr(AHA) =

√√√ m1∑
i=1

m2∑
j=1
|ai, j |2, (12)

where A is a m1 by m2 matrix, AH is the conjugate transpose of A, and Tr takes the trace of a matrix. Since all the
SBP matrices that are used have exclusively real entries, the ordinary transpose can be used in place of the conjugate
transpose and the absolute values are not required since each entry in A is squared. The Frobenius norm bounds the
spectral radius as

ρ(A) ≤ ||A| |F, (13)

where ρ(A) is the spectral radius of A [32]. We define A as

A = Dξ + RT
1 B1R1, (14)

which takes into account the derivative operator and an approximation to an upwind SAT.
The solution error for the test case is calculated using the broken H norm | |un − ue | |Hg , where un and ue are the

numerical and exact solutions, respectively. The solution errors that are presented for one operator with one or two
varying free parameters are normalized using the minimum solution error.

B. Test case
The test case that is solved to investigate the properties of the SBP operators is the three-dimensional linear advection

equation
∂U

∂t
+
∂axU

∂x
+
∂ayU
∂y

+
∂azU
∂z

= 0, (15)

where ax , ay and az are the constant velocities in the x, y and z directions, respectively. The domain Ω ∈ R3 is
discretized into K non-overlapping elements Ω̄ = ∪K

k=1Ωk and Ωi ∩Ωj = ∅, ∀i , j. For each element Ωk , Eq. (15) is
mapped from physical to computational coordinates:

∂JU

∂t
+
∂aξU
∂ξ

+
∂aηU
∂η

+
∂aζU
∂ζ

= 0, (16)
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where J is the metric Jacobian, while aξ, aη and aζ are the velocities in the curvilinear coordinates. The mesh is
curved using the following transformation:

x ′← x +
1

20
cos

(
π(x − 0.5)

)
cos

(
π(y − 0.5)

)
cos

(
π(z − 0.5)

)
,

y′← y +
1
20

cos
(
π(x − 0.5)

)
cos

(
π(y − 0.5)

)
cos

(
π(z − 0.5)

)
,

z′← y +
1
20

cos
(
π(x − 0.5)

)
cos

(
π(y − 0.5)

)
cos

(
π(z − 0.5)

)
.

Upwind SATs are applied as described in [14]. The domain is discretized into a structured hexahedral mesh
on the domain [0, 1] × [0, 1] × [0, 1] and each hexahedron is split into six tetrahedra. Periodic boundary conditions
are applied and the initial solution is set to u0 = exp

(
−

x2+y2+z2

2σ2

)
. The solution is marched through time using

a fourth-order Runge-Kutta (RK4) method with time steps calculated as ∆t = CFL min(∆x,∆y,∆z)
max(ax,ay,az )

, where CFL is the
Courant-Friedrichs-Lewy number, which is set to 0.05, unless indicated otherwise, ∆x, ∆y and ∆z are taken as the
average size of one hexahedron element in that respective Cartesian direction, and the wave speeds ax , ay and az are all
set to 1/2. The CFL number was selected to be small enough such that the primary source of the error comes from the
spatial discretization instead of the temporal discretization, with the exception of operators that have their nodes nearly
collocated. A constant CFL number is used for all of the operators in order to have an unbiased comparison of the
different operators.

When free parameters in an operator are being investigated there are a total of 8 × 8 × 8 = 512 hexahedra and thus
3072 tetraheral elements. When the efficiency of different operators are compared a set of finer meshes is used. The
coarsest mesh has 6 × 6 × 6 = 216 hexahedra for a total of 1296 tetrahedral elements. Each subsequent mesh has three
tetrahedral elements added in each direction. As such, the second mesh has 4374 (93 × 6) tetrahedral elements.

