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The summation-by-parts (SBP) property provides a rigorous means of proving linear and
nonlinear stability. Recently, the SBP property has been extended from tensor-product nodal
distributions on multiblock curvilinear meshes to unstructured meshes on arbitrary polytopes.
The objective of this paper is to search for efficient cubature rules on quadrilateral elements
and perform a comparative analysis of their properties relative to traditional tensor-product
operators. To this end, an algorithm for the constrained numerical optimization of multidimen-
sional SBP operators on quadrilateral elements is presented. Using this algorithm, operators
are optimized relative to an objective function which accounts for accuracy of the SBP deriva-
tive operator. Additionally, properties which affect time stability for explicit time integration
methods and conditioning of the node set are calculated and analyzed. Properties necessary to
preserve the SBP property are enforced through linear and nonlinear constraints. Numerical
experiments are presented comparing tensor-product element-type operators on Legendre-
Gauss (LG) and Legendre-Gauss-Lobatto (LGL) nodal distributions and non-tensor-product
nodal distributions in order to understand the relative accuracy and computational efficiency
of the corresponding methods. It is found that the non-tensor-product nodal distributions
are able to achieve cubature rules with lower cubature truncation error compared to tensor-
product cubature rules, with fewer nodes. Additionally, the SBP operators constructed on
the non-tensor-product cubature nodes are found to have equal or better solution error and
efficiency for test cases performed with the linear advection and Euler equations on curvilinear
grids.

I. Introduction

High-order methods on unstructured meshes are a promising approach for the efficient solution of industrially
relevant partial differential equations on massively parallel computer architectures. This is due to their high

arithmetic intensity, ability to mesh complex geometries, low communication overhead between computational processes,
and ability to obtain accurate computations with fewer degrees of freedom than a low-order method [1–3]. As a means to
prove stability, the summation-by-parts (SBP) framework was developed, initially in the finite difference community, by
Kreiss and Scherer [4] and then extended by Strand [5]. This framework was extended with the addition of simultaneous
approximation terms (SATs) for the energy-stable weak imposition of interface coupling and boundary conditions [6, 7].
This methodology has been applied to complex practical problems in aerodynamics [8] and Einstein’s equations in
gravitational physics [9]. Beyond the finite difference context, the SBP property has also been used extensively within
the high-order community for spectral [10], discontinuous Galerkin [11], finite volume [12], and flux reconstruction
methods [13].

The ability of SBP-SAT schemes to provide provably stable and conservative discretizations of linear initial-value-
problems results from the discrete representation of integration-by-parts and its corresponding bilinear forms within the
construction of the matrix operators. Traditionally, SBP operators on structured curvilinear grids are implemented
as finite difference operators with uniform nodal distributions which contain boundary nodes. Mesh refinement is
performed through the repetition of an order 2p repeating interior point operator finite difference stencil. To enforce
the SBP property, order p corrections to the boundary stencils are introduced, which reduces the overall accuracy of
the operator to p for diagonal-norm (mass) matrices. However, a recent extension of the SBP definition by Del Rey
Fernández et al. allows for the construction of generalized summation-by-parts operators (GSBP) for the first and second
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derivatives [14, 15]. The operators satisfying the GSBP definition include a wide variety of operators with the following
properties:

• operators without a repeating interior point operator,
• operators that do not contain one or both of the boundary nodes,
• operators that have nonuniform nodal distributions.

The GSBP operators can be implemented as either element-type operators or traditional finite difference operators.
Coupled with the inherent relationship between quadrature rules and SBP operators [16], the construction of high-order
SBP operators reduces to finding a quadrature rule of sufficient degree. The extension to multiple dimensions
can be performed through a simple tensor-product of the one-dimensional operator; however, recent extensions to
multidimensional SBP operators on simplices [17] have been developed in addition to the generalization of SATs on
arbitrary polytopes [18]. The flexibility and generality of the SBP definition has opened the question of which operators
are optimal in terms of specific objectives such as the L2 error, computational efficiency, and dispersion and dissipation
error properties, and the procedures required to develop such operators.

Optimization of traditional one-dimensional diagonal-norm SBP finite difference schemes focused solely on
the optimization of the free matrix parameters that appear after satisfying the accuracy equations and the SBP
definition [5, 9, 19]. For these optimization cases, nodal distributions were assumed to be uniform and therefore no
additional degrees of freedom were introduced into the SBP operator through the node position parameters. An extension
of the optimization of one-dimensional diagonal-norm SBP operators was performed by Mattsson et al. for operators of
orders p = 1,2,3, and 4 [20]. By implementing enlarged boundary stencils into the SBP matrix operators and setting the
positions of some of the nodes near the boundary as free parameters in their optimization, they optimized their SBP
operators to minimize the norm of the first two leading derivative truncation error terms. Their results showed multiple
orders of magnitude improvement in the L2 solution error for the Euler vortex problem over traditionally optimized
diagonal-norm SBP finite difference methods containing a uniform nodal distribution. Revisiting this concept, Mattsson
et al. performed an improved optimization of these operators for diagonal-norm SBP operators of orders p = 1,2,3,4,5
and 6 [21]. By utilizing more non-uniform nodes near the boundary, they were able to improve the L2 solution error for
the Euler vortex problem compared to their operators from [20] and introduced minimal SBP operators which use the
non-uniform nodes to reduce the size of the boundary closure to less than 2p for operators possessing a diagonal-norm.

For diagonal-norm multidimensional SBP operators that are exact for polynomials of degree p, it was shown by Del
Rey Fernández et al. that the norm and corresponding nodes define a strong cubature rule that is exact for polynomials
of at least degree 2p − 1 [17]. The analytic and algorithmic search for such cubature rules is documented extensively by
Cools [22]. Additional investigations of efficient symmetric cubature rules over quadrilateral and hexahedral domains
have been performed [23, 24]; however, these rules generally suffer from negative weights or possess node positions
that are outside of the domain. For this reason, the use of cubature rules in multiple dimensions and for the solution
nodes in collocation type discontinuous Galerkin spectral element methods on quadrilateral elements has resorted to the
tensor-product of LG and LGL nodes for their proven interpolation and accuracy properties [11, 25, 26].

The current objective is to investigate the constrained numerical optimization of multidimensional SBP operators on
quadrilateral elements and to compare their accuracy and computational efficiency to traditional node sets such as a
tensor-product of LG or LGL nodes. We restrict ourselves to the study of diagonal-norm SBP operators. The numerical
optimization approach performed in this paper is to first perform a nonlinear least-squares optimization procedure of a
cubature rule with the constraint that the cubature rule node set is symmetric, contains positive weights, and is of a
sufficient cubature degree on a quadrilateral element that contains either only volume nodes on the interior, volume
nodes on the facets or interior, or volume nodes collocated with the facet cubature points and contains nodes on the
facets or interior. This approach will aim to find the node set with n nodes for a cubature rule belonging to each SBP
operator family so that an SBP operator can be directly constructed, although we do not claim that these cubature rules
are new. Given the cubature rule and subsequently solving the accuracy conditions, free matrix parameters can appear
in the SBP operators which can be optimized for specific objective functions that account for accuracy, time stability for
explicit time integration methods, and computational cost, or a weighted linear combination of such parameters. Similar
procedures have been performed in [20, 21, 27].

A brief outline of the multidimensional SBP operator theory will be followed by a description of the current classes
of multidimensional SBP operator families and their properties. A procedure for numerically optimizing cubature rules
on quadrilateral elements will then be discussed, and an extensive list of the generated cubature rules for each SBP
family will be presented. A detailed outline of how the SBP operators are constructed while retaining free parameters
in the matrix operators follows. Subsequently, the objective functions and their influences on specific SBP operator
properties will be provided in addition to the description of the optimization algorithms and procedure. Following
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this, a comparison of the various classes and families of optimized multidimensional SBP operators on quadrilaterals
to traditional tensor-product operators will be presented. Finally, a comparison of the accuracy and computational
efficiency of the tensor-product and multidimensional operators when applied to canonical test problems for the linear
advection and Euler equations on curvilinear grids will be presented.

II. Notation
Adopting conventions established in [17, 18], the following notation is used throughout the paper. We consider

discretized operators defined on a set of n nodes S
Ω̂
= {(ξi, ηi)}

n
i=1, on an open and bounded domain Ω̂ ⊂ R2. Capital

letters with a script type are used to denote continuous functions defined on the domain Ω̂. As an example,U(ξ) ∈ L2(Ω̂)
is a square-integrable function defined in the domain Ω̂. Additionally, lower-case bold font is used to denote the
restriction of functions to the node set S

Ω̂
. Therefore, the restriction of the functionU to S

Ω̂
is represented as

u = [U(ξ1, η1), ...,U(ξn, ηn)]
T.

Various definitions and theorems will also rely on a monomial basis. The cardinality of the monomial basis for arbitrary
dimension d and degree p is given as

n∗p ≡
(
p + d

d

)
.

The monomial basis functions are represented as

Pk(ξ, η) = ξ
iη j, k = j( j + 1)/2 + i + 1 ∀ j ∈ {0,1, . . . , p}, i ∈ {0,1, . . . , j},

and the evaluation of the monomials and their derivatives on the node set S
Ω̂
is given as

pk ≡ [Pk(ξ1, η1), . . . ,Pk(ξn, ηn)]
T,

and p′k ≡
[
∂Pk
∂ξ
(ξ1, η1), . . . ,

∂Pk
∂ξ
(ξn, ηn)

]T
.

Matrices are represented using capital letters with sans serif font; for example, the first-derivative operators with respect
to ξ and η are represented by the matrices Dξ and Dη , respectively. Entries of a matrix are indicated with subscripts,
and we follow a MATLAB-like notation when referencing submatrices. For example, A:, j represents the j th column of
matrix A.

We will also require the degree p (rectangular) Vandermonde matrix

V ≡
[
p1,p2, . . . ,pn∗p

]
,

as well as the associated matrix containing the projection of the ξ derivatives of the monomials onto S
Ω̂
, denoted by

Vξ ≡
[
p′1,p

′
2, . . . ,p

′
n∗p

]
.

III. Multidimensional Summation-by-Parts Operators

A. Multidimensional Summation-by-Parts Operator Approximating the First-Derivative
To introduce the definition of a multidimensional summation-by-parts operator approximating the first-derivative,

consider a domain Ω ⊂ R2 with a piecewise-smooth boundary Γ. Given a set of points {a0, . . . ,an} in R2 such that
the vectors {a1 − a0, . . . ,ad − a0} are linearly independent, then the interior of the convex hull of {a0, . . . ,an} is a
non-degenerate polygon in R2. We then consider a partition T = {T} of the domain Ω which is a collection of disjoint
and non-degenerate polygons such that

Ω =
⋃
T ∈T

T .
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Each T ∈ T is defined as a mesh element [28].
Consider now the two-dimensional scalar conservation law given by

∂U

∂t
+
∂U

∂x
+
∂U

∂y
= 0, ∀x, y ∈ Ω, t ≥ 0. (1)

Using the partition T of Ω, each mesh element T can be mapped from physical coordinates (x, y) to a reference polygon
in computational coordinates (ξ, η) through a mapping. This mapping results in the following modification to Eq. (1):

∂(J−1U)

∂t
+
∂(λξU)

∂ξ
+
∂(ληU)

∂η
= 0, (2)

where λξ and λη are the metrics and J is the Jacobian of the transformation. Now that Eq. (2) is written in
the computational domain, the corresponding metric relations can be calculated and the terms ∂

∂ξ and ∂
∂η can be

approximated by discrete first-derivative matrix operators Dξ and Dη , respectively.

