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This paper extends previous work on the integrated geometry parameterization and
mesh movement strategy for aerodynamic shape optimization to high-fidelity aerostruc-
tural optimization based on steady analysis. The proposed approach allows for automatic
and efficient grid movement resulting in high quality aerodynamic meshes in response to
optimization shape changes and structural deflections. It is also integrated with a surface
geometry parameterization that analytically describes the outer mold line at any point with
a compact yet flexible set of parameters. A novel structural mesh movement algorithm has
been developed, so that any jig shape changes described by the geometry parameteriza-
tion can be consistently translated to the internal structures. Other components of this
framework include an aerodynamic solver capable of three-dimensional inviscid and vis-
cous flow analysis and a finite-element code for structural analysis. The aerodynamic and
structural analysis modules are coupled to the linear elasticity mesh movement equations
in a three-field formulation of the aerostructural problem. Gradients are computed us-
ing an augmented three-field coupled adjoint approach. Both the analysis and the adjoint
problems are solved using a partitioned block Gauss-Seidel method. Results obtained by
aerostructural analysis are validated with static experimental data from the HIgh REynolds
Number Aero-Structural Dynamics (HIRENASD) Project. Capabilities of the framework
are demonstrated through the analysis of a flexible C-wing that is created from a planar
wing using the integrated geometry parameterization and mesh movement. Finally, an in-
viscid transonic wing sweep optimization study involving a large number of design variables
demonstrates the ability of the methodology to capture the fundamental tradeoff between
drag and weight.

Nomenclature

AoA Angle of attack
b Vector of control point coordinates

for the deflected geometry
bJ Vector of control point coordinates

for the undeflected geometry
b∆ Difference in control point coordinates

between deflected and undeflected geometries
bs Coordinates of surface control points

describing the deflected geometry
B Coordinates of a single control point
fA Surface traction on the aerodynamic surface
fM Force vector in the mesh equation
fS Force vector in the structural equation

G Vector containing all nodes on the
aerodynamic computational grid

GJs Coordinates of surface grid nodes on the
jig shape

G̃∆s Vector describing the exact displaced
aerodynamic surface

J Objective function
JA Aerodynamic functional
JS Structural functional
KM Stiffness matrix for the mesh equation
KS Stiffness matrix for the structural equation
KS Kreisselmeier-Steinhauser function for

stress aggregation
L Lagrangian function
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MS Vector containing all nodes on the
structural mesh/model

N B-spline basis functions
q Aerodynamic state vector
r Rigid link vector
RAS Aerostructural residual vector
RA Aerodynamic residual vector
RS Structural residual vector
RM∆ Mesh residual vector for the deflected shape
RMJ Mesh residual vector for the jig shape
u Structural state vector
uA Changes in the aerodynamic surface

coordinates due to structural deflections
v Design variables
vA Aerodynamic design variables
vG Geometric design variables

vS Structural design variables
εA Convergence tolerance for the aerodynamic

subproblem
εM Convergence tolerance for the mesh

subproblem
εS Convergence tolerance for the structural

subproblem
εAS Convergence tolerance for the aerostructural

analysis
ΨA Aerodynamic adjoint vector
ΨM∆ Mesh adjoint vector corresponding to

the flying shape
ΨMJ Mesh adjoint vector corresponding to

the jig shape
ΨS Structural adjoint vector
ξ, η, ζ Parametric coordinates

I. Introduction

To sustain rapid growth of the aviation industry under the pressure of rising fuel costs and increasing en-
vironmental concern for greenhouse gas emissions, future-generation aircraft must be substantially more fuel
efficient.1,2, 3, 4 Conventional tube-and-wing designs are highly optimized and therefore offer limited room
for further improvements. In order to achieve the required amount of efficiency gain, unconventional design
options must be explored.5 This poses a challenge with the traditional cut-and-try approach to aircraft de-
sign, which relies heavily on the knowledge and experience of the designer. However, past experience is not
available for unconventional configurations. This challenge is being gradually overcome with numerical opti-
mization. More specifically, numerical optimization based on high-fidelity aerodynamic analysis has become
increasingly accessible due to more efficient numerical methods and powerful high-performance computing
facilities. Although computationally more expensive than low-fidelity models, high-fidelity aerodynamic
analysis accurately captures the physics of the flow in regions where low-fidelity models are invalid.