V. Results for Ω operators

The minimum number of nodes required for a p = 1 operator on a tetrahedron is N∗1,3 = 4. Table 1 indicates that
sc-vert has four nodes and two degrees of freedom for the cubature rule. A p = 1 operator only requires a cubature rule of
degree 2p − 1 = 1. After satisfying the requirement to have a cubature rule of degree one, the nodal locations remain a
free parameter. The nodal locations, cubature weights, interpolation/extrapolation operator and the derivative operator
are given by

S
Ω̂
=


1−t1

4
1−t1

4
1−t1

4
3t1+1

4
1−t1

4
1−t1

4
1−t1

4
3t1+1

4
1−t1

4
1−t1

4
1−t1

4
3t1+1

4


, R1 =


t1−1
4t1

3t1+5
12t1

3t1−1
12t1

3t1−1
12t1

t1−1
4t1

3t1−1
12t1

3t1+5
12t1

3t1−1
12t1

t1−1
4t1

3t1−1
12t1

3t1−1
12t1

3t1+5
12t1

 ,

H =


1
24 0 0 0
0 1

24 0 0
0 0 1

24 0
0 0 0 1

24


, Dξ =


− 1

t1
1
t1

0 0
− 1

t1
1
t1

0 0
− 1

t1
1
t1

0 0
− 1

t1
1
t1

0 0


, (17)

where −1/3 ≤ t1 ≤ 1 ensures that the nodes are on or within the reference element.
Fig. 4a shows how the free parameter varies as the nodes are moved from the vertices to the centroid of the opposing

facet. Meanwhile, Fig. 4b shows the solution error and select objective functions. The global minimum of the solution
error coincides with the minimum of the element integration error, which has an error of zero, indicating a cubature rule
of degree two. There is one more nodal location that provides a cubature rule of degree two but it requires the nodes to
lie outside of the reference element, but this case is not considered in this paper. There is a gap in the solution error in
Fig. 4b when the free parameter is near zero since the nodes become collocated at this value. As the nodes get closer
together, the evaluation of | |A| |F increases rapidly and tends to infinity. However, the location where the nodes are
collocated is also where ederivative is minimized. The objective ederivative is minimized as the nodes get closer together
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(a) Nodal locations
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(b) Normalized solution error and objective functions

Fig. 4 Nodal locations and solutions error for p = 1 tetrahedron operator with one sc-vert.

since a finite-difference scheme is more accurate at calculating derivatives as the nodal spacing is reduced. It is clear
from this example that eelem-int is a good objective to optimize the free parameters for the nodal locations in order to
minimize the solution error. However, it is important that | |A| |F remain small since it bounds the spectral radius. The
objective ederivative is not a good indicator of how to minimize the solution error for free parameters in the cubature rule.

For the next operator, the symmetry group sc-vert is kept and the scent node is added for a total of five nodes.
After satisfying the equation from Liu and Vinokur [17] to have a cubature rule of degree one, two free parameters
in the cubature rule remain. There is also one free parameter in R1 for the contribution of the scent node to the
interpolation/extrapolation of the solution from the volume nodes to the facet nodes. The S

Ω̂
,H,R1 and Dξ matrices are

given by

S
Ω̂
=



1
4

1
4

1
4

1−t1
4

1−t1
4

1−t1
4

3t1+1
4

1−t1
4

1−t1
4

1−t1
4

3t1+1
4

1−t1
4

1−t1
4

1−t1
4

3t1+1
4


, R1 =


r1

t1−1
4t1 −

r1
4

3t1+5
12t1 −

r1
4

3t1−1
12t1 −

r1
4

3t1−1
12t1 −

r1
4

r1
t1−1
4t1 −

r1
4

3t1−1
12t1 −

r1
4

3t1+5
12t1 −

r1
4

3t1−1
12t1 −

r1
4

r1
t1−1
4t1 −

r1
4

3t1−1
12t1 −

r1
4

3t1−1
12t1 −

r1
4

3t1+5
12t1 −

r1
4

 ,

H =



1−4w1
6 0 0 0 0
0 w1

6 0 0 0
0 0 w1

6 0 0
0 0 0 w1

6 0
0 0 0 0 w1

6


, Dξ =



0 − 1
t1

1
t1

0 0
−

4w1+r1−1
w1t1

r1−1
4w1t1

8w1+r1−1
4w1t1

4w1+r1−1
4w1t1

4w1+r1−1
4w1t1

4w1+r1−1
w1t1

−
8w1+r1−1

4w1t1
−

r1−1
4w1t1

−
4w1+r1−1

4w1t1
−

4w1+r1−1
4w1t1

0 − 1
t1

1
t1

0 0
0 − 1

t1
1
t1

0 0


. (18)

