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The numerical behavior of two implicit time-marching methods is investigated in solving
two-dimensional unsteady compressible flows. The two methods are the second-order mul-
tistep backward differencing formula and the fourth-order multistage explicit first stage,
single-diagonal coefficient, diagonally implicit Runge-Kutta scheme. A Newton-Krylov
method is used to solve the nonlinear problem arising from the implicit temporal dis-
cretization. The methods are studied for two test cases: laminar flow over a cylinder and
turbulent flow over a NACA0012 airfoil with a blunt trailing edge. Parameter studies
show that the subiteration termination criterion plays a major role in the efficiency of
time-marching methods. Efficiency studies show that when only modest global accuracy is
needed, the second-order method is preferred. The fourth-order method is more efficient
when high accuracy is required. The Newton-Krylov method is seen to be an efficient
choice for implicit time-accurate computations.

I. Introduction

Researchers are attempting to tackle problems which were considered too ambitious just a few years ago.
Multidisciplinary optimization, computational aeroacoustics in the time-domain, and large eddy and direct
numerical simulations of turbulence are examples of what is being attempted today. Improvements to the
efficiency of these solutions are necessary due to the complexity of such problems. There are several ways
to achieve this goal. Exploiting state-of-the-art hardware is an obvious option. There are other examples:
grid-adaptation techniques, parallelization of a serial code, and improved algorithms.

Higher-order methods in space and time can improve the efficiency of the algorithms by reducing grid
density or time step requirements. For time-marching methods, this permits the use of larger time-steps,
hence fewer steps are needed for a specific time interval. Note that this comes at the expense of increased
computational cost per time-step. There is a trade-off between these two factors.

Time-marching methods can be categorized into two types: explicit and implicit. Explicit methods are
easy to implement, and their computational cost per time step is low. Their stability limitation is a major
difficulty, especially for stiff problems. Much bigger time-steps can be used with unconditionally stable
implicit schemes, although this is achieved at the expense of increased computational cost per time-step.
Higher-order implicit temporal discretization has been shown by many authors to be an effective way of
improving efficiency.1–12

Implicit multistep methods such as Backward Differencing Formulas (BDF’s) can be used to achieve
higher orders of accuracy by using more values from previous time steps. Dahlquist13 showed that the order
of an A-stable linear multistep method cannot exceed two (Dahlquist’s second barrier). Implicit Runge-Kutta
methods offer high-accurate stable solutions to stiff problems. Following the pioneering work of Butcher14

on implicit and semi-implicit multistage Runge-Kutta methods, Alexander15 introduced Diagonally Implicit
Runge-Kutta (DIRK) methods, and showed the benefits of this type of time-marching method. Kennedy and
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Carpenter16 investigated the explicit first stage, single-diagonal coefficient, diagonally implicit Runge-Kutta
(ESDIRK) schemes of various orders, studying their stability and accuracy.

The other obstacles against achieving higher accuracy in time are additional linearization and factoriza-
tion errors. These simplifications are both typically second-order accurate. In order to increase the accuracy
of the method, we not only need a more accurate approximation for the time derivative, but we also have
to find a way to eliminate linearization and factorization errors. The subiteration or dual-time-stepping
approach deals with this problem by solving a nonlinear problem at each step, avoiding linearization and
factorization errors. Pulliam1 proposed a subiterative approach to enhance time accuracy. Venkateswaran
and Merkle2 introduced a locally preconditioned dual-time-stepping algorithm for unsteady flows.

Many researchers have used these approaches to model unsteady flows. Rumsey et al.3 studied the
numerical efficiency of two types of subiterations. De Rango and Zingg4 examined the efficiency of the
subiterative approach applied to laminar and turbulent flows. Later, Bijl et al.5 applied BDF and ESDIRK
schemes of various orders to laminar flows. Jothiprasad et al.6 studied the efficiency of ESDIRK methods
using three different nonlinear solvers. Isono and Zingg7 showed that the combination of higher-order time-
marching methods and a Newton-Krylov solver is much more efficient that an approximate factorization
solver, and concluded that a Newton-Krylov method can be very effective in modelling unsteady flows. Bijl
and Carpenter8 and Bijl9 showed that the combination of the standard nonlinear multigrid method and a
Newton-Krylov method can lead to considerable speed-up. Yang and Mavriplis10 investigated the efficiency
of several higher-order time marching methods for aeroelastic applications. Rumpfkeil and Zingg11, 12 used
a time-accurate algorithm to drive an optimization method for the optimal control of unsteady flows.