Definition 1. Multidimensional summation-by-parts operator for the first-derivative: Consider an open and
bounded domain Ω̂ ⊂ R2 with a piecewise-smooth boundary Γ̂ which belongs to the associated partition T of Ω. The
matrix Dξ is a degree p SBP approximation to the first-derivative ∂

∂ξ on the nodes S
Ω̂
= {(ξi, ηi)}

n
i=1 if

1) Dξpk = p′
k
, ∀k ∈ {1,2, . . . ,n∗p};

2) Dξ = H−1Qξ , where H is symmetric positive-definite; and
3) Qξ + QT

ξ = Eξ , where Eξ is a discrete representation of a directional surface integral such that

pT
kEξpm =

∮
Γ̂

PkPmnξdΓ̂, ∀k,m ∈ {1,2, . . . ,n∗r },

where r ≥ p, and nξ is the ξ component of the outward pointing unit normal on Γ̂, n = [nξ ,nη]T.

It is clear from the above definition that the SBP operators are discretely mimetic of integration-by-parts and the
corresponding bilinear forms present. We say that an SBP operator is a diagonal-norm SBP operator if H is a diagonal
matrix. As stated in the Introduction, the existence of a cubature rule of sufficient degree is necessary and sufficient for
the existence of a multidimensional diagonal-norm SBP operator [17]. In this case, the norm matrix H contains the
cubature weights ω = {ω1, . . . ,ωn} injected on the diagonal entries. Consequently, H is a cubature rule satisfying

pT
kHpm =

∫
Ω̂

PkPmdΩ̂,

where H contains the weights of a cubature rule of at least degree 2p − 1. As H is symmetric positive-definite, it is a
degree 2p − 1 finite-dimensional representation of the L2 norm

| |u| |2H ≡ uTHu ≈
∫
Ω̂

U2dΩ̂.

Furthermore, the construction of the directional surface integral was generalized in [18] through the decomposition
of the Eξ operator. First, we begin by assuming that the reference element Ω̂ is a polygon, and its boundary Γ̂ is
piecewise-smooth with Γ̂ = ∪nΓ̂

j=1Γ̂j and ∩
n
Γ̂

j=1Γ̂j = ∅. For each Γ̂j we also assume there exists a strong cubature rule,
with nodes SΓ̂j = {(ξi, ηi)}

n j

i=1, nj ≥ p + 1, and weights {b(j)i }
n j

i=1 that exactly integrates polynomial integrands of degree
q ≥ 2r on each facet, where r is used in property III of Definition 1. In addition, we assume that the volume nodes
generate a degree r Vandermonde matrix V, which has full rank.

Using the above assumptions, a simple decomposition of Eξ involves projecting the solution at the volume nodes
onto the facet cubature nodes, integrating over the facet and multiplying pointwise by the local normal component in the
ξ direction, and then projecting from the facet cubature nodes back onto the volume nodes. The projection from the
volume nodes to the facet cubature nodes is performed by the operator Rj , which is accurate to degree r ≥ p and obeys
the property

(Rjpk)i = Pk(ξ
(j)
i , η

(j)
i ), i = 1,2, . . . ,nj, ∀k ∈ {1,2, . . . ,n∗r },
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Table 1 Properties of the current multidimensional SBP families.

Families Can contain volume nodes on interior Can contain volume nodes on boundary Volume nodes collocated with facet cubature Diagonal E
SBP-Ω [18] 3 7 7 7

SBP-Γ [17] 3 3 7 7

SBP-diag(E) [29] 3 3 3 3

where r ≥ p. We can now write the decomposition of Eξ as

Eξ =

n
Γ̂j∑

j=1
RT
j BjNξ jRj,

Rj = VΓ̂j (VΩ̂)
† = VΓ̂j (V

T
Ω̂

V
Ω̂
)−1VT

Ω̂
,

whereBj = diag
(
b(j)1 , b

(j)
2 , . . . , b

(j)
n j

)
is a diagonalmatrix holding the quadratureweights for Γ̂j andNξ j = diag

(
n(j)
ξ1,n

(j)
ξ2, . . . ,n

(j)
ξn j

)
is a diagonal matrix holding the ξ component of the normal vector at each quadrature point on Γ̂j . The matrix V

Ω̂
is a

degree r Vandermonde matrix on the volume nodes and the matrix VΓ̂j is a degree r Vandermonde matrix on the facet j
quadrature nodes. A similar decomposition can be made in the η direction.

B. Multidimensional Summation-by-Parts Operator Families
Currently, there exist three primary families of multidimensional SBP operators in which we can classify many

multidimensional SBP operators. These families are the SBP-Ω, SBP-Γ, and SBP-diag(E) families. These families
determine the structure of the volume node set within the reference element Ω̂ and hence the matrix structure of the
corresponding SBP operator. Although these families have only been constructed for simplices, the extension to
quadrilateral and hexahedral elements is straightforward. A summary of the differences between the different families is
given in Table 1, and an example of each operator family on a two-dimensional simplex element is given in Figure 1.

1. SBP-Ω Family
The SBP-Ω family, introduced in [18], contains nodes that are strictly on the interior of the element. Without

constraining any of the nodes to lie on the boundary, more degrees of freedom exist in order to obtain a certain degree
cubature rule to construct an SBP operator. Hence, either the number of points required to obtain a specific degree
cubature rule will be minimized or the associated accuracy and degree will be maximized; this is analogous to an LG rule
in one dimension. Therefore, the associated cubature rule will also produce an SBP operator that has a reduced solution
L2 norm error compared to the other SBP families [18]. However, because the nodes are in general not collocated
with the boundary quadrature points, the projection operator Rj , and hence the directional surface integral Eξ , is a
dense matrix operator. Thus, the computation of the SATs can become more computationally intensive compared to the
volume computations which use fewer points. The resultant efficiency of the SBP-Ω operators measured against these
competing factors is not clear and is likely problem and implementation dependent.

2. SBP-Γ Family
The SBP-Γ family, introduced in [17], contains volume nodes that are in the interior of the element and at least

nj ≥ p + 1 nodes on each facet of the element boundary for two-dimensional elements. Although the condition that
nj ≥ p + 1 is not necessary, an SBP-Γ operator without this property will not take advantage of the more efficient
projection operators that result. As some of the volume nodes are partially constrained to exist on the boundary facets,
some of the degrees of freedom of the nodes are removed and hence the accuracy and degree of the cubature may be
reduced or more points may be required to obtain a cubature rule of sufficient degree. This is analogous to an LGL
rule in one dimension, where for n points, the LGL rule will produce a 2n − 3 quadrature rule as opposed to 2n − 1
for LG rules. Due to this, the associated SBP operator will either use more points than the SBP-Ω family for a given
degree SBP operator, or for a given degree SBP operator and number of volume nodes n, the cubature rule and likely the
SBP derivative operator will not be as accurate as one belonging to the SBP-Ω family. The benefit of using the SBP-Γ
family is that the volume nodes that are constrained to exist on the boundary facets are collinear with the boundary
cubature points. Thus, the computation of the SATs only requires the projection of those nodes which exist on the j th
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(a) p = 2 SBP-Ω operator. (b) p = 2 SBP-Γ operator. (c) p = 2 SBP-diag(E) operator.

Fig. 1 Examples of each SBP family of p = 2 multidimensional SBP operators con-
structed on a reference simplex element where (◦) are the volume solution nodes and (�)
are the facet cubature points.

facet. This will reduce the number of arithmetic operations required to compute the SATs which may make the operator
more efficient as the mesh is refined and the SAT computations become more dominant. However, the larger number of
volume nodes and decreased accuracy for a specific degree SBP operator as compared to the SBP-Ω family can negate
to a certain extent the efficiency obtained from more efficient SAT computations.

3. SBP-diag(E) Family
The SBP-diag(E) family, introduced in [29], contains nodes that are in the interior of the element and at least nj ≥ p+1

nodes on each facet of the element boundary that are collocated with the facet cubature points for two-dimensional
elements. Similar to the SBP-Γ family, because some of the volume nodes are fully constrained to exist at the facet
cubature points on the boundary facets, some of the degrees of freedom of the nodes are removed and hence the accuracy
and degree of the cubature may be reduced or more points may be required to obtain a cubature rule of sufficient degree.
Due to this, the associated SBP operator will either use more points than both the SBP-Ω and SBP-Γ families for a given
degree SBP operator, or for a given degree SBP operator and number of volume nodes n, the cubature rule and likely the
SBP operator will not be as accurate as the ones belonging to both the SBP-Ω and SBP-Γ families. The benefit of using
the SBP-diag(E) family results from the collocation of the volume and facet cubature points. Due to this, no projection
from the volume to the facet cubature points is required and the SATs can be computed directly in a point-wise and
efficient fashion. As with the SBP-Γ family, the increased efficiency of the SAT computations may make these operators
more efficient; however, it is not clear how the increased computational work due to an increase in the number of volume
nodes will affect the overall efficiency of the SBP-diag(E) family.

IV. Symmetric and Positive Cubature Rules on Quadrilateral Elements
The search for symmetric and positive cubature rules in a specific canonical reference element is akin to the search for

a multidimensional SBP operator. Various methods that possess the SBP property have utilized a tensor-product [11, 30–
34] node structure for the application to quadrilateral and hexahedral elements. Although optimal quadrature rules and
interpolation points have been discovered in one dimension, namely the LG and LGL points, the extension of those rules
through a tensor-product formalism in the construction of efficient and accurate SBP operators on quadrilateral elements
may not necessarily produce the most efficient operators. This is primarily due to the additional symmetries and degrees
of freedom that arise in dimensions greater than one which can be used to find more efficient and accurate cubature rules
and hence SBP operators. We are concerned with the existence of truly multidimensional SBP operators on quadrilateral
elements that can be used to construct SBP-Ω, SBP-Γ, and SBP-diag(E) families of operators. It is therefore worthwhile
to understand the symmetry groups that exist in the quadrilateral element, as they will be used to construct the node sets
for numerical optimization. We will consider the canonical quadrilateral reference element shown in Figure 2.

For the quadrilateral element, there exist four primary symmetry groups [27], with three additional auxiliary
symmetry groups representing the restriction of the primary symmetry groups onto each face. The auxiliary symmetry
groups are required to enforce the resultant SBP operator to belong to the SBP-Γ, and SBP-diag(E) families. The
properties of each of these symmetry groups and cubature rules are contained in Table 2; they are also shown visually in
Figure 3. The area of the reference quadrilateral is A = 4, which is used to normalize the cubature weights so that they
sum to unity. Additionally, each symmetry group is associated with a single cubature weight.
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(1,1)(-1,1)

(-1,-1) (1,-1)

Fig. 2 Canonical quadrilateral reference element.

Table 2 Properties of the symmetry groups of a quadrilateral.