Each column of R1 represents the contribution of one element node to each of the facet nodes, while each row in R1 is
the contribution of all of the element nodes to one facet node. The first column of R1 is the contribution of the scent
node to each of the facet nodes. Since the facet nodes are symmetrically located on the facet (they are in the sc-vert
group), they each have the same contribution from the element’s scent node, r1. Therefore, if r1 = 0, the scent node does
not contribute to the interpolation/extrapolation of the solution to the facet cubature nodes. To have all the weights
be positive in H, it is required that 0 < w1 < 1/4. When w1 = 0, the weight is zero on all of the sc-vert nodes, while
having w1 = 1/4 makes the weight on the scent node be zero. As such, the operator in (17) is recovered when r1 = 0 and
w1 = 1/4 since t1 is the same free parameter for both operators.
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(a) Normalized solution error
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(b) Normalized Frobenius norm of A

Fig. 5 p = 1 tetrahedron operator with one scent and sc-vert symmetry groups with no contribution from the
scent node to the interpolation/extrapolation of the solution to the facet cubature nodes and where the red line
indicates pcub = 2.

Fig. 5a plots the normalized numerical error as the two free parameters from the cubature rule are varied and r1 is
set to zero. Just like the previous test case in Fig. 4b, the solution error is minimized when the cubature rule is of degree
two, as indicated by the red line in Fig. 5. Fig. 5b shows the Frobenius norm of A. The locations where the Frobenius
norm is large coincide with the locations that the operators are not stable using RK4 and CFL = 0.05, shown as white
space in Fig. 5a.

When a cubature rule of degree two is enforced, this leads to the following relation between the cubature weight, w1,
and the free parameter for the nodal location, t1:

w1 =
1

20t2
1
, (19)

where
√

1/5 < t1 ≤ 1 ensures all the weights are positive and that the nodes are within the element. When t1 <
√

1/5,
the weight on the scent node is negative and when t1 > 1, the sc-vert nodes pass the vertices and are outside of the
reference element. The new operator now only has t1 and r1 as free parameters, which allows r1 to be varied on a
two-dimensional surface plot. Fig. 6a shows that for all the nodal locations considered, the solution error is around 40%
higher than the minimum solution error when the contribution from the scent node is between zero and one. Since r1 is a
free parameter in R1, which is used to interpolate/extrapolate the solution from the volume nodes to the facet nodes and
then integrate the solution over the facet, it is logical to consider optimizing r1 to minimize either eint/ext or efacet-int.
However, Fig. 6c and Fig. 6d show that the minima of these errors do not coincide with the minimum of the solution
error. Fig. 6b shows that the increase in solution error when r1 is between zero and one coincides with an increase in the
dissipation of the kinetic energy. A difference in solution error of only 40% is small compared to the 250% difference
between the minimum and maximum solution error in Fig. 4. However, this example indicates that when there are
free parameters in R1, they can be used to adjust the level of dissipation, which may be helpful for problems where
additional dissipation is required.

Since the derivative operator Dξ is constructed from Eξ , which is itself constructed from R1, the free parameters in
R1 are also present in Dξ , as shown in (18). Fig. 6e and 6f show the Frobenius norm for Dξ and A, respectively. It
is evident that the stable region for the scheme, shown by coloured cells in Fig. 6a, coincides more closely with the
minimum of the Frobenius norm of A. Considering the values along the left edge of the plots (t1 =

√
1/5 ≈ 0.45), the

left-most column of blocks in Fig. 6a is missing, indicating that these operators are not stable with the the selected
time marching method. For this same column of blocks, the Frobenius norm is high for A at all values of r1, while the
Frobenius norm of Dξ is low for −1 < r1 < 1.5. The scheme is unstable when t1 =

√
1/5, since w1 = 0.25 and the

weight on the scent node is zero. To understand the difference in the Frobenius norm of A and Dξ , the inverse of H must
be considered. Since H is diagonal, it is in the form H = diag(h1, h2, . . . , hn) and thus H−1 = diag(1/h1, 1/h2, . . . , 1/hn).
Therefore, if one of the cubature weights goes to zero, at least one of the entries in H−1 tends to infinity. Since A includes
H−1, very small cubature weights therefore have a large impact on the Frobenius norm of A, while they do not impact
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Table 4 Properties of symmetry groups on a tetrahedron with nodes on the facets.