Realistic design problems often involve hundreds and sometimes thousands of design variables. This,
together with the cost of large-scale high-fidelity calculations, makes gradient-based optimization methods
the preferred option.6 The cost of optimization can be further reduced by the use of adjoint methods, where
the cost of gradient calculation is almost independent of the number of design variables.7,8 These gradients
are used by a numerical optimizer to find the optimal set of design parameters. High-fidelity aerodynamic
optimization is especially valuable when exploring unconventional design concepts, because a more realistic
early assessment can significantly speed up the design cycle and avoid unnecessary investments.

Aerodynamic shape optimization has revealed many promising design concepts that lead to reductions in
drag.9,10 What remains an interesting and important question is how much these benefits are offset by the
possible increase in structural weight. Some recent applications of high-fidelity aerodynamic optimization
have included simplified weight models.11,12,13,14 However, the tradeoff between drag and weight is more
accurately captured with full stress analysis based on aerodynamic loading. High-fidelity aerostructural anal-
ysis allows aerodynamic performance to be evaluated at the correct flying shape by computing the structural
deflections under the aerodynamic loads. It also provides more accurate indication of possible structural fail-
ure, reducing the reliance on artificial geometric constraints that can steer the optimizer away from finding
the most efficient design.15 Furthermore, sequential design cycles, which iterate between pure aerodynamic
and structural optimizations, do not guarantee convergence to the true aerostructural optimum.15 Therefore,
optimization based on tightly integrated high-fidelity aerostructural analysis is an important step towards
taking full advantage of numerical optimization. Development of such a framework for design exploration of
unconventional aircraft is the focus of this paper.

In order to enable shape optimization, the optimizer needs a way to manipulate the geometry. For
gradient-based optimization specifically, analytical sensitivities of the geometry with respect to design vari-
ables need to be readily available.16,17 CAD-free approaches are popular for this reason. The effectiveness
of a CAD-free approach is dictated by the choice of geometry parameterization. An appropriate geometry
parameterization allows a compact set of design variables to be defined with sufficient flexibility to develop
design features of interest to the designer. In the context of aerostructural optimization, shape changes across
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disciplines must also be consistently parameterized to maintain the accuracy of the analysis.18 Moreover,
design shape changes cannot be analyzed without efficient and robust mesh movement algorithms to deform
the aerodynamic and structural domains. The aerodynamic domain undergoes further deformation during
an aerostructural analysis due to structural deflections. This stems from the fact that the aerodynamic
analysis uses an Eulerian formulation. An efficient aerodynamic mesh movement algorithm that is capable
of handling large geometry changes is hence essential. In contrast, the structural analysis uses a Lagrangian
formulation. Therefore, structural mesh movement is only executed once per design cycle. However, it must
preserve the quality of the structural components, such as ribs and spars, modeled in high-fidelity analysis.

Various high-fidelity aerostructural optimization methodologies have been described in the literature,
which took different approaches in addressing the above challenges in geometry parameterization and mesh
movement. Maute et al.19 adopted a three-field formulation for the aerostructural problem. An equation
governing the states of the aerodynamic grid based on a spring analogy was coupled to the Euler equations
and a linear structural analysis. Maute et al.19 further discussed the three-field coupled adjoint approach
for the gradient calculations. The methodology described was applied to the optimization of a wing with a
detailed finite-element model. A small number of geometric design variables were defined based on a Coons
element.19 Barcelos et al.20 later extended this work to include the Navier-Stokes equations for laminar
and turbulent flows. Reuther et al.15 and Martins et al.21,22 used a more sophisticated outer mold line
geometry database as an interface to the optimizer and between the disciplines. The aerodynamic mesh
was deformed by an algebraic warping algorithm which does not appear explicitly in the equations of state.
Martins et al.22 also detailed the corresponding coupled adjoint problem. The design framework was later
applied to the optimization of a supersonic business jet based on the Euler equations and a linear finite-
element analysis of the structures.21 Kenway et al.23 present a parallel scalable high-fidelity aerostructural
optimization framework based on the Euler equations and a linear finite-element model capable of solving
problems with a large number of design variables and unknowns. They use a free-form-deformation (FFD)
technique to parameterize the outer mold line and the internal structure, and a hybrid linear elasticity
mesh movement with algebraic warping to move the aerodynamic grid. The described framework is used in
the optimization of a NASA Common Research Model (CRM) wing-body-tail configuration.24 In a recent
publication, Kenway et al.25 perform aerostructural optimization studies based on the Reynolds-Averaged
Navier-Stokes equations with the CRM geometry.