Symmetry Group Number of Nodes Node Position Parameters # Node Position Parameters # Cubature Weight Parameters
s1 1 (0,0) 0 1
s41 4 (α,0) 1 1
s42 4 (α,α) 1 1
s81 8 (α, β) 2 1
s82 8 (α,0) 1 1
s43 4 (0,0) 0 1
s44 4 (0,0) 0 1

The search for cubature rules on the reference element, similar to the approach taken in [27], reduces to finding
a set of points and weights which exactly integrates the tensor-product of an orthonormal basis of polynomials
Φi j = φi(x) ⊗ φ j(y) of degree q, where i and j represent the degree of the polynomial such that i + j ≤ q. By forming a
linear combination of each of the symmetry groups, where each group except the s1, s82, s43, and s44 groups have infinite
multiplicity in the set of symmetry group decompositions, one can search for possible cubature rules by imposing the
accuracy requirements of a degree q cubature rule. Knowing a priori if a certain number of points or a set of symmetry
groups will form a valid cubature rule in order to construct an SBP operator is not obvious; thus, various numbers of
nodes and symmetry group decompositions must be experimented with in order to find a valid cubature rule.

As an example, a valid cubature rule for an SBP-Γ family operator may involve the following linear combination of
symmetry groups: S = s1 + s41 + s42 + s82. This set contains a total of 17 points, 3 free node location parameters, and 4
free weight parameters. The inclusion of the auxiliary symmetry group s82 is necessary in order to enforce a symmetric
set of nodes to exist on the boundary of the element. One can also utilize the s43 and s44 groups; however, due to their
unitary multiplicity, each group can only be included once. It would be desirable to include the s41 group if we wish
to find an SBP-diag(E) family operator which utilizes LGL facet cubature points, since the collocation of the volume
nodes with the corners would be necessary by definition. Regardless, in general, the inclusion of both the s43 and s44
groups is necessary, as the s82 group does not include the mid-edges or the corners.

The selection of the specific symmetry group decomposition is largely arbitrary, as long as the decomposition
contains specific restrictions that satisfy the properties of the specific SBP family one is trying to generate. The algorithm
utilized tests all symmetry group decompositions that satisfy the properties of the SBP family selected and also contain
the desired number of nodes selected by the user.
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(0,0)

(a) s1 group.

(α,0)

(0,α)

(−α,0)

(0,−α)

(b) s41 group.

(α,α)(−α,α)

(−α,−α) (α,−α)

(c) s42 group.

(α,β)(−α,β)

(α,−β)(−α,−β)

(β,α)

(β,−α)

(−β,α)

(−β,−α)

(d) s81 group.
(α,1)(−α,1)

(α,−1)(−α,−1)

(1,α)

(1,−α)

(−1,α)

(−1,−α)

(e) s82 auxiliary group.

(1,0)

(0,1)

(−1,0)

(0,−1)

(f) s43 auxiliary group.

(1,1)(−1,1)

(−1,−1) (1,−1)

(g) s44 auxiliary group.

Fig. 3 Symmetry groups of a quadrilateral including the auxiliary symmetry groups
s82, s43, and s44.

V. Summation-by-Parts Operator Accuracy Conditions
In addition to the symmetry groups chosen when constructing a multidimensional SBP operator, various conditions

must be enforced to ensure that the operator has specific characteristics. These include the accuracy conditions of the
cubature rule that the point set is associated with. The second condition is the degree of the SBP derivative operator,
which must be exact for the set of degree p monomials restricted onto the point set pk . The third condition is the degree
of the projection operator Rj , which must extrapolate the solution to the facet cubature points exactly for monomials of
degree r ≥ p. Together, these enforce the necessary accuracy conditions for a multidimensional SBP operator. For
the studies presented in this paper, the facet cubature points will always be chosen as the degree p LG nodes, as they
provide the most accurate quadrature with the minimum number of nodes. However, the choice of facet cubature points
is arbitrary and various other points can be selected which may have preferential characteristics considered in this study.

A. Cubature Accuracy Conditions
The cubature accuracy conditions require that the cubature be of degree q, where q ≥ 2p − 1 is necessary and

sufficient for a degree p SBP operator [17]. Since the diagonal-norm matrix H is associated with the underlying cubature
rule, the accuracy equations that the cubature rule with n nodes must satisfy are

n∑
j=1

Hj , jPk(ξj, ηj) =

∫
Ω

PkdΩ ∀k ∈ {1,2, . . . ,n∗q}, (3)

where n∗q =
(q+d

d

)
, and d is the dimension. This ensures that the resultant SBP operator possesses at least a degree

2p − 1 cubature rule.

B. Derivative Operator Dξ Accuracy Conditions
Similarly, accuracy conditions can be imposed for the derivative operator Dξ . The derivative operators in the other

directions can be formed through a simple matrix permutation. Given that the derivative is a pointwise evaluation, we
consider the Vandermonde matrix V which contains the restriction of the set of monomials onto the solution points
S
Ω̂
= {(ξi, ηi)}

n
i=1. The accuracy equations for a degree p SBP derivative operator can then be imposed in the ξ direction
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as

DξV = Vξ , (4)

H−1QξV = Vξ , (Dξ = H−1Qξ )
QξV = HVξ , (5)

(Sξ +
1
2

Eξ )V = HVξ , (Qξ = Sξ + 1
2 Eξ )

SξV = HVξ −
1
2

EξV, (6)

where V is of size n by n∗p , and Sξ is the skew-symmetric component of Qξ . By the skew-symmetry of Sξ , there are a
total of nSξ =

n(n−1)
2 undetermined parameters in Sξ . These accuracy equations for the SBP derivative operator ensure

that it is at least degree p.

C. Projection Operator Rj Accuracy Conditions
In order to ensure that the matrix operators can be decomposed into the associated bilinear forms present in the

integration-by-parts formula, the projection operator Rj must satisfy specific accuracy constraints. For a quadrilateral,
there are four distinct projection operators; however, because the node set is symmetric, the projection operator from the
volume nodes to one facet and the projection operator of the volume nodes to another facet is a simple permutation of
the columns of the operator. That is, if a projection operator is constructed on a reference facet denoted R1, and a matrix
P is constructed which contains the permutation of the ordered node set in its columns, where P(:,1) = 1 : n, then the
other projection operators can be obtained as

Rj = R1(:,P(:, j)), j = 2,3,4.

Consider the volume Vandermonde matrix V
Ω̂
which contains the restriction of the set of monomials onto the volume

solution points, and the facet Vandermonde matrix VΓ̂ which contains the restriction of the set of monomials onto the
facet cubature points of a single reference facet for the canonical element. The accuracy equations are then imposed as

R1V
Ω̂
= VΓ̂, (7)

resulting in a set of linear equations to solve for the unknowns in R. In general, there are a total of n × n f variables in R1
which must be solved for, where n is the total number of volume nodes, and n f is the total number of facet cubature
points on a single facet. It is possible to exploit the symmetry of the operator to reduce the number of unknowns present
in the equations, and such simplifications are used in the solution procedure described below.

VI. Procedure for Constructing Symbolic Summation-by-Parts Operators
In order to construct a degree p SBP operator on a given node set, the following procedure is performed:

1) Select the desired number of volume nodes n and decompose the nodes into potential symmetry orbits S = {Si}ki=1.
2) For each symmetry group decomposition in S, solve the cubature accuracy equations in Eq. (3) to obtain a

degree q ≥ 2p − 1 cubature rule with positive weights, that may or may not contain free parameters in the node
positions and weights ωi . Define H as H = diag(ωi).

3) Define the projection operator Rj by solving the associated projection operator accuracy equations in Eq. (7) to
obtain a projection operator that can exactly interpolate and extrapolate a polynomial of degree r ≥ p. In this
study, the degree r is chosen such that r = p.

4) Define the directional surface integral Eξ using Rj and the associated decomposition given as Eξ =∑n
Γ̂j

j=1 RT
j BjNξ jRj .

5) Solve the set of linear derivative accuracy equations in Eq. (6) for the independent parameters in Sξ .
6) Construct the associated derivative operator as Dξ = H−1Qξ , where Qξ = Sξ + 1

2 Eξ .
7) Optimize the m remaining free parameters for a specific objective J(x), where x ∈ Rm, subject to specific

constraints.
8) Construct the SBP operators in the remaining coordinate directions using the appropriate nodal permutations.
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The above procedure is general in that it can be applied to SBP operators constructed in arbitrary dimensions and on
arbitrary canonical reference elements such as triangles, quadrilaterals, tetrahedra, pyramids, prisms, and other unique
polytopes.

VII. Numerical Optimization
Following the steps outlined above to construct a symbolic SBP operator, free parameters may remain which can

serve as design variables in the numerical optimization of an SBP operator with respect to a specific objective function.
This section will outline the design variables, objective functions, constraints, and the optimization strategy.

A. Design Variables
Suppose we decompose n points into a linear combination of symmetry groups S, which may form a cubature rule.

This decomposition will be composed of np free node position parameters and nw free cubature weight parameters.
There are two methodologies for constructing and numerically optimizing an SBP operator:

1) Directly construct a degree q cubature rule by solving the nonlinear least-squares problem resulting from Eq. (3)
for the symmetry group decomposition S and use the corresponding weights and nodal positions to solve Eq. (6)
and Eq. (7).

2) Using the symmetry group decomposition S, solve Eqs. (3), (6) and (7), where the node positions and cubature
weights may be free after satisfying the necessary accuracy conditions.

The first approach, similar to the methodologies in [27, 35], completely determines the cubature rule node positions
and weights. Therefore, after numerically solving Eq. (3), the only free parameters that can serve as design variables in
numerical optimization are those that remained undetermined in Sξ and Rj . The second approach does not use a fully
determined cubature rule in constructing the SBP operator, but rather uses the free parameters in the cubature rule after
satisfying the degree conditions as the design variables, in addition to the free parameters that remained undetermined in
Sξ and Rj . The second approach is more general; however, the former approach is utilized in this paper as a preliminary
investigation as we can efficiently construct a wide variety of SBP operators for various degrees while being confident
that we are using a locally optimal cubature node set with a minimum norm of the cubature truncation error coefficients.
However, due to the multi-modal and nonlinear nature of the cubature rule optimization problem, there is no guarantee
that we have constructed a cubature rule that will have a globally optimal minimum norm of the cubature truncation
error coefficients, or that this specific node set is optimal for the SBP operator optimization objective function.

B. Objective Functions
Various objective functions that influence computational efficiency can be used in the numerical optimization of an

SBP operator. By computational efficiency we mean the ability to achieve a certain solution or functional error in a
given amount of computational time. Properties affecting this include: the leading truncation error terms of the cubature
rule and the SBP derivative operator, conditioning of the node set, the spectral radius of the derivative operator and
equation specific system matrices, and dispersion and dissipation properties.

1. Norm of the Cubature Leading Truncation Error Coefficient
The cubature leading truncation error coefficient is the sum of the dominant error terms in the local Taylor expansion

of the underlying SBP cubature rule. These error terms result when we apply a degree q cubature rule to a higher degree
monomial for which the cubature rule is not exact. Additionally, we can take a linear combination of several higher
degree error terms to minimize the first few truncation error terms. The cubature leading truncation error term and the
objective function are defined as follows

ek ,H(i) =
n∑
j=1

Hj , jPk(ξj, ηj) −

∫
Ω

Pk(ξj, ηj), ∀k ∈ {n∗p + 1,n∗p + 2, . . . ,n∗i }, (8)

EH,m =

p+m∑
j=p+1

| |eH( j)| |, m ≥ 1, (9)

where | |·| | is the standard L2 norm. As the cubature rule is fully determined from the nonlinear least-squares optimization
procedure, its parameters are fully determined prior to optimizing the SBP operator (as described in the first approach
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given above). For a given orbit decomposition, we select a cubature rule with the smallest norm of the cubature
truncation error coefficients and subsequently construct the SBP operator on this node set.