Element symmetry groups n n f n/n f DOF n / DOF

svert 4 3 4/3 1 4
sedge 12 6 2 2 6
smid-edge 6 3 2 1 6
sface-cent 4 1 4 1 4
sc-face-vert 12 3 4 2 6
sface 24 6 4 3 8

Table 5 Symmetry groups for p = 1 Γ family.

Element sym groups with facet nodes Additional element sym groups n pcub

svert 4 1
svert scent 5 2
svert sc-vert 8 3

the Frobenius norm of Dξ . Therefore, the Frobenius norm of A provides a better indication of whether a scheme will
have a large spectral radius and hence will require a very small time step with an explicit time-marching method.

VI. Results for Γ operators

To minimize the number of nodes for Γ operators it is beneficial to use symmetry groups that have nodes on the
facets with the lowest ratio of volume to facet nodes (n/n f ) and also the lowest ratio of volume nodes to degrees of
freedom for the cubature rule (n/DOF). Table 4 shows that the most desirable symmetry group to use is the svert group
since it has the lowest ratio of both n/n f and n/DOF. The p = 1 and p = 2 Γ operators respectively use the p = 1 and
p = 2 element cubature rule from the Ω triangular element operators from [14] as their facet cubature rule of degree 2p.

A. p = 1 Γ operators
For a p = 1 Γ operator on a tetrahedron, a minimum of N∗1,3 = 4 volume nodes and N∗1,2 = 3 facet nodes are required.

Table 4 indicates that svert provides the minimum required number of both volume and facet nodes for a p = 1 Γ operator.
Previous results indicated that increasing the cubature rule from 2p − 1 to 2p is beneficial and thus, operators with
additional symmetry groups and cubature rules of higher degrees are also generated. The symmetry groups from Table
1 with the lowest n/DOF ratio are selected, which provide the minimum degrees of freedom, as indicated by Table 2, for
cubature rules with pcub = 1, 2 and 3. Table 5 shows the generated operators, and Fig. 7a shows the results of these
operators. The first operator in Table 5 was previously constructed in [13]. Fig. 7a shows that, once again, increasing
pcub from 2p − 1 = 1 to 2p = 2 provides for a more efficient operator. As for the operator with pcub = 2p + 1 = 3, it was
more computationally expensive for each of the meshes than the operator with pcub = 2, which is expected since it has
more nodes, but it also has a slightly higher solution error for each mesh. This result suggests that there is no benefit to
increasing the degree of the cubature rule beyond 2p.

B. p = 2 Γ operators
For a p = 2 Γ operator, there needs to be at least N∗2,2 = 6 nodes on each facet. Table 4 shows that the svert, smid-edge

and sc-face-vert symmetry groups all have three nodes, and thus any combination of two of these three symmetry groups
can be used to have six nodes on each of the facets. Both the sedge and sface symmetry groups create a set of unisolvent
nodes on the facets that cannot be used to interpolate the solution from the volume nodes to the facet nodes, since the
Vandermonde matrix evaluated at the element nodes on each of the facets does not have linearly independent columns
(as required to construct R1). The generated operators use a combination of svert, smid-edge and sc-face-vert symmetry
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Table 6 Symmetry groups for p = 2 Γ family.

Element sym groups with facet nodes Additional element sym groups n pcub

svert + smid-edge scent 11 3
2 sc-vert 18 5
sc-edge 22 4

sc-face-vert + svert sc-vert 20 4
scent + sc-vert 21 5

sc-face-vert + smid-edge sc-vert 22 4

Table 7 Symmetry groups for p = 1 diagonal-E family.