The framework presented in this paper uses the integrated geometry parameterization and mesh move-
ment technique proposed by Hicken and Zingg16 for aerodynamic shape optimization. This approach pa-
rameterizes the aerodynamic volume grid by B-spline tensor volumes. Control points on the surface of the
geometry provide an efficient means for the optimizer to parameterize and control the geometry with a high
degree of flexibility. The physical relationship between the B-spline surface control points and the under-
lying geometry also allows for intuitive and specific control over local features of the design. The B-spline
surface control points can be used as design variables.16,9, 26,13 An alternative geometric design variable
definition via a two-level FFD method has also been described and used.17,10 The approximation power
of piecewise smooth B-spline surface patches allow complex geometries to be analytically represented and
maintained throughout optimization. The initial and optimized geometries are therefore always indepen-
dent of the mesh used to approximate them. This is an advantage to this approach over other CAD-free
approaches where the description of the geometry is discrete and may be altered with mesh refinement.
The analytical geometry description may also be used for other important purposes such as rigorous mesh
refinement studies and adaptive gridding. The geometry parameterization is tightly integrated with a linear
elasticity mesh movement algorithm, so that the quality of the initial grid is maintained in the presence of
large shape changes. The integrated geometry parameterization and mesh movement technique has been
successfully applied to numerous aerodynamic shape optimization problems involving substantial geometry
changes.16,9, 26,13,17,10

In its extensions to aerostructural application, the integrated geometry parameterization and mesh move-
ment will parameterize both the undeflected aerodynamic geometry and the flying shape. The proposed
aerostructural optimization methodology will be presented in rest of this paper. Section II will start by
providing an overview of the high-fidelity aerostructural optimization problem. A more detailed description
of the integrated geometry parameterization and mesh movement technique will follow in Section III. A
new structural mesh movement method that allows the internal structure to be reshaped according to the
geometry parameterization will also be introduced. The proposed methodology uses a three-field formulation
similar to that in Maute et al.,19 where the B-spline control grid coordinates are treated as independent state
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variables in the aerostructural equation and the adjoint formulation. This will be explained further in Sec-
tion IV with the introduction of the steady state aerostructural problem. Sensitivity calculations using the
coupled adjoint approach will be included in Section V. Finally, results from the validation and application
of the proposed framework can be found in Sections VI and VII.

II. Aerostructural Optimization Problem Overview

An aerostructural optimization problem seeks to minimize an objective function, J , with respect to a
set of design variables, v. The optimization is subject to a partial differential equation constraint, namely
the discrete steady aerostructural equations, RAS . The optimization may also be subject to a number of
equality constraints, Ceq, and inequality constraints, Cin, which may be linear or nonlinear. The optimization
problem can be summarized as follows:

min
v
J (v, [q,u,b∆]T ) , RAS(v, [q,u,b∆]T ) = 0 , s.t.

Ceq,i(v, [q,u,b∆]T ) = 0 , i = 1, · · · , neq

lj ≤ Cin,j(v, [q,u,b∆]T ) ≤ uj , j = 1, · · · , nin

.

(1)
The lower and upper bounds for the jth inequality constraint are given by lj and uj , respectively. The
aerostructural state variables are given by [q,u,b∆]T , where q is the flow state, u is the structural state,
and b∆ is the aerodynamic mesh state due to structural deflections. The state variables depend on v through
aerostructural analysis, which solves RAS = 0. The design variables are categorized into geometric (i.e. vG),
aerodynamic (i.e. vA), and structural (i.e. vS) design variables, which specify the geometry, flow conditions,
and structural properties for the analysis, respectively. More details regarding aerostructural analysis are
discussed in Section IV. The optimization problem is solved using SNOPT,27 which is a gradient-based
sequential quadratic programming (SQP) algorithm that is well-suited for large-scale, nonlinear optimization
problems. A third-party Python interface to SNOPT28 is used with some modifications for this work.