2. Norm of the Derivative Operator Dξ Leading Truncation Error Coefficient
The derivative operator leading truncation error coefficient is the sum of the dominant error terms in the local Taylor

expansion of the SBP derivative operator. These error terms result in a similar manner to the error terms that arise in the
cubature rule. We can similarly take a linear combination of several higher degree error terms to minimize the first few
truncation error terms as done in [20]. The derivative leading truncation error term and the objective function in the ξ
direction are defined as follows

ek ,Dξ (i) =
����DξV:,k − Vξ :,k

����
H, ∀k ∈ {n∗p + 1,n∗p + 2, . . . ,n∗i }, (10)

EDξ ,m =

p+m∑
j=p+1

| |eDξ ( j)| |, m ≥ 1, (11)

where | |·| |H is the H-norm. Large magnitudes in the leading truncation error coefficient terms can have a negative effect
in the asymptotic and pre-asymptotic convergence behaviour of the derivative operator, thereby decreasing its overall
efficiency. Thus, it is desirable to minimize these terms in order to obtain a certain error threshold on a coarser mesh
which will correspond to a more efficient operator.

3. Volume Node Vandermonde Condition Number
The volume node Vandermonde condition number is related to the interpolation accuracy of the point set and the

ability to numerically compute the inverse of the volume node Vandermonde matrix. In the construction of the derivative
operator Dξ , and the projection operators Rj , we require the term V−1

Ω̂
. If our point set produces a Vandermonde matrix

that has a high condition number and is therefore nearly singular, then an accurate numerical computation of the inverse
will not be possible to machine precision. Demanding that our point set produce a low condition number will ensure that
an accurate derivative and projection operator can be computed. The condition number of the volume Vandermonde
matrix is represented as

CV
Ω̂
= cond(V

Ω̂
). (12)

It is noted that the procedure in this paper selects a fully determined node set prior to the SBP operator numerical
optimization procedure. For this reason, the condition number cannot be optimized and is merely used as a check to
ensure that the selected cubature rule can produce an SBP operator that will not suffer from unwanted numerical issues.

4. Frobenius Norm
The Frobenius normof the derivative operator provides an upper bound on its spectral radius such that ρ(Dξ ) ≤ ||Dξ | |F .

The Frobenius norm of the derivative operator in the ξ direction is represented as

NDξ = | |Dξ | |F . (13)

One should expect that as the Frobenius norm increases, the spectral radius will also increase. Additionally, because the
Frobenius norm is a convex function, it is simpler to optimize in comparison with the discontinuous behaviour of the
spectral radius definition.

5. Spectral Radius
For linear conservation laws, after discretizing in space using the SBP derivative operator and applying the SATs, it

is possible to write the resulting equations as

du
dt
= R = Au + f, (14)

where R is the discrete residual, A is the Jacobian of the discrete residual, and f is a vector containing the SAT boundary
conditions. For explicit time integration methods, the spectral radius of A, denoted as ρ(A), provides an upper bound on
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the maximum allowable time step for stability. That is

∆t ≤
C
ρ(A)

, (15)

where C is a constant representing the stability region of the particular time integration method. Therefore, by
minimizing the spectral radius of A, a larger stable time step can be taken which can lead to a more computationally
efficient simulation - at least up to the point that the system becomes accuracy limited. Both the spectral radius of A and
the spectral radius of the derivative operator Dξ can be used as objective functions. These are represented as

SDξ = ρ(Dξ ), and (16)
SA = ρ(A). (17)

As A is the Jacobian for the entire discretization of the domain and is problem dependent, a surrogate matrix is
utilized which represents the characteristic behaviour of the eigenvalues for the entire system matrix. The surrogate
matrix for a single element on a periodic domain is defined as the derivative operator with the addition of a term
representing an upwind numerical flux

A = H−1(Qξ + RT
1 B1N1R1), (18)

= Dξ + H−1RT
1 B1N1R1. (19)

For the purposes of this investigation, the spectral radii of both Dξ and A are recorded but not optimized. They serve as
markers for when the operators experience numerical instability. In fact, it is found that the operators constructed with
larger spectral radii require smaller time steps for stability, as expected.

6. Composite Objective Function
Various competing objective functions have been defined above that have nonlinear dependence on one another. In

order to obtain an efficient operator that considers each of the objective functions, a composite objective function can be
defined as follows:

J = χ1EH + χ2EDξ + χ3CV + χ4NDξ + χ5SDξ , (20)∑
j

χj = 1, 0 ≤ χj ≤ 1 ∀ j . (21)

By selecting various values of χ, subject to the above conditions, a Pareto front can be generated in which various
multidimensional SBP operators will form an optimal front relative to the objective functions used. This provides a
family of operators that can be selected depending on which competing objectives are deemed more important than
others for a specific application. The operators optimized in this investigation only use a single objective function so a
Pareto front is not generated; this may be investigated in a future work.

C. Constraints
In addition to an objective function, we also require constraints to be imposed during the optimization to ensure the

solution is a valid multidimensional SBP operator. The first of these constraints is that the cubature rule has positive
weights; this is necessary to define a discrete norm for a diagonal-norm SBP operator. The second constraint is that the
node positions are interior to the element. Although a valid SBP operator can be constructed with points exterior to
the element, it is not a simple task to apply boundary conditions and therefore such solutions are not included in the
multidimensional SBP operator optimization feasible region. Together these constraints are stated as:

Hj , j ≥ 0, for j = 1,2, . . . ,n, and
|ξi | ≤ 1, |ηi | ≤ 1, ∀ξi, ηi ∈ S

Ω̂
= {(ξi, ηi)}

n
i=1.

These constraints are not explicitly enforced in the numerical optimization of the SBP operators since a fully determined
cubature rule is found in a separate nonlinear least-squares optimization routine prior to the optimization of the SBP
operators. Instead, during the selection process of a valid cubature rule, these constraints are verified and are therefore
satisfied automatically throughout the optimization of the SBP operator.
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D. Optimization Strategy and Algorithms
Now that the objective functions and constraints have been established, the nonlinear numerical optimization

problem is given as

arg min
x

J(x)

subject to
Hj , j ≥ 0, for j = 1,2, . . . ,n, and
|ξi | ≤ 1, |ηi | ≤ 1, ∀ξi, ηi ∈ S

Ω̂
= {(ξi, ηi)}

n
i=1.

Due to the nonlinear nature of the optimization problem and the multi-modal nature of the design space, we utilize
MATLAB’s Global Optimization package with the Sequential-Quadratic-Programming (SQP) method to optimize
the design variables x, subject to the constraints. Within the Global Optimization package we utilize the MultiStart
optimization routine which generates random start points within the bounds of the constraints and distributes each point
for parallel optimization using a local SQP solver. As a result of the variety of operators, parameters, and objective
functions, the following naming convention is adopted to distinguish each optimized operator:

Family[n, p,q,r]_J_i

Family The family of the SBP operator i.e. SBP-Ω, SBP-Γ, and SBP-diag(E),
n the number of nodes in the discretization,
p the degree of the SBP derivative operator,
q the degree of the SBP cubature rule,
r the degree of the SBP projection operator,
J the objective function used in the optimization,
i a unique cubature identifier for the operator.

VIII. Nonlinear Least-Squares Optimization of Cubature Rules
The process of selecting a valid node set to construct the SBP operator on is performed by solving a nonlinear

least-squares optimization problem using an unconstrained Levenberg-Marquardt algorithm. Given k symmetry group
decompositions, an iterative procedure is performed which attempts to minimize the squared error of the cubature
approximation to the exact integration of a tensor-product of an orthonormal polynomial basis. Explicitly, given a
symmetry group decomposition with m symmetry orbits containing m weights ω = {ω1, . . . ,ωm} and m sets of node
parameters (α, β) = {(α, β)1, . . . , (α, β)m}:

For each {Si}ki=1 symmetry group decomposition
arg min

x
J(x),

where x = {ω, (α, β)}

J(x) =
∑
i, j

(
n∑
l=1

ωm(l)Φi j(xl, yl) −
∫
Ω̂

Φi jdΩ̂

)2

,∀i + j ≤ q,

Φi j = φi ⊗ φ j .

This procedure is adopted from the optimization procedures performed in [27, 35] with modifications added to account
for enforcement of the auxiliary groups required when considering the SBP-Γ and SBP-diag(E) families. Algorithm 1
was performed for cubature rules of degree q ≥ 2p − 1 for p = 1,2,3,4 and for the SBP-Ω, SBP-Γ, and SBP-diag(E)
families. Table 3 contains the cubature rules that were successfully produced and were used in the subsequent construction
of the multidimensional SBP operators on quadrilateral elements. Table 4 contains the properties of the cubature rules
for the standard tensor-product LG and LGL nodes.

A. SBP-Ω Cubature Rules
The SBP-Ω cubature rules numerically derived and listed in Table 3 use fewer nodes for the same or lower degree

LG and LGL tensor-product cubature rules listed in Table 4 and also possess a lower norm of the cubature truncation
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Table 3 Properties of the valid cubature rules constructed usingAlgorithm 1, potentially
new cubature rules are indicated with a star [∗].

SBP-Ω

Desired q Obtained q
Orbit decomposition

Nodes # of Node
Parameters

# of
Weights EH,1 CV

Ω̂

Unique
Identifier Reference

s1 s41 s42 s81 s42 s43 s82

2
3 0 1 0 0 0 0 0 4 1 1 0.4619 1.0000 1 [27]
3 0 0 1 0 0 0 0 4 1 1 0.5028 1.0000 2 [27]

4 5 0 1 1 0 0 0 0 8 2 2 0.1402 2.1082 1 [27]
4 5 1 0 0 1 0 0 0 9 2 2 0.0954 1.7889 2 [∗]
4 5 1 1 1 0 0 0 0 9 2 3 0.0934 2.4857 3 [∗]

6

7 0 1 2 0 0 0 0 12 3 3 0.0358 1.4807 1 [27]
7 0 2 1 0 0 0 0 12 3 3 0.0662 2.7371 2 [27]
7 1 1 0 1 0 0 0 13 3 3 0.0332 1.7936 3 [∗]
7 1 1 2 0 0 0 0 13 3 4 0.0251 1.8726 4 [∗]
7 1 2 1 0 0 0 0 13 3 4 0.0681 2.7905 5 [∗]
7 0 0 2 1 0 0 0 16 4 3 0.0322 2.0730 6 [∗]
7 0 1 1 1 0 0 0 16 4 3 0.0358 1.0472 7 [∗]
7 0 2 0 1 0 0 0 16 4 3 0.0302 2.7262 8 [∗]
7 0 2 2 0 0 0 0 16 4 4 0.0249 1.6649 9 [∗]
7 0 3 1 0 0 0 0 16 4 4 0.0664 2.8210 10 [∗]

8

9 0 1 2 1 0 0 0 20 5 4 0.0072 3.2601 1 [27]
9 0 2 1 1 0 0 0 20 5 4 0.0071 3.2578 2 [27]
9 1 0 1 2 0 0 0 21 5 4 0.0081 2.4786 3 [∗]
9 1 1 2 1 0 0 0 21 5 5 0.0055 2.6830 4 [∗]
9 1 2 1 1 0 0 0 21 5 5 0.0063 2.8185 5 [∗]
9 0 0 2 2 0 0 0 24 6 4 0.0072 2.3301 6 [∗]
9 0 1 1 2 0 0 0 24 6 4 0.0031 2.9528 7 [∗]
9 0 1 3 1 0 0 0 24 6 5 0.0012 1.9556 8 [∗]
9 0 2 0 2 0 0 0 24 6 4 9.2628e−4 2.6009 9 [∗]
9 0 2 2 1 0 0 0 24 6 5 0.0038 1.8777 10 [∗]
9 0 3 1 1 0 0 0 24 6 5 0.0060 4.6228 11 [∗]