The present research extends the work of De Rango and Zingg4 and Isono and Zingg7 to develop an
efficient subiterative method using the second-order BDF and fourth-order ESDIRK schemes coupled with a
Newton-Krylov method to solve laminar and turbulent flows. The objectives can be summarized as follows:

• to develop efficient time-accurate algorithms suitable for unsteady flow simulations,

• to evaluate and optimize the efficiency of each scheme by extensive parameter studies, and

• to demonstrate the efficiency of the schemes using different test cases.

The paper is organized as follows. In Sections II and III, the governing equations and spatial discretization
are reviewed. Section IV explains the different time-marching methods used. Section V focuses on the
Newton-Krylov method for solving the nonlinear system. Finally, results and conclusions are presented in
Sections VI and VII.

II. Governing Equations

The governing equations of interest are the compressible Navier-Stokes equations. Since this research
is conducted using structured grids, a curvilinear coordinate transformation is applied to map the nonuni-
form grid in physical coordinates (x, y) to an evenly-spaced rectangular grid in computational coordinates
(ξ(x, y), η(x, y)).17 Also, in flow fields with high Reynolds numbers where the flow is attached or mildly
separated, the viscous terms associated with derivatives along the body (ξ direction) are negligible. Highly
stretched grids are used to resolve the normal gradients of the flow near the surfaces, without resolving the
diffusion terms involving derivatives parallel to those surfaces. Dropping all viscous derivatives in the ξ
direction in the governing equations, the two-dimensional thin-layer Navier-Stokes equations in curvilinear
coordinates can be obtained:

∂Q̂
∂t

+
∂Ê
∂ξ

+
∂F̂
∂η

−Re−1

(

∂Ŝ
∂η

)

= 0 (1)

where Q̂ = J−1[ρ ρu ρv e]T are the conservative variables, Ê and F̂ are the convective flux vectors, Ŝ
is the viscous flux vector, and Re is Reynolds number. J is the metric Jacobian of the transformation:
J−1 = (xξyη − xηyξ). The flux vectors are given in Appendix A.

The effect of turbulence can be approximated by means of a turbulence model. This consists of calculating
an eddy viscosity term, µt, and adding it to the dynamic viscosity µ. In this research we use the one-
equation Spalart-Allmaras18 turbulence model. It has been successfully used in computing a wide range of
aerodynamic flows. Note that its accuracy has not been thoroughly validated for unsteady flows.
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III. Spatial Discretization

By spatial discretization we convert the governing equations (1) to a semi-discretized form, i.e. from a set
of nonlinear partial differential equations to a system of nonlinear ordinary differential equations (ODE’s):

dQ̂

dt
+ R̂(Q̂) = 0 (2)

OPTIMA is a two-dimensional compressible flow-solver and optimization package developed by the Uni-
versity of Toronto Institute for Aerospace Studies Computational Aerodynamics group.19, 20 It is capable
of handling complex geometries, including multi-element airfoils. OPTIMA uses second-order centered-
differencing. Second- and fourth-difference scalar artificial dissipation are used to maintain stability. The
algorithm has been well validated for steady21–24 and unsteady4, 7 flows and has been the subject of several
grid convergence studies.25, 26

IV. Time-Marching Methods

Time-marching methods convert the ODE’s produced by the spatial discretization to a system of algebraic
equations. As mentioned earlier, explicit methods fail to deal with stiffness: the time step selection has to
be based on the stability limits rather than physical time scales. Implicit A-stable methods are a much
better choice for solving stiff problems. A numerical method is A-stablea if it is stable for all ODE’s that are
inherently stable.27 An even more attractive property is L-stabilityb. An L-stable method guarantees that
large eigenvalues will be damped rapidly. There are two major types of implicit higher-order time-marching
method: multistep and multistage. In the next two subsections, we will focus on one method of each type.