Element sym groups with facet nodes Additional element sym groups n pcub

sc-edge 6 1
scent 7 2
sc-vert 10 3

smid-edge 12 1
scent 13 2

groups, as shown in Table 6. The first operator in this table matches the p = 2 operator in [13].
For the numerical tests, the CFL number is set to 0.01 instead of 0.05, since only the first and fourth operators in

Table 6 are stable at the larger CFL number. Fig. 7b shows that the operators with pcub = 2p = 4 are more efficient that
the operator with pcub = 2p − 1 = 3 and have similar efficiency to the operators with pcub = 2p + 1 = 5. All of the
operators with pcub = 4, 5 have similar efficiency, but the fourth operator is slightly more efficient for each subsequent
finer mesh. The fourth operator also has the advantage of being stable at the larger CFL number of 0.05.

VII. Results for diagonal-E operators

For the diagonal-E operators, the symmetry groups for the element nodes must be selected such that each facet node
is collocated with an element node. Therefore, the construction of diagonal-E operators begins with the selection of
symmetry groups for a facet cubature rule with pcub = 2p. Operators with p = 1 are considered first, followed by p = 2
operators.

A. p = 1 diagonal-E operators
Table 2 indicates that for a triangle, a cubature rule of degree two requires at least two degrees of freedom. Table 1

shows that for a triangle, the symmetry group sc-vert provides the necessary two degrees of freedom. When the equations
from Liu and Vinokur [17] for a cubature rule of degree two with one sc-vert symmetry group are solved, there are two
solutions that are shown in Fig. 8. Table 3 indicates that the first cubature rule, shown in Fig. 8a, requires the element
symmetry group sc-edge, which has 12 nodes. Meanwhile, the second cubature rule, shown in Fig. 8b, requires the
element symmetry group smid-edge, which has only 6 nodes. Table 7 shows the symmetry groups used to create p = 1
diagonal-E operators with the two facet cubature rules in Fig. 8. The p = 1 diagonal-E operator from [31] has 13 nodes
and matches the cubature rule for the pcub = 2 operator with the sc-vert facet symmetry group derived independently in
this paper.

The results for the test case for p = 1 diagonal-E operators are shown in Fig. 9a where, once more, the operators
with pcub = 2p = 2 have a significantly lower solution error compared to the operators with pcub = 2p − 1 = 1. The
operator with pcub = 3 has a similar efficiency to both of the operators with pcub = 2. The use of the smid-edge facet
symmetry group provides a more efficient diagonal-E operator when pcub = 1, but a slightly less efficient operator when
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Table 8 Possible combinations of symmetry groups for a facet cubature rule of degree four on a tetrahedral
element.

ID Element sym groups Facet (triangle) sym groups n No. sym groups Valid SBP cub rule

1 sface-cent + svert + sc-face-vert scent + svert + sc-vert 20 3 7

2 sface-cent + svert + sedge scent + svert + sc-vert 20 3 7

3 sface-cent + smid-edge + sc-face-vert scent + smid-edge + sc-vert 22 3 3

4 sface-cent + smid-edge + sedge scent + smid-edge + sedge 22 3 7

5 svert + smid-edge + sc-face-vert svert + smid-edge + sc-vert 22 3 3

6 svert + smid-edge + sedge svert + smid-edge + sedge 22 3 7

7 2 sc-face-vert 2 sc-vert 24 2 3

8 sc-face-vert + sedge sc-vert + sedge 24 2 3

9 2 sedge 2 sedge 24 2 7

Table 9 Symmetry groups for p = 2 diagonal-E family with pcub = 3, 4.

Facet cub rule ID Element sym groups with facet nodes Additional element sym groups n pcub

3 sface-cent + smid-edge + sc-face-vert scent 23 3
sc-vert 26 4

7 2 sc-face-vert scent 25 3
sc-edge 36 4

8 sc-face-vert + sedge scent 25 3

pcub = 2. While the operator with the smid-edge facet symmetry group and pcub = 2 has a slightly higher solution error,
it is possible it would be more efficient than its counterpart with the sc-vert facet symmetry group and pcub = 2 for a
different test case, particularly one with discontinuities in the solution where smaller elements are beneficial.

B. p = 2 diagonal-E operators
The construction of p = 2 diagonal-E operators also begins by constructing facet cubature rules. Table 2 shows that

four degrees of freedom are required to have a cubature rule of degree 2p = 4 on the triangular facets. Combinations of
the facet symmetry groups with a total of four degrees of freedom are selected. Table 8 shows the different combinations
of symmetry groups used and whether a valid SBP cubature rule was found for the facet.