SBP-Γ

2

1 0 0 0 0 0 0 1 8 1 1 0.9429 1.2248 1 [∗]
3 1 0 0 0 0 0 1 9 1 2 0.4776 1.3021 2 [∗]
3 0 0 1 0 0 0 1 12 2 2 0.0962 1.2025 3 [∗]
3 0 1 0 0 0 0 1 12 2 2 0.0813 1.3343 4 [∗]

4
3 1 0 0 0 1 0 1 13 1 3 0.8060 4.2571 1 [∗]
5 0 0 1 0 1 0 1 16 2 3 0.1321 2.8457 2 [∗]

6
5 0 0 1 0 1 0 2 20 3 3 0.1324 3.3927 1 [∗]
5 1 0 1 0 0 0 2 21 3 4 0.0742 3.5577 2 [∗]
7 0 1 1 0 0 0 2 24 4 4 0.0325 4.1800 3 [∗]

8

7 0 1 1 0 1 0 2 28 4 5 0.0363 5.2769 1 [∗]
7 1 0 0 1 1 0 2 29 4 5 0.0273 8.9790 2 [∗]
7 1 1 1 0 1 0 2 29 4 6 0.0387 6.7280 3 [∗]
9 0 0 2 1 1 0 2 36 6 6 0.0081 4.2306 4 [∗]
9 0 1 1 1 1 0 2 36 6 6 0.0044 4.0799 5 [∗]

SBP-diag(E)

2

1 0 0 0 0 0 0 1 8 0 1 1.8856 1.4142 1 [∗]
3 1 0 0 0 0 0 1 9 0 1 0.4929 1.3333 2 [∗]
3 0 0 1 0 0 0 1 12 1 2 0.0663 1.2301 3 [∗]
3 0 1 0 0 0 0 1 12 1 2 0.1082 1.2354 4 [∗]

4 5 0 0 1 0 1 0 1 16 1 3 0.1321 2.8177 1 [∗]

6
5 0 0 1 0 0 0 2 20 1 3 0.1528 4.0360 1 [∗]
7 0 1 1 0 0 0 2 24 3 4 0.0321 3.7759 2 [∗]

8
7 0 1 1 0 1 0 2 28 2 5 0.0363 5.9730 1 [∗]
9 0 0 2 1 1 0 2 36 4 6 0.0088 5.9730 2 [∗]
9 0 1 1 1 1 0 2 36 4 6 0.0045 4.9682 3 [∗]
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Algorithm 1 Algorithm used for the nonlinear optimization of cubature rules.

1) Select the desired SBP operator and populate the required auxiliary symmetry orbit decompositions, use the
remaining nodes to populate the primary symmetry groups

2) Seed an initial random guess for the node position parameters
3) For each Φi j , evaluate bk =

∫
Ω̂
Φi jdΩ̂

4) Construct a matrix A ∈ Rk×m which contains the evaluation of the cubature weighted sum of the tensor-product
orthonormal polynomials at each node n (columns) in symmetry orbit m and for each degree in each row i.e.
Akm =

∑
m

∑
n∈mΦk(xn, yn)

5) Solve for the weights by solving the linear system Aω = b
6) Evaluate the objective function J(x) = ‖r‖,where r = Aω − b
7) Perform a Levenberg-Marquardt solution update
8) Repeat steps 3-7 to convergence i.e. ‖r‖ ≤ ε , where ε is a tolerance representing machine precision
9) Eliminate any rules which are exterior to the canonical domain and contain negative weights
10) Eliminate the cubature rules with a Vandermonde condition number that is not on the order of unity, and of the

cubature rules remaining, choose the rule with the smallest norm of the cubature truncation error coefficient.

Table 4 Properties of the tensor-product cubature rules.

Tensor-Product Legendre-Gauss
q Nodes EH,1 cond(V

Ω̂
)

3 4 0.5028 1.0000
5 9 0.1293 1.4512
7 16 0.0328 1.6796
9 25 0.0083 2.1434
Tensor-Product Legendre-Gauss-Lobatto
1 4 3.7712 1.7320
3 9 0.7542 3.5098
5 16 0.1724 3.9679
7 25 0.0410 5.2749

error coefficients. It has been identified previously that accurate cubature rules seem to produce SBP operators with
preferential error properties [18]. This appears to indicate that these new cubature rules have the potential to have better
solution accuracy when compared to tensor-product operators. The relative conditioning of the volume Vandermonde
matrix also maintains a value on the order of unity, and is approximately the same magnitude of the tensor-product
nodal distributions. This indicates that the node set is well behaved for spatial discretization.

B. SBP-Γ Cubature Rules
The SBP-Γ cubature rules use more nodes in general than the tensor-product LG and LGL operators of equal degree.

As we demand the exact integration of a 2p polynomial on the facets of the quadrilateral, we force a minimum of
4(p+ 1) nodes on the boundaries so that we can maintain the sparse interpolation properties of the Rj projection operator.
However, despite the fact that we must restrict these nodes onto the facets of the quadrilateral, the use of additional
nodes also allows us to maintain a relatively low cubature truncation error. For all degree q cubature rules, we were
able to produce a cubature rule with a smaller norm of the cubature truncation error coefficients than the LGL nodal
distribution. In some cases the norm of the cubature truncation error coefficients is also better than the LG nodes for
the equivalent cubature degree. The condition number of the volume Vandermonde matrix was also maintained on
the order of unity, indicating that the cubature rules constructed have preferential interpolation properties. However,
it is emphasized again that these improvements were obtained by increasing the number of nodes compared to the
tensor-product cubature rules.
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Table 5 Properties of the SBP operators constructed on tensor-product cubature rules.

Tensor-Product Legendre-Gauss
p Name n q r NNZDξ EDξ ,1 EDξ ,2 NDξ SDξ SA

1 LG[4,1,3,1]_()_1 4 3 1 8 5.3333 5.8962 2.4498 0 2.5811
2 LG[9,2,5,2]_()_1 9 5 2 24 3.8400 4.4800 8.2158 1.3939e−5 6.1590
3 LG[16,3,7,3]_()_1 16 7 3 64 2.0898 2.5347 18.4390 3.8494e−4 11.1957
4 LG[25,4,9,4]_()_1 25 9 4 120 0.9675 1.2067 34.0347 0.0032 17.6813

Tensor-Product Legendre-Gauss-Lobatto
1 LGL[4,1,1,-]_()_1 4 1 - 8 16.0000 27.7128 1.4142 0 1.3660
2 LGL[9,2,3,-]_()_1 9 3 - 24 8.0000 9.9778 6.3639 1.0607e−5 4.2311
3 LGL[16,3,5,-]_()_1 16 5 - 56 3.4133 4.1400 15.4919 3.2652e−4 8.5512
4 LGL[25,4,7,-]_()_1 25 7 - 110 1.3061 1.5661 29.5237 0.0022 14.3182

C. SBP-diag(E) Cubature Rules
Similar to the SBP-Γ cubature rules, the SBP-diag(E) cubature rules use more nodes than tensor-product LG and

LGL nodes of equal degree. Since we wish to obtain a diagonal-E operator (i.e. collocation with the facet cubature
points) and the exact integration of a degree 2p polynomial on the facets of the quadrilateral, we force a minimum of
4(p + 1) nodes on the boundaries. The benefit is the construction of SBP operators that have very efficient interelement
coupling in comparison to the SBP-Γ and SBP-Ω operators. The obtained cubature rules show a smaller norm of the
cubature truncation error coefficients compared to the LGL tensor-product nodes for equivalent cubature degrees. For
some cases, the norm of the cubature truncation error coefficients was also lower than the tensor-product LG cubature
rule; however, the significant increase in the number of required nodes may outweigh the added efficiency from the
collocation with the facet cubature points and the lower norm of the cubature truncation error coefficients.

Despite the clear improvements in the cubature rules obtained over the tensor-product cubature rules, it is necessary
to perform numerical experiments testing the constructed SBP operators on the non-tensor-product nodal distributions
in comparison to the tensor-product nodal distributions due to many competing factors in the discretization of partial
differential equations. Figures showing the nodal distributions for some of the operators in Table 3 are given in the
Appendix.

IX. Numerical Optimization of Summation-by-Parts Free Parameters
Once the cubature rules were obtained, the procedure outlined in Section VI was followed to produce symbolic

SBP operators with free parameters in the undetermined matrix operators. As H and the associated node set S
Ω̂
is fully

determined from the cubature rule, the possible free parameters which can be optimized result from constructing Rj and
Sξ . The properties of the SBP operators constructed on the LG and LGL tensor-product nodal distributions are given
in Table 5

The free parameters that remained after constructing the SBP operators in the numerically optimized cubature rules
in Table 3 were optimized for the norm of the first two leading truncation error terms in the derivative operator Dξ . That
is, the nonlinear optimization problem given in Section VII.D was solved with the outlined procedure with

J(x) = EDξ ,2.

It has been found that this objective function also correlates with the spectral radius of the derivative operator [9];
therefore, operators that are optimized for reduced derivative truncation error tend to also reduce the spectral radius of
the derivative matrix operator (and by extension, the system matrix A) [20, 21].
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Table 6 Properties of the optimized SBP operators constructed on the numerically
optimized SBP-Ω cubature nodes. No. FP indicates the number of free parameters in the
respective matrix operator.

SBP-Ω
p Name n q r No. FP Rj No. FP Sξ No. FP NNZDξ EDξ ,1 EDξ ,2 NDξ SDξ SA

1
SBP-Ω[4,1,3,1]_EDξ ,2_1 4 3 1 1 0 1 16 5.3333 5.8962 2.4495 0 2.5812
SBP-Ω[4,1,3,1]_EDξ ,2_2 4 3 1 1 0 1 12 2.3094 5.0869 2.4495 1.4443e−6 3.4845

2
SBP-Ω[8,2,5,2]_EDξ ,2_1 8 5 2 3 1 4 60 2.6808 3.9212 7.1701 1.9210e−4 7.1006
SBP-Ω[9,2,5,2]_EDξ ,2_2 9 5 2 4 3 7 80 1.6111 2.5800 8.1813 0.3570 8.5606
SBP-Ω[9,2,5,2]_EDξ ,2_3 9 5 2 5 3 8 78 1.4962 1.9319 8.2628 0.0020 9.9123

3

SBP-Ω[12,3,7,3]_EDξ ,2_1 12 7 3 4 1 5 140 1.4494 2.0099 14.1146 0.0015 12.6223
SBP-Ω[12,3,7,3]_EDξ ,2_2 12 7 3 4 1 5 136 1.3494 2.2646 12.6247 0.0029 13.0938
SBP-Ω[13,3,7,3]_EDξ ,2_3 13 7 3 6 3 9 164 0.6530 1.4826 18.3339 0.0025 59.2771
SBP-Ω[13,3,7,3]_EDξ ,2_4 13 7 3 6 3 9 164 0.8837 1.5883 14.8087 0.0013 13.2734
SBP-Ω[13,3,7,3]_EDξ ,2_5 13 7 3 6 3 9 160 1.2833 2.2646 18.5231 0.0148 1.2279e+2
SBP-Ω[16,3,7,3]_EDξ ,2_6 16 7 3 12 15 27 256 1.6406 2.0043 90.0243 1.9689 5.2490e+3
SBP-Ω[16,3,7,3]_EDξ ,2_7 16 7 3 12 15 27 254 0.5478 1.0389 3.4009e+2 1.9183 8.5449e+3
SBP-Ω[16,3,7,3]_EDξ ,2_8 16 7 3 12 15 27 252 0.6587 1.0432 24.0229 1.6218 41.1286
SBP-Ω[16,3,7,3]_EDξ ,2_9 16 7 3 12 15 27 252 0.4976 1.0435 31.0858 1.1415 35.0998
SBP-Ω[16,3,7,3]_EDξ ,2_10 16 7 3 12 15 27 250 1.3505 1.7917 4.3756e+2 2.8564 7.7349e+2