A. Multistep Methods

Multistep methods achieve high accuracy by using values from previous time-steps. However, A-stable
linear multistep methods are limited to second-order, which is a significant drawback. Also, they are not
self-starting, i.e. a secondary scheme is needed to generate the required past values.

The A-stable (Figure 1(a)) second-order backward differencing scheme (BDF2) is the multistep method
of choice in this research since it offers L-stability, while depending only on two previous steps. Applying
second-order backward differencing to the discretized equations (2) gives the following equation:

Rn(Q̂n, Q̂n−1, Q̂n−2) =
3Q̂n − 4Q̂n−1 + Q̂n−2

2∆t
+ R̂(Q̂n) = 0 (3)

B. Multistage Methods

Another way to obtain higher-order accuracy is to perform multiple computations per step. The well-known
explicit Runge-Kutta methods are good examples of this family. Implicit Runge-Kutta methods are not as
commonly used as BDF methods in the computation of aerodynamic flows. Consider y′ = f(t, y); then an
implicit Runge-Kutta method with s stages can be written as

yn+1 = yn + h

s
∑

i=1

bif(tn,i, yn,i)

yn,i = yn + h

s
∑

j=1

aijf(tn,j , yn,j) ,

where h = ∆t, tn,i = tn + cih, and yn,i = y(tn,i).

aThe region of stability for A-stable methods contains the left-half-plane.
bAn A-stable method with additional property limλh→∞ σ(λh) = 0 is called L-stable28
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Figure 1. Stability diagram of different time-marching methods (in each case the exterior region is
stable). (a): BDF1 (green), BDF2 (blue), BDF3 (red), and BDF4 (black), (b): ESDIRK4

A Butcher tableau for a general Runge-Kutta scheme is in the form

ci aij

bj

where aij , bj and ci are the coefficients of the scheme.29

One way of simplifying implicit Runge-Kutta methods is to use a lower triangular aij matrix. In this case,
each stage is independent of the next stages. These methods are called semi-implicit Runge-Kutta schemes.
Consider an s-stage method for solving a system of m equations. A fully implicit Runge-Kutta scheme
requires solving an s×m system. With a semi-implicit scheme, this requirement is reduced to s-stages of m
equations each. A Butcher tableau for a four-stage semi-implicit Runge-Kutta scheme is

c1 a11 0 0 0

c2 a21 a22 0 0

c3 a31 a32 a33 0

c4 a41 a42 a43 a44

b1 b2 b3 b4

Among this family, high-order L-stable ESDIRK schemes show promising properties. Since the first stage of
the ESDIRK scheme is explicit, a method with s stages requires (s − 1) nonlinear equation solves per step.
A general s-stage ESDIRK scheme is given by the following equation:

Rn
k (Q̂n

k , . . . , Q̂n
1 , Q̂n−1)=

Q̂n
k − Q̂n−1

∆t
+

k
∑

j=1

akjR(Q̂n
j ) = 0, k = 1, . . . , s . (4)

The Butcher tableau for a four-stage ESDIRK scheme is

0 0 0 0 0

c2 a21 γ 0 0

c3 a31 a32 γ 0

1 a41 a42 a43 γ

a41 a42 a43 γ

The ci coefficients, which represent the stage in the time interval, are not used, since R(Q̂) is not time
dependent. Also, the bj coefficients are not needed, since in the ESDIRK schemes cs = 1 and bj = asj , i.e.
the stiffly accurate condition, which also guarantees L-stability for A-stable (see Figure 1(b)) methods of
this type.30 The coefficients of the 6-stage 4th-order (ESDIRK4) scheme are given in Appendix B.

4 of 15

American Institute of Aeronautics and Astronautics



V. Newton-Krylov Method

A. Newton’s Method

The fully discretized equations are in the form of Rn(Q̂n, Q̂n−1, · · · ) = 0. A subiterative method can be
used to solve this nonlinear system as a steady-state problem at each time step. We use superscript p as
the subiteration index. Since these methods are iterative, a termination criterion is needed to stop the
subiterations. The subiterations are terminated when the nonlinear residual is reduced by a specified order
of magnitude. We examine the effect of the termination criterion on the efficiency of the subiterative method
in the next section.