The facet cubature rules from Table 8, which are shown in Fig. 10, are used to create cubature rules on a tetrahedron
with pcub = 2p − 1 = 3 and pcub = 2p = 4. Element symmetry groups with the nodes in the element are also needed to
provide additional degrees of freedom such that a valid SBP cubature rule can be found. Table 9 shows the symmetry
groups used for all the p = 2 operators. Only an element cubature rule of degree 3 was found for facet cubature rule 7,
while no valid cubature rule for the tetrahedron could be found with facet cubature rule 8. All the combinations of
additional element symmetry groups providing a sufficient number of degrees of freedom were tested up to a maximum
of 36 nodes in an attempt to find cubature rules with pcub = 3, 4. The cubature rule for the p = 2 diagonal-E operator
from [31] has 36 nodes and matches the cubature rule of the pcub = 4 with the seventh facet cubature rule from Table 8,
which was derived independently. The results for these p = 2 diagonal-E operators for the numerical test case are shown
in Fig. 9b. The results indicate that the two operators with pcub = 4 are both more efficient that the operators with only
pcub = 3. Additionally, the pcub = 4 operator with the third facet cubature rule from Table 8, is more efficient than the
pcub = 4 operator with the fifth facet cubature rule from Table 8, since it has 10 fewer nodes and yet still has a similar
solution error for each mesh that was used.
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VIII. Conclusion and future work

A systematic method of constructing SBP operators of the Ω, Γ and diagonal-E families using nodal symmetry
groups was presented such that free parameters could be used to minimize desired objective functions. The results
from this paper showed that there is a significant benefit to increasing the degree of the cubature rule from 2p − 1 to 2p.
Even with the additional computational cost associated with the extra nodes, the operators with pcub = 2p significantly
reduced the solution error and are more efficient. However, there was no observed benefit of increasing the degree of the
cubature rule from 2p to 2p + 1.

The Frobenius norm of A was shown to be a superior indicator of the spectral radius of the global operator than
the Frobenius norm of Dξ . It was also determined that free parameters in R1 have a substantial impact on both the
amount of dissipation and on the spectral radius. New and more efficient p = 1 and p = 2 operators for the Γ family
were constructed compared to the operators from [13]. A new p = 1 diagonal-E operator with pcub = 2 was constructed
with nearly the same efficiency as the one from [31] but with 7 nodes instead of 13. Finally, a more efficient p = 2
diagonal-E operator with pcub = 4 was constructed with 10 fewer nodes than the one from [31]. These operators are
available upon request by emailing either of the authors.
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Fig. 6 Solution error, dissipation in kinetic energy and objective function for p = 1 Ω tetrahedral operator
with five nodes (scent and one sc-vert symmetry groups) and pcub = 2.
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Fig. 7 Solution error and computational cost for Γ operators on tetrahedral elements, where SGFN stands for
symmetry groups with facet nodes.
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Fig. 8 Cubature rules of degree two on triangles used for p = 1 diagonal-E operators on tetrahedral elements

20

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ju

ne
 1

5,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
29

53
 



10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

n=6, p
cub

=1, FCR: s
mid-edge

n=7, p
cub

=2, FCR: s
mid-edge

n=10, p
cub

=3, FCR: s
mid-edge

n=12, p
cub

=1, FCR: s
c-vert

n=13, p
cub

=2, FCR: s
c-vert

(a) p = 1

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

n=23, p
cub

=3, FCR: s
cent

+s
c-vert

+s
mid-edge

n=26, p
cub

=4, FCR: s
cent

+s
c-vert

+s
mid-edge

n=25, p
cub

=3, FCR: 2s
c-vert

n=36, p
cub

=4, FCR: 2s
c-vert

n=25, p
cub

=3, FCR: s
c-vert

+s
edge

(b) p = 2

Fig. 9 Solution error and computational cost for diagonal-E operators on tetrahedral elements, where FCR
stands for facet cubature rule.
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Fig. 10 Cubature rules of degree four on triangles from Table 8 used for p = 2 diagonal-E operators on
tetrahedral elements.
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