4

SBP-Ω[20,4,9,4]_EDξ ,2_1 20 9 4 12 10 22 396 0.4353 0.7314 27.7650 0.9854 21.6165
SBP-Ω[20,4,9,4]_EDξ ,2_2 20 9 4 13 10 23 396 0.4220 0.6632 27.3160 0.4615 23.6000
SBP-Ω[21,4,9,4]_EDξ ,2_3 21 9 4 14 15 29 440 0.3078 0.6097 32.7052 3.4758 29.2618
SBP-Ω[21,4,9,4]_EDξ ,2_4 21 9 4 15 15 30 438 0.3290 0.4886 28.8801 0.9142 25.5389
SBP-Ω[21,4,9,4]_EDξ ,2_5 21 9 4 16 15 31 436 0.3475 0.5532 32.2869 1.2681 80.7609
SBP-Ω[24,4,9,4]_EDξ ,2_6 24 9 4 21 35 57 576 0.0432 0.5517 6.9451e+2 8.6601 4.6538e+3
SBP-Ω[24,4,9,4]_EDξ ,2_7 24 9 4 22 36 58 574 0.0136 0.2902 35.0379 1.7221 31.0888
SBP-Ω[24,4,9,4]_EDξ ,2_8 24 9 4 22 36 58 574 0.0040 0.2736 40.8412 1.9018 27.8969
SBP-Ω[24,4,9,4]_EDξ ,2_9 24 9 4 23 36 59 572 0.0033 0.2127 32.2738 1.3747 26.9012
SBP-Ω[24,4,9,4]_EDξ ,2_10 24 9 4 23 36 59 572 0.0069 0.2857 43.5747 1.4145 43.5037
SBP-Ω[24,4,9,4]_EDξ ,2_11 24 9 4 24 36 60 570 0.0305 0.3704 46.9708 2.5023 1.8260e+2

A. Norm of the First Two Leading Derivative Truncation Error Coefficients

1. SBP-Ω Operators
Using the numerically optimized SBP-Ω cubature nodes, SBP-Ω operators were constructed and the free parameters

were optimized to minimize the norm of the first two truncation error coefficients of the derivative operator. The
properties of the operators are contained in Table 6. It is clear that the optimization procedure was successful in that we
were able to obtain SBP-Ω operators with smaller derivative truncation terms than the LG and LGL tensor-product
nodal distributions. One would expect that this would improve the accuracy of the derivative approximation. However,
because our nodal distribution is fully coupled, our derivative matrix operator is dense, in contrast to the sparse diagonal
structure of the tensor-product nodal distributions. As a result, it has a greater number of number of nonzeros (NNZ)
than a tensor-product operator. This increases the computational cost of these operators and is measured by the NNZDξ

column. Also, due to the fully coupled structure of these operators we also have a dense projection operator Rj , which
increases the cost of the quadrature facet integration. Additionally, we see that the spectral radius of the derivative
operator and the associated system matrix is significantly larger than the tensor-product nodal distributions. As a result,
it may be beneficial to optimize the free parameters in the SBP operator with a composite objective function which
includes a linear combination of the norm of the derivative truncation error coefficients and the spectral radius of the
derivative matrix or an associated system matrix; this will be considered in a future work.

2. SBP-Γ Operators
Using the same objective function, the SBP-Γ operators were constructed on the numerically optimized SBP-Γ

node sets. The properties of these operators are contained in Table 7. The purpose of constructing SBP-Γ operators
is to take advantage of having more degrees of freedom than the SBP-diag(E) family to obtain a potentially more
accurate SBP operator while also maintaining a relatively sparse projection operator. These two competing factors play
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Table 7 Properties of the optimized SBP operators constructed on the numerically
optimized SBP-Γ cubature nodes. No. FP indicates the number of free parameters in the
respective matrix operator.

SBP-Γ
p Name n q r No. FP Rj No. FP Sξ No. FP NNZDξ EDξ ,1 EDξ ,2 NDξ SDξ SA

1

SBP-Γ[8,1,1,1]_EDξ ,2_1 8 1 1 0 10 10 60 1.0379e+4 1.7877e+4 2.1951e+4 1.5521e+4 4.6563e+4
SBP-Γ[9,1,3,1]_EDξ ,2_2 9 3 1 0 15 15 76 1.0166 3.1713 7.0570 1.8916 6.7387
SBP-Γ[12,1,3,1]_EDξ ,2_3 12 3 1 0 36 36 136 0.2710 0.4161 1.1235e+2 55.2531 54.7096
SBP-Γ[12,1,3,1]_EDξ ,2_4 12 3 1 0 36 36 136 0.7445 1.1951 1.4899e+2 88.0558 87.6834

2
SBP-Γ[13,2,3,2]_EDξ ,2_1 13 3 2 0 21 21 162 80.9947 96.1832 5.4355e+2 2.6686e+2 8.8821e+2
SBP-Γ[16,2,5,2]_EDξ ,2_2 16 5 2 0 45 45 246 0.6668 1.7636 4.5172e+2 2.8131e+2 2.8122e+2

3
SBP-Γ[20,3,5,3]_EDξ ,2_1 20 5 3 0 45 45 388 2.5572 15.2474 1.4524e+3 9.5545e+2 2.9572e+3
SBP-Γ[21,3,5,3]_EDξ ,2_2 21 7 3 0 55 55 428 0.9848 1.6416 4.7173e+2 2.5636e+2 2.5594e+2
SBP-Γ[24,3,7,3]_EDξ ,2_3 24 7 3 0 91 91 560 0.5251 0.9808 77.2015 9.7649 43.8297

4

SBP-Γ[28,4,7,4]_EDξ ,2_1 28 7 4 0 78 78 766 3.5013 4.0035 2.7269e+2 25.6449 3.0099e+2
SBP-Γ[29,4,7,4]_EDξ ,2_2 29 7 4 0 91 91 822 0.8780 1.2011 6.9590e+3 4.9114e+3 4.9112e+3
SBP-Γ[29,4,7,4]_EDξ ,2_3 29 7 4 0 91 91 822 1.0954 1.3163 1.5785e+2 18.5491 1.7278e+2
SBP-Γ[36,4,9,4]_EDξ ,2_4 36 9 4 0 210 210 1270 0.1178 0.3201 7.5029e+3 8.9749e+2 1.8398e+3
SBP-Γ[36,4,9,4]_EDξ ,2_5 36 9 4 0 210 210 1270 0.3475 0.5532 32.2869 1.2681 80.7609

critical roles in the overall efficiency of the discretization. In order to allow for exact integration of the facet cubature
points, significantly more nodes are required as compared to the tensor-product LG and LGL nodes. This introduces a
large number of free parameters in Sξ which can be optimized. For all cases, no free parameters were available for
optimization in Rj . This is because, for two dimensions, there are always p + 1 unknowns in Rj for the SBP-Γ family,
and since we demand p + 1 nodes are present on the facet, this results in p + 1 independent equations. This system has a
unique solution and is therefore fully determined.

For all degrees, our optimization procedure was able to obtain SBP-Γ operators with significantly lower norms of
the first and second derivative truncation error coefficients. However, this was largely at the expense of either coupling
all of the nodes together, using more nodes than the tensor-product nodal distributions, and also having a significantly
larger spectral radius for Dξ and A. Furthermore, it appears that the large order of magnitude increase in the spectral
radius of some of the derived operators may render them impractical for explicit time integration methods. It is not clear
if this will play a significant impact for implicit time integration methods; however, the dense structure and the spectral
radius could negatively affect overall conditioning of the linearized system.

3. SBP-diag(E) Operators
Using the same procedure as the previous two families of SBP operators, the operators in the SBP-diag(E) family

were optimized on their corresponding node sets. The results of this optimization are contained in Table 8. The
SBP-diag(E) family provides the most efficient computation of the SAT coupling at the facet cubature points. This
increase in efficiency results from sacrificing the ability to move the nodes restricted onto the facets for interpolation.
That is, 4(p + 1) nodes are fully determined and their only degree of freedom which contributes to the overall properties
of the operator is the cubature weight associated with the symmetry group. It is therefore expected that these operators
will have inferior accuracy properties to the SBP-Ω and SBP-Γ families. As we also require collocation with the
4(p + 1) quadrature points, the SBP-diag(E) operators tend to have more nodes than the equivalent degree LG and
LGL tensor-product SBP operators. As a result, there exist many free parameters in Sξ that can be optimized for our
specific objective function. Similar to the SBP-Γ operators, these free parameters are strictly from Sξ , since Rj is fully
determined from the facet collocation.

For each degree, we were again able to significantly reduce the norm of the derivative truncation error terms in
comparison to the SBP operators constructed on tensor-product LG and LGL nodal distributions. However, this was
again at the expense of coupling the degrees of freedom, therefore significantly increasing the number of nonzeros
in Dξ , and increasing the spectral radius of Dξ and the associated system matrix A. An SBP operator constructed
on the LGL nodes represents a tensor-product equivalent of the SBP-diag(E) family. The LGL nodes are however
incapable of obtaining a degree 2p facet cubature and therefore do not integrate the SAT penalty terms exactly. Having
exact integration of these terms is important in constructing entropy-stable schemes. Therefore, the novel SBP-diag(E)
operators derived here which have q ≥ 2p volume cubature degree and q = 2p facet cubature degree can have potential
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Table 8 Properties of the optimized SBP operators constructed on the numerically
optimized SBP-diag(E) cubature nodes. No. FP indicates the number of free parameters
in the respective matrix operator.

SBP-diag(E)
p Name n q r No. FP Rj No. FP Sξ No. FP NNZDξ EDξ ,1 EDξ ,2 NDξ SDξ SA

1

SBP-diag(E)[8,1,1,1]_EDξ ,2_1 8 1 1 0 10 10 60 6.5993 8.8695 3.6793 1.2501 2.7075
SBP-diag(E)[9,1,3,1]_EDξ ,2_2 9 3 1 0 15 15 76 0.8238 3.1940 7.0330 1.8350 5.7095
SBP-diag(E)[12,1,3,1]_EDξ ,2_3 12 3 1 0 36 36 136 0.1524 0.2751 79.3877 38.7521 38.4958
SBP-diag(E)[12,1,3,1]_EDξ ,2_4 12 3 1 0 36 36 136 0.2242 0.4014 2.1102e+2 1.1103e+2 1.1102e+2

2 SBP-diag(E)[16,2,5,2]_EDξ ,2_1 16 5 2 0 45 45 246 0.6758 1.7653 7.7633e+2 4.8413e+2 4.8408e+2

3
SBP-diag(E)[20,3,5,3]_EDξ ,2_1 20 5 3 0 45 45 388 2.8709 3.3750 19.7998 2.7762 13.3585
SBP-diag(E)[24,3,7,3]_EDξ ,2_2 24 7 3 0 91 91 560 0.7295 1.2187 1.0709e+2 13.9612 78.5137

4
SBP-diag(E)[28,4,7,4]_EDξ ,2_2 28 7 4 0 78 78 766 1.6427 1.7547 86.2597 6.2836 52.2252
SBP-diag(E)[36,4,9,4]_EDξ ,2_4 36 9 4 0 210 210 1270 0.1055 0.3291 62.2726 13.2130 30.9556
SBP-diag(E)[36,4,9,4]_EDξ ,2_5 36 9 4 0 210 210 1270 0.0678 0.1253 97.1795 23.2367 45.5275

benefits within this context.