Applying Newton’s method to equations (3) leads to the following linear system, which must be solved
at each subiteration:

Ap∆Q̂p = −Rn(Q̂p, Q̂n−1, Q̂n−2) ,

where p is the subiteration index, and A is the Jacobian of R given by

Ap =
∂Rp

∂Q̂p
.

From equation (3), the Jacobian of the BDF2 method is:

Ap = ∇
Q̂pRn(Q̂p, Q̂n−1, Q̂n−2) =

3

2∆t
I +

∂R̂(Q̂p)

∂Q̂p
. (5)

The Jacobian for the ESDIRK4 scheme can be derived in a similar way. Consider the implicit stages

Rn
k (Q̂n

k , Qn
k−1, . . . , Q̂

n
1 , Q̂n−1)=

Q̂n
k − Q̂n−1

akk∆t
+

1

akk

k
∑

j=1

akjR̂(Q̂n
j ) = 0, k = 2, .., s .

For each stage, the Jacobian is:

Ap
k = ∇

Q̂
p

k
Rn(Q̂p

k, Q̂n
k−1, . . . , Q̂

n
1 , Q̂n−1) =

1

akk∆t
I +

∂R(Q̂p
k)

∂Q̂p
k

, k = 2, .., s . (6)

B. Solving the Linear System

The linear system is solved using the generalized minimal residual method (GMRES), a Krylov-subspace
method for non-symmetric linear systems developed by Saad and Schultz.31 A restarted version of GMRES
is used, denoted by GMRES(m), where m is the number of search directions. The restart index, m, was set
to 40. We found that restarting was not necessary for the cases studied in this research. The residual of the
linear system was reduced by one order of magnitude for laminar flows and three orders of magnitude for
turbulent flows.

The convergence of the Krylov method strongly depends on the conditioning of the system. Precondi-
tioners can be used to improve the efficiency of the GMRES algorithm by clustering the eigenvalues of the
system compared to the original system. In this research, a right-preconditioner in the form of

ApM−1M∆Qp = −Rp

is used, where M represents the preconditioner matrix.
An incomplete lower-upper factorization with a fill level k (ILU(k)) of an approximate Jacobian matrix

is used to form the preconditioner. Factorizations with higher fill levels are better approximations of the
approximate Jacobian, but they increase the computational cost and memory usage. Following Pueyo and
Zingg,22 the approximate Jacobian is formed using a combination of second- and fourth-difference dissipation:

d
(2)
l = d(2)

r + σd(4)
r , (7)

where d
(2)
l is the dissipation coefficient in the approximate Jacobian, and d

(2)
r and d

(4)
r are dissipation

coefficients on the right-hand-side. The parameter σ has an optimal value of 4 to 6. Boundary entries are
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scaled and pivoted since the boundary entries can be orders of magnitude different from the interior entries.
Following Pueyo and Zingg,22 reverse Cuthill-McKee reordering is used to improve the performance of the
preconditioner.

Since GMRES only needs matrix-vector products in the form of Apv, where v is a vector, there is no
need to form Ap, and the product can be approximated by a forward-difference approximation. For example
for the BDF2 scheme the following approximation can be used:

Apv ≈ Rn(Q̂p + ǫv, Q̂n−1, Q̂n−2) −Rn(Q̂p, Q̂n−1, Q̂n−2)

ǫ
, (8)

where ǫ =
√

ǫm / ||v||2, and ǫm = 2.2× 10−16 is the approximate value of machine zero. For more details on
the Jacobian-free approach see Knoll and Keyes.32

In steady-state simulations, a globalization phase is needed to provide a better initial iterate for Newton’s
method.32 However, in unsteady flow calculations, since the initial guess is already close to the solution,
globalization is not needed (at least for the cases studied here).

For more details on the Newton-Krylov method used see Pueyo and Zingg22 and Chisholm.33

VI. Results and Discussion

Two unsteady cases are studied: laminar flow over a cylinder, and turbulent flow over a NACA0012 airfoil
with a blunt trailing edge. In each case, the flow is unsteady and periodic. We recognize that the thin-layer
approximation introduces some error for both flows studied here, but this does not affect our conclusions
with respect to temporal accuracy and efficiency. All cases were run on a single Itanium 2 processor with a
clock speed of 1500 MHz.