X. Numerical Experiments
The numerical experiments presented aim to compare the relative accuracy and efficiency of these newly developed

non-tensor-product SBP operators on quadrilateral elements in comparison to equal degree tensor-product SBP operators
on LG and LGL nodes. These experiments investigate the relative accuracy and efficiency for both linear (linear
advection) and nonlinear (Euler equations) equations for canonical test problems. The experiments were performed on
both uniform and curvilinear meshes but only the latter results are presented as the general trends were the same.

One advantage of the tensor-product structure is that it significantly increases the sparsity of the derivative operator.
In addition, because of the tensor-product structure, the operator exactly differentiates the complete tensor-product
monomial basis and therefore the leading monomial truncation error terms that are not high degree along the ξ or η
directions, i.e. the derivative of the terms of the form

ξiη j, ∀i + j < p + 1, i, j < p + 1,

are automatically exact. As an example, a p = 1 non-tensor-product operator will exactly differentiate the monomials
1, ξ, and η. However, an equal degree tensor-product operator will in addition exactly differentiate the “bilinear”
monomial ξη. The sparsity structure of the LG and LGL nodes is not fully taken advantage in the residual computations;
therefore, the cost comparison given here may be introducing unnecessary multiplications with 0 entries in the derivative
matrix.

A. Two-Dimensional Linear Advection Equation: Gaussian Pulse

1. Problem Definition
For the linear case, we consider the advection of a compactly supported (to machine precision) Gaussian pulse on a

curvilinear periodic domain. The linear advection equation in strong conservation form is given as

∂U

∂t
+ ax

∂U

∂x
+ ay

∂U

∂y
= 0, (22)

with the initial condition,

U(x, y,0) = exp
(
−(x − µ)2

2σ2

)
exp

(
−(y − µ)2

2σ2

)
,

µ = 0.5,
σ = 0.1.

The wave speeds in the x and y directions are ax = 0.5 and ay = 0.5, respectively. Furthermore, we consider a periodic
domain defined on Ω ∈ [0 1] × [0 1] and the time domain t ∈ [0 2]. Fig. 5 contains the coarsest grid used in this
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Fig. 4 The second coarsest curvilinear grid level used on the domain [0 1] × [0 1] with
20 × 20 total elements.

numerical simulation. The associated curvilinear transformation is given as

x = ξ + α cos(π(ξ − 0.5)) cos(π(η − 0.5)),
y = η + α cos(π(ξ − 0.5)) cos(π(η − 0.5)),

where α = 1/8. After discretizing the spatial derivatives with SBP operators, the semi-discrete system is integrated
in time using 4th-order Runge-Kutta time integration with a constant CFL of 0.01. Additionally, we utilize upwind
numerical fluxes in the computation of the SAT coupling terms to add sufficient dissipation to stabilize the problem and
to obtain optimal orders of convergence.

For the convergence results, five grid levels were constructed resulting in a total of [100 400 900 1600 2500]
elements on each level. At each grid level, the norm of the solution error and the CPU time in seconds was recorded, as
presented in the following sections.

2. Solution Error Results
The comparison of the H-norm (| | · | |H) of the solution error for SBP operators constructed on tensor-product LG and

LGL nodes and the new non-tensor-product SBP operators on quadrilateral elements are contained in Fig. 5. Candidate
SBP operators that require prohibitively small time steps with the 4th-order Runge-Kutta method are not shown. For the
p = 1 case, the SBP-Ω[4,1,3,1]_EDξ ,2_1 operator is exactly the same as the LG p = 1 operator, therefore producing
identical error properties. Most of the SBP-diag(E) operators for each degree can achieve better solution error than the
LGL operator, which indicates that they may be beneficial in entropy-stable schemes where facet cubature collocation is
desirable for improved efficiency. The SBP-Ω operators achieve roughly the same error as the LG operators for all
degrees with fewer volume nodes; however, this is at the expense of fully coupling the node set. It may be beneficial
to increase the number of volume nodes of the SBP-Ω operators to equal that of the LG nodes for a given degree
to see if the additional degrees of freedom allow for the construction of a more accurate SBP operator. The SBP-Γ
operators generally have accuracy between the SBP-Ω and SBP-diag(E) operators as expected. For the p = 1 case, the
large number of nodes of the SBP-diag(E) and SBP-Γ allow enough freedom to achieve operators with better accuracy
than both the LG and LGL nodes. Design order of convergence is generally achieved, and the experimental rates of
convergence for each of these operators is given in Table 9. Exceptions to this are cases of the SBP-Γ and SBP-diag(E)
operators which appear to underconverge for each order. For the p = 4 cases, the experimental orders of convergence
fall slightly below the expected value of p + 1 = 5, which may be due to the influence of time integration error as the
spatial error is relatively small on the finer meshes.
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Table 9 Experimental rates of convergence of the SBP operators tested for the Gaussian
pulse problem on the periodic curvilinear grid.

p = 1 p = 2
Name Rate Name Rate

LG p = 1 2.4767 LG p = 2 3.3631
LGL p = 1 1.2270 LGL p = 2 3.3565

SBP-Ω[4,1,3,1]_EDξ ,2_1 2.6686 SBP-Ω[8,2,5,2]_EDξ ,2_1 3.0844
SBP-Ω[4,1,3,1]_EDξ ,2_2 2.7515 SBP-Ω[9,2,5,2]_EDξ ,2_2 3.2117
SBP-Γ[9,1,3,1]_EDξ ,2_2 2.4024 SBP-Ω[9,2,5,2]_EDξ ,2_3 3.1970
SBP-Γ[12,1,3,1]_EDξ ,2_3 1.6455 SBP-Γ[16,2,5,2]_EDξ ,2_2 2.9921

SBP-diag(E)[8,1,1,1]_EDξ ,2_1 1.6918 SBP-diag(E)[16,2,5,2]_EDξ ,2_1 2.9926
SBP-diag(E)[9,1,3,1]_EDξ ,2_2 2.4887 – –
SBP-diag(E)[12,1,3,1]_EDξ ,2_3 1.5913 – –

p = 3 p = 4
Name Rate Name Rate

LG p = 3 4.1240 LG p = 4 4.0834
LGL p = 3 4.1448 LGL p = 4 4.7547

SBP-Ω[12,3,7,3]_EDξ ,2_1 4.0148 SBP-Ω[20,4,9,4]_EDξ ,2_1 4.6777
SBP-Ω[12,3,7,3]_EDξ ,2_2 4.0256 SBP-Ω[20,4,9,4]_EDξ ,2_2 4.6990
SBP-Ω[13,3,7,3]_EDξ ,2_4 4.3068 SBP-Ω[21,4,9,4]_EDξ ,2_3 4.6551
SBP-Ω[16,3,7,3]_EDξ ,2_8 3.7176 SBP-Ω[21,4,9,4]_EDξ ,2_4 4.6456
SBP-Ω[16,3,7,3]_EDξ ,2_9 3.4044 SBP-Ω[24,4,9,4]_EDξ ,2_7 4.6054
SBP-Γ[21,3,5,3]_EDξ ,2_2 4.5966 SBP-Ω[24,4,9,4]_EDξ ,2_8 4.7272
SBP-Γ[24,3,7,3]_EDξ ,2_3 2.8462 SBP-Ω[24,4,9,4]_EDξ ,2_9 3.5819

SBP-diag(E)[20,3,5,3]_EDξ ,2_1 4.0759 SBP-Ω[24,4,9,4]_EDξ ,2_10 5.2262
SBP-diag(E)[24,3,7,3]_EDξ ,2_2 3.6320 SBP-Γ[36,4,9,4]_EDξ ,2_5 4.1362

– – SBP-diag(E)[28,4,7,4]_EDξ ,2_1 4.9955
– – SBP-diag(E)[36,4,9,4]_EDξ ,2_2 4.24855
– – SBP-diag(E)[36,4,9,4]_EDξ ,2_3 3.9885

3. Efficiency Results
For the p = 1 case, the SBP-Γ and SBP-diag(E) operators have significantly lower error than the LG and LGL nodes

due to greater degrees of freedom admitted by their larger number of nodes, which improves their relative efficiency.
Also, the efficiency of the SAT computations for these operators aids their efficiency compared to the LG operator. For
the p = 2 case, the SBP-Ω[8,2,5,2]_EDξ ,2_9 operator asymptotes to the same efficiency curve as the LG p = 2 operator;
this is likely due to their similar error properties and quantity of volume nodes. The SBP-Γ and SBP-diag(E) operators
show improved efficiency over the LGL p = 2 operator, again this is likely due to their efficient SAT computations and
their lower relative solution error compared to the LGL operator. For the p = 3 case, the SBP-Ω[13,3,7,3]_EDξ ,2_4
operator offers the best computational efficiency, which can be attributed to its low solution error and the few number
of nodes in the node set. For the p = 4 case, the LG p = 4 and SBP-Ω[24,4,9,4]_EDξ ,2_9 operators offer the best
computational efficiency on quadrilateral elements for this specific degree.
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Fig. 5 Solution error for the linear advection equation with an initial Gaussian pulse for
degrees p = 1,2,3 and 4.
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Fig. 6 Efficiency for the linear advection equation with an initial Gaussian pulse for
degrees p = 1,2,3 and 4.
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B. Two-Dimensional Compressible Euler Equations: Isentropic Vortex

1. Problem Definition
For the nonlinear case, we consider the advection of an isentropic vortex as shown in [33]. The compressible Euler

equations in two dimensions are given as

∂ρ

∂t
+

2∑
j=1

∂ρuj

∂xj
= 0

∂ρui

∂t
+

2∑
j=1

∂(ρuiuj + pδi j)
∂xj

= 0, i = 1, . . . ,2

∂E
∂t
+

2∑
j=1

∂(uj(E + p))
∂xj

= 0,

(23)

where ρ is density, u = (u1,u2) is the vector of velocities, and E is the total energy per unit mass. The pressure p is
given by the equation of state

p = (γ − 1)
(
E −

1
2
ρ

2∑
j=1

u2
j

)
.

The analytical solution of the isentropic vortex is given as

ρ(x, t) =

(
1 −

1
2 (γ − 1)(βe1−r(x,t)2 )2

8γπ2

) 1
γ−1

, p = ργ

u(x, t) = 1 −
β

2π
e1−r(x,t)2 (y − y0), v(x, t) =

β

2π
e1−r(x,t)2 (x − x0 − t),

where u and v are the x and y velocities, and r(x, t) =
√
(x − x0 − t)2 + (y − y0)2. For this case, we follow [33] and take

x0 = 5, y0 = 5 and β = 5. Furthermore, we consider a periodic domain defined on Ω ∈ [0 20] × [−5 5] and the time
domain t ∈ [0 5]. Fig. 7 contains the coarsest grid used in this numerical simulation. The curvilinear transformation
used in [33] is used and is given as

x = ξ + α cos
(
π

20
(ξ − 10)

)
cos

(
3π
10
η

)
,

y = η + α sin
(
π

5
(x − 10)

)
cos

(
π

10
η

)
,

where α = 1/8. After discretizing the spatial derivatives with SBP operators, the semi-discrete system is integrated
in time using 4th-order Runge-Kutta time integration with a constant CFL of 0.01. Additionally, we utilize upwind
numerical fluxes in the computation of the SAT coupling terms.