In order to find the initial condition, the flow was simulated from freestream conditions using a relatively
large time step for several shedding cycles. The flow was then advanced using a very small time step until a
periodic state was reached. This solution was then stored as the initial condition for the study of accuracy
and efficiency of the time-marching methods. Note that since BDF2 scheme is not self-starting, the ESDIRK4
scheme was used to advance the first step in all cases.

To obtain a reference solution, a very small time step with the ESDIRK4 scheme is used. The reference
solution still contains spatial error due to spatial discretization, but the temporal error is negligible since
the time step is sufficiently small. This solution can be used as a reference to compute the temporal error of
different time-marching methods. The error in Cl is defined as

Clerror =

√

√

√

√

√

√

N
∑

i=1

(Cli − Cli,ref)
2

N
(9)

where N is the number of time-steps.
We define efficiency as accuracy per unit of computational effort. The subiteration termination criterion

has a significant impact on the efficiency of the algorithm. The subiterations have to be converged sufficiently;
otherwise the error at each step will be significant. On the other hand, reducing the residual too much
will lead to oversolving the system. There are two ways to control the subiterations: a fixed number of
subiterations, or a convergence tolerance. Here we use a relative convergence tolerance, which dictates how
many orders of magnitude the algorithm reduces the residual at each step/stage.

A. Laminar flow over a cylinder

Two-dimensional laminar vertex shedding from a circular cylinder is studied. The Mach number and
Reynolds number are 0.2 and 100 respectively. Under these conditions, the flow is unsteady and two-
dimensional.34 Grids with different densities were used to understand the dependencies of parameters on
grid size. The grids are O-type structured meshes. Table 1 provides the grid specifications for the three
different grids. Figures 2 and 3 show a snapshot of pressure contours and the variation of lift and drag
coefficients for the reference solution.

Accuracy verification: Numerical experiments were conducted to verify the order of accuracy of each
time-marching method. Cl error, defined by equation (9), was computed for different time-step sizes. Figure 4
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Table 1. Grid data for cylinder case

grid grid grid off-wall far-field

name size dimensions spacing distance

coarse 6363 101 × 63 4 × 10−5 20 diameters

medium 25125 201 × 125 2 × 10−5 20 diameters

fine 99849 401 × 249 1 × 10−5 20 diameters

Figure 2. Snapshot of pressure contours, flow over a cylinder
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Figure 3. Variation of lift and drag coefficients, flow over a cylinder

confirms the order of accuracy of the two methods. Note that a tight tolerance was used to achieve these
orders of accuracy. Using looser tolerances is more efficient and will be discussed later.

Efficiency of the time-marching methods: Plotting the Cl error against the required computational
time for a complete cycle for different time-step sizes will help us to quantify the efficiency of the methods
used, since it represents the relationship between accuracy and cost. Figures 5 through 9 show this relation-
ship for a range of different time-step values. For each curve, the numbers of time steps per period used
for the BDF2 scheme are 10, 20, 50, 100 and 500, respectively. The numbers of time-steps per period used
for the ESDIRK scheme are 5, 10, 20, 50 and 100, respectively. As the number of time steps per period is
increased, the error is reduced and the cost per period increased.

Figure 5 shows the effect of the subiteration termination tolerance on the efficiency of the schemes. Note
that this tolerance is relative; in other words, the subiterations are terminated when the residual of the
nonlinear problem is reduced by the factor specified. Numerical experiments show that the optimum relative
tolerance is 4 orders of residual reduction for the BDF2 scheme and 6 orders of magnitude for the ESDIRK4
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Figure 4. Accuracy diagram for BDF2 and ESDIRK4 time-marching methods, flow over a cylinder
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Figure 5. Effect of subiteration termination tolerance, flow over a cylinder

scheme. Values presented in Figure 5 are computed on the coarse grid. The results on the medium and fine
grids confirm the same optimum tolerances.