For the convergence results, five grid levels were constructed resulting in a total of [2500 10000 22500 40000 62500]
elements on each level. At each grid level, the norm of the solution error and the CPU time in seconds was recorded, as
presented in the following sections.

2. Solution Error Results
The solution error results for the nonlinear case are shown in Fig. 8 and follow a similar trend to the linear case,

with the SBP-Ω family generally performing the best except in the p = 1 case. The SBP-Ω[13,3,7,3]_EDξ ,2_4 and the
SBP-Ω[24,4,9,4]_EDξ ,2_8 operators show improved accuracy over the LG p = 3 and p = 4 operators, while also using 3
and 1 nodes less than the p = 3 and p = 4 LG nodal distributions, respectively. The design order for the tested operators
was generally achieved for each order and each operator and the experimental rates of convergence for each of the tested
operators is contained in Table 10.
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Fig. 7 The coarsest curvilinear grid level used on the domain [0 20] × [−5 5] with 50× 50
total elements.

Table 10 Experimental rates of convergence of the SBP operators tested for the isen-
tropic vortex problem on the periodic curvilinear grid.

p = 1 p = 2
Name Rate Name Rate

LG p = 1 2.5822 LG p = 2 3.1311
LGL p = 1 1.8265 LGL p = 2 2.8243

SBP-Ω[4,1,3,1]_EDξ ,2_1 2.5822 SBP-Ω[8,2,5,2]_EDξ ,2_1 3.1002
SBP-Ω[4,1,3,1]_EDξ ,2_2 2.5743 SBP-Ω[9,2,5,2]_EDξ ,2_2 3.0832
SBP-Γ[12,1,3,1]_EDξ ,2_3 2.1625 SBP-Ω[9,2,5,2]_EDξ ,2_3 3.1367

SBP-diag(E)[8,1,1,1]_EDξ ,2_1 1.8516 – –
SBP-diag(E)[9,1,3,1]_EDξ ,2_2 2.2392 – –

p = 3 p = 4
Name Rate Name Rate

LG p = 3 4.1861 LG p = 4 5.3035
LGL p = 3 3.9344 LGL p = 4 4.7852

SBP-Ω[12,3,7,3]_EDξ ,2_1 4.1417 SBP-Ω[20,4,9,4]_EDξ ,2_1 5.2564
SBP-Ω[12,3,7,3]_EDξ ,2_2 4.1294 SBP-Ω[20,4,9,4]_EDξ ,2_2 5.3123
SBP-Ω[13,3,7,3]_EDξ ,2_4 4.1866 SBP-Ω[21,4,9,4]_EDξ ,2_3 5.3650
SBP-Ω[16,3,7,3]_EDξ ,2_4 4.1871 SBP-Ω[21,4,9,4]_EDξ ,2_4 5.3522
SBP-Ω[13,3,7,3]_EDξ ,2_5 4.4603 SBP-Ω[21,4,9,4]_EDξ ,2_5 5.1797
SBP-Ω[16,3,7,3]_EDξ ,2_8 3.8505 SBP-Ω[24,4,9,4]_EDξ ,2_7 4.9404
SBP-Ω[16,3,7,3]_EDξ ,2_9 3.7758 SBP-Ω[24,4,9,4]_EDξ ,2_10 5.0162
SBP-Γ[24,3,7,3]_EDξ ,2_3 4.1719 SBP-Ω[24,4,9,4]_EDξ ,2_8 5.2061

SBP-diag(E)[20,3,5,3]_EDξ ,2_1 3.8439 SBP-Ω[24,4,9,4]_EDξ ,2_9 5.0849
– – SBP-Γ[29,4,7,4]_EDξ ,2_3 5.6376
– – SBP-diag(E)[28,4,7,4]_EDξ ,2_1 4.7752
– – SBP-diag(E)[36,4,9,4]_EDξ ,2_2 5.2472
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Fig. 8 Solution error for the isentropic vortex problem for the compressible Euler equa-
tions for degrees p = 1,2,3 and 4.
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Fig. 9 Efficiency for the isentropic vortex problem for the compressible Euler equations
for degrees p = 1,2,3 and 4.
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3. Efficiency Results
The efficiency results for this test case are contained in Fig. 9. We find that the SBP-Ω operators derived generally

perform the most efficiently relative to the other operators tested in this study. In particular, the p = 3 and p = 4 cases
show clear improvements in efficiency. The SBP-Γ and SBP-diag(E) operators show some efficiency advantage over the
tensor-product LGL operators. In general, the efficiency of the operators for this particular test problem follow similar
trends to the efficiency of the operators tested for the Gaussian pulse initial condition for the linear advection equation.

XI. Conclusions
We have derived novel non-tensor-product cubature rules for quadrilateral elements which are amenable to

constructing three basic families of multidimensional SBP operators: SBP-Ω, SBP-Γ, and SBP-diag(E). The cubature
rules were constructed using a nonlinear least-squares optimization procedure, and the cubature rule with the smallest
norm of the cubature truncation error term was selected for each symmetry orbit decomposition. Using these point
sets, SBP operators for each of the above families was symbolically constructed with free parameters in the matrix
operators Sξ and Rj . The free parameters were optimized using a nonlinear optimization procedure which minimized
the norm of the first two leading derivative truncation error terms. The result of this procedure was the construction of
SBP operators with generally lower norms of the derivative and cubature truncation error coefficients compared to
traditional tensor-product nodal distributions employed for SBP operators on quadrilateral elements. This indicates
possible preferential accuracy properties that may be exploited to produce a more efficient operator. However, the
complete coupling of the element degrees of freedom poses a potential obstacle to improving computational cost.

These novel operators were compared to SBP operators constructed on traditional LG and LGL tensor-product nodal
distributions for the linear advection and compressible Euler equations on two-dimensional uniform and curvilinear
meshes. The two test cases considered were an initial Gaussian pulse and the isentropic vortex problem, respectively.
The solution error and efficiency for each of the operators was presented and compared.

The construction of the novel cubature rules and the results of the experimental tests performed with the optimized
non-tensor-product SBP operators produce the following conclusions:

1) Non-tensor-product cubature rules can be constructed with fewer nodes and smaller norms of the cubature
truncation error coefficients compared to tensor-product cubature rules on quadrilateral elements.

2) Multdimensional SBP operators constructed on the non-tensor-product nodes and optimized for minimizing the
norm of the first two derivative truncation error coefficients showed a smaller norm of the first two derivative
truncation error coefficients than SBP operators constructed on tensor-product LG and LGL nodes.

3) Design order was obtained for a majority of the new non-tensor-product SBP operators.
4) The SBP-Ω operators generally have equal or better accuracy than the LG and LGL tensor-product SBP operators

while using fewer nodes for equal degree operators for both test cases on uniform and curvilinear grids.
5) For all degrees, the SBP-Γ and SBP-diag(E) operators have preferential efficiency properties compared to LGL

tensor-product operators for both test cases; this may have potential benefits in entropy-stable schemes.
6) The optimized non-tensor-product operators had spectral radii of 1 to 2 orders larger than the tensor-product

operators which indicates they have a more restrictive time step.
Many of the new operators have spectral radii an order of magnitude or more greater than the tensor-product and

non-tensor-product operators which completed the tests. The large spectral radii imposed a time step that was too
restrictive and therefore computationally costly; therefore, these cases were not presented in the numerical results.
Future work will consider a composite objective function which includes weighted linear combinations of both the norm
of the derivative truncation error terms and the spectral radius of derivative operator; or some variation of the latter
objective such as the Frobenius norm.
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Nodal Distributions of Numerically Optimized Cubature Rules
Following are the numerically optimized cubature nodal distributions for each SBP family and SBP operator degrees.

The volume nodes are indicated with ◦ and the facet cubature points are indicated with �. Only the operators derived on
nodal distributions which resulted in successful solutions are shown here.

SBP-Ω

SBP-Ω[4,1,3,1]_EDξ ,2_1 SBP-Ω[4,1,3,1]_EDξ ,2_2

p = 1 SBP-Ω non-tensor-product nodal distibutions.

SBP-Ω[8,2,5,2]_EDξ ,2_1 SBP-Ω[9,2,5,2]_EDξ ,2_2 SBP-Ω[9,2,5,2]_EDξ ,2_3

p = 2 SBP-Ω non-tensor-product nodal distibutions.
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SBP-Ω[12,3,7,3]_EDξ ,2_1 SBP-Ω[12,3,7,3]_EDξ ,2_2 SBP-Ω[13,3,7,3]_EDξ ,2_4

SBP-Ω[16,3,7,3]_EDξ ,2_8 SBP-Ω[16,3,7,3]_EDξ ,2_9

p = 3 SBP-Ω non-tensor-product nodal distibutions.

SBP-Ω[20,4,9,4]_EDξ ,2_1 SBP-Ω[20,4,9,4]_EDξ ,2_2 SBP-Ω[21,4,9,4]_EDξ ,2_3

SBP-Ω[21,4,9,4]_EDξ ,2_4 SBP-Ω[24,4,9,4]_EDξ ,2_7 SBP-Ω[24,4,9,4]_EDξ ,2_8

SBP-Ω[24,4,9,4]_EDξ ,2_9 SBP-Ω[24,4,9,4]_EDξ ,2_10

p = 4 SBP-Ω non-tensor-product nodal distibutions.
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SBP-Γ

SBP-Γ[9,1,3,1]_EDξ ,2_2 SBP-Γ[12,1,3,1]_EDξ ,2_3

p = 1 SBP-Γ non-tensor-product nodal distibutions.

SBP-Γ[16,2,5,2]_EDξ ,2_2

p = 2 SBP-Γ non-tensor-product nodal distibutions.

SBP-Γ[21,3,5,3]_EDξ ,2_2 SBP-Γ[24,3,7,3]_EDξ ,2_3

p = 3 SBP-Γ non-tensor-product nodal distibutions.

SBP-Γ[36,4,9,4]_EDξ ,2_5

p = 4 SBP-Γ non-tensor-product nodal distibutions.
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SBP-diag(E)

SBP-diag(E)[8,1,1,1]_EDξ ,2_1 SBP-diag(E)[9,1,3,1]_EDξ ,2_2 SBP-diag(E)[12,1,3,1]_EDξ ,2_3

p = 1 SBP-diag(E)non-tensor-product nodal distibutions.

SBP-diag(E)[16,2,5,2]_EDξ ,2_1

p = 2 SBP-diag(E) non-tensor-product nodal distibutions.

SBP-diag(E)[20,3,5,3]_EDξ ,2_1 SBP-diag(E)[24,3,7,3]_EDξ ,2_2

p = 3 SBP-diag(E) non-tensor-product nodal distibutions.

SBP-diag(E)[28,4,7,4]_EDξ ,2_1 SBP-diag(E)[36,4,9,4]_EDξ ,2_2 SBP-diag(E)[36,4,9,4]_EDξ ,2_3

p = 4 SBP-diag(E) non-tensor-product nodal distibutions.
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