Since the initial guess at the beginning of each nonlinear step is close to the final converged solution,
the preconditioner can be updated at the beginning of each subiteration and kept frozen until the converged
solution is obtained. For the BDF2 scheme, this means updating the preconditioner at each time step. For
the ESDIRK4 scheme, however, there are two ways of doing this. One method is to update the preconditioner
at the beginning of each stage (every nonlinear problem). The other way to treat the ESDIRK4 scheme is
to keep the preconditioner for the entire time step (frozen for all stages). Note that the first term in the
ESDIRK4 Jacobian equation (6), I/(akk∆t), does not change for different stages (akk = γ is constant for
all stages). For small time steps, this term is large, and the variation of the second term is small. Therefore
the preconditioner can be stored and used for subsequent stages. However, for large time steps, the constant
term is small and the variation of ∂R(Q̂p

k)/∂Q̂p
k is significant, so it is beneficial to update the preconditioner

for each stage. Figure 6 shows the effect of freezing the preconditioner on the coarse grid for both schemes.
Figure 6(b) also compares the effect of freezing the preconditioner for the entire step compared to updating
it for each stage. Updating the preconditioner at each stage leads to a small increase in CPU time, but is a
more robust strategy. Figure 7 compares the effect of freezing the preconditioner on both schemes. Freezing
the preconditioner is beneficial for both time-marching methods.
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Figure 6. Effect of freezing the preconditioner, flow over a cylinder
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Figure 7. Comparison between BDF2 and ESDIRK4 schemes with frozen preconditioner, flow over a cylinder

Figure 8 shows the effect of the preconditioner fill level. Smaller fill levels are beneficial in terms of
memory and efficiency. Fill level 1 seems to be the best choice for both schemes.

Figures 9 shows the results for all three grids using optimal parameters. The time-marching schemes
show similar relative performance on all three grids. In each case, there is a point where both methods have
the same efficiency, i.e. the same error level and the same cost. At this point, ESDIRK4 uses a much larger
time-step. If the acceptable Cl error is higher than this level, then the BDF2 scheme is more efficient. When
a lower Cl error is needed, the ESDIRK4 scheme is the better choice.

Newton-Krylov performance: Tables 2 and 3 demonstrate the performance of the Newton-Krylov
method used with the BDF2 and ESDIRK4 schemes on the coarse grid. The data show that the average
number of subiterations per time step for BDF2 and per stage for ESDIRK4 decreases as the time step is
reduced. This occurs because the initial guess is improved. Moreover, the number of GMRES iterations per
subiteration decreases as the time step is reduced. This occurs because the diagonal term in the Jacobian
associated with the time step has a favorable effect on the conditioning of the linear system. As a result
of these two effects, the cost per time step decreases substantially as the time step is reduced. Overall, the
Newton-Krylov approach is seen to be a very efficient approach to such unsteady problems, as the cost of
solving the associated nonlinear problems is much lower than the cost of solving a steady-state problem.
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Figure 8. Effect of preconditioner fill level, flow over a cylinder
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Figure 9. Comparison between time-marching methods on three different grids, flow over a cylinder

Table 2. Newton-Krylov performance data for BDF2, flow over a cylinder

Total Total number Average Average number Average number

Number of number of of GMRES number of of GMRES of GMRES

time steps subiterations iterations subiterations iterations iterations

per period per period per period per time step per time step per subiteration

10 82 714 8.20 71.40 8.71

20 139 867 6.95 43.35 6.24

50 274 1022 5.48 20.44 3.73

100 523 1608 5.23 16.08 3.07

200 1020 2584 5.10 12.92 2.53

500 2520 5537 5.04 11.07 2.20
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Table 3. Newton-Krylov performance data for ESDIRK4, flow over a cylinder

Total Total number Average Average number Average number Average Average number

Number of number of of GMRES number of of GMRES of GMRES number of of GMRES

time steps subiterations iterations subiterations iterations iterations subiterations iterations

per period per period per period per time step per time step per subiteration per stage per stage

5 192 1874 38.40 374.80 9.76 7.68 74.96

10 359 2427 35.90 242.70 6.76 7.18 48.54

20 703 3535 35.15 176.75 5.03 7.03 35.35

50 1753 5608 35.06 112.16 3.20 7.01 22.43

100 3223 8689 32.23 86.89 2.70 6.45 17.38

Table 4. Grid data for NACA0012 case

Block jmax kmax Number

Number (ξ-direction) (η-direction) of Nodes

1 97 73 7081

2 201 73 14673

3 97 73 7081

4 97 73 7081

total - - 35916

Figure 10. Snapshot of pressure contours, flow over a NACA0012 airfoil with a blunt trailing edge

B. Turbulent flow over a NACA0012 airfoil with a blunt trailing edge

Two-dimensional subsonic turbulent flow about a NACA0012 airfoil with a blunt trailing edge is studied.
The angle of attack is 0◦, and the Mach number and Reynolds number are 0.2 and 2 million respectively.
The bluntness at trailing edge is 3% of the chord length. A C-type grid is used with an extra block for the
blunt trailing edge. The off-wall spacing is 2.5 × 10−6 chords. Table 4 is a summary of the number of grid
nodes in each block and the entire mesh. Figures 10 and 11 show a snapshot of pressure contours and the
variation of lift and drag coefficients for the reference solution respectively.

Accuracy verification: Figure 12 shows the accuracy diagram for this case. Again, both methods show
good agreement with the expected order of accuracy.

Efficiency of the time-marching methods: Figure 13 displays the efficiency of the time-marching
methods for this case. In both cases, a frozen preconditioner was used (at each stage for ESDIRK4). No
deterioration in the linear convergence was observed. This is consistent with the findings for laminar flow.
Also, a fill level of one was sufficient for both schemes.
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Figure 11. Variation of lift and drag coefficients, flow over a NACA0012 airfoil with a blunt trailing edge
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Figure 13. Comparison between time-marching methods, flow over a NACA0012 airfoil with a blunt trailing

edge

12 of 15

American Institute of Aeronautics and Astronautics



VII. Conclusions

The accuracy and efficiency of two time-marching methods, BDF2 and ESDIRK4, solved using a Newton-
Krylov algorithm, were investigated. Results show that BDF2 is more efficient for modest error levels;
ESDIRK4 is more efficient for very accurate computations. In addition, our results show that the Newton-
Krylov method is a very efficient algorithm for unsteady flow computations.

We also draw the following specific conclusions:

• The termination tolerance has a large impact on the efficiency of the scheme. Four and six order
residual reduction is optimal for the BDF2 and ESDIRK4 schemes respectively.

• In unsteady computations, the initial guess at each time step is close to the converged solution, so the
Newton start-up phase is not needed.

• Freezing the preconditioner is beneficial for both time-marching methods, and is recommended for
unsteady computations.

• The preconditioner fill level of one is optimal for both methods in most cases.

Appendix

A. Inviscid and Viscous Fluxes

The inviscid flux vectors are:

Ê = J−1











ρU

ρUu + ξxp

ρUv + ξyp

(e + p)U











, F̂ = J−1











ρV

ρV u + ηxp

ρV v + ηyp

(e + p)V











where u and v are x and y velocity components, ξx, ξy, ηx, and ηy are grid metrics, J is the grid Jacobian,
and U and V are the contravariant velocities:

U = ξxu + ξyv , V = ηxu + ηyv .

For the thin-layer Navier-Stokes equations, the viscous flux vector is:

Ŝ = J−1











0

ηxm1 + ηym2

ηxm2 + ηym3

ηx(um1 + vm2 + m4) + ηy(um2 + vm3 + m5)











with

m1 = (µ + µt)(4ηxuη − 2ηyvη)/3

m2 = (µ + µt)(ηyuη + ηxvη)

m3 = (µ + µt)(−2ηxuη + 4ηyvη)/3

m4 = (µPr−1 + µtPr−1
t )(γ − 1)−1ηx∂η(a2)

m5 = (µPr−1 + µtPr−1
t )(γ − 1)−1ηy∂η(a2) ,

where a is speed of sound, γ is the specific heat ratios, and Pr and Prt are laminar and turbulent Prandtl
numbers.
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B. ESDIRK4 Coefficients

Butcher table for the six-stage fourth-order ESDIRK4 scheme:

0 0 0 0 0 0 0
1
2

1
4

1
4 0 0 0 0

83
250

8611
62500

−1743
31250

1
4 0 0 0

31
50

5012029
34652500

−654441
2922500

174375
388108

1
4 0 0

17
20

15267082809
155376265600

−71443401
120774400

730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4
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