Aerostructural analysis allows multidisciplinary objectives, including both aerodynamic and structural
functionals, to be evaluated and minimized. Examples of objective functions include range, fuel burn, or
some linear combination of weight and drag for more specific tradeoff studies. A lift constraint is included
for each load condition considered. To avoid structural failure, the stresses on all structural elements must
be below the yield stress of the material. The Kreisselmeier-Steinhauser (KS)29,30,31 function is used to
aggregate the element stress constraints into a smaller number of structural constraints, so that the coupled
adjoint method remains effective. Geometric and other constraints may also be added. An example of an
aerodynamic design variable is the angle of attack (AoA). Structural design variables may include component
thickness of the structures. This paper uses the coordinates of the surface B-spline control points as geometric
design variables, more of which will be discussed in Section III.

Unsteady aeroelastic phenomena such as flutter, and dynamic structural failure modes such as buckling,
are not currently considered. However, the purpose of this work is not to accurately capture all realistic
aspects of practical aircraft design, but to explore methodologies which can effectively capture the important
tradeoffs between weight and drag. Modeling static aerostructural coupling is sufficient for this purpose, and
it will serve as an important step towards incorporating unsteady and dynamic effects in the future.

III. Integrated Geometry Parameterization and Mesh Movement

III.A. Geometry Parameterization

The integrated geometry parameterization and mesh movement technique uses a B-spline tensor-product
volume which maps a point from parametric space, D = {ξ = (ξ, η, ζ) ∈ R3|ξ, η, ζ ∈ [0, 1]}, to physical
space, P ⊂ R3, according to the following mathematical relationship:16

x(ξ) =

Ni∑
i=1

Nj∑
j=1

Nk∑
k=1

BijkN (p)
i (ξ)N (p)

j (η)N (p)
k (ζ) , (2)

where Bijk are the coordinates of the de Boor control points, and N (p)
i (ξ), N (p)

j (η), N (p)
k (ζ) are B-spline basis

functions of order p in each parametric coordinate direction. An entire aerodynamic volume grid can be fully
described by a grid of B-spline control points, given that the parametric coordinates of each aerodynamic
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grid node are known. This allows the aerodynamic grid to be parameterized and modified via changes to
the B-spline control volume. The number of nodes in the control volume is typically about two orders of
magnitude fewer than the number in the aerodynamic grid.

In order to tailor the B-spline basis to different edges of an aerodynamic geometry, Hicken and Zingg16

generalized the basis functions to incorporate spatially varying knots, or curved knot lines. As an example,
basis functions in the ξ−direction are given by

N (1)
i (ξ; η, ζ) =

{
1 if Ti(η, ζ) ≤ ξ < Ti+1(η, ζ)

0 otherwise
(3)

N (p)
i =

(
ξ − Ti(η, ζ)

Ti+p−1(η, ξ)− Ti

)
N (p−1)

i (ξ; η, ζ) +

(
Ti+p(η, ζ)− ξ

Ti+p(η, ζ)− Ti+1(η, ζ)

)
N (p−1)

i+1 (ξ; η, ζ) ,

where Ti(η, ζ) are the knot values. Open knot vectors are used such that the first and last p knots of Ti(η, ζ)
are forced to be 0 and 1, respectively. The internal knots follow a bilinear distribution such that

Ti(η, ζ) = [(1− η)(1− ζ)]Ti,(0,0) + [η(1− ζ)]Ti,(1,0) + [(1− η)ζ]Ti,(0,1) + [ηζ]Ti,(1,1) , (4)

where Ti,(0,0), Ti,(1,0), Ti,(0,1) and Ti,(1,1) are the ith knot values along the η and ζ edges of the parameter

space. The basis functions N (p)
j (η; ξ, ζ) and N (p)

k (ζ; ξ, η) can be similarly described.
To parameterize the aerodynamic volume grid with B-splines, parametric coordinates of each grid node

are first determined using chord-length parameterization. The edge knot values are chosen to ensure an
equal number of nodes within each knot interval, leading to a chord-length-based knot distribution. The
initial B-spline control point coordinates are obtained by least-squares fitting of an initial grid. The resulting
control volume is a coarse grid with mesh spacing that resembles the original computational grid because of
the nature of the knot distribution. This is a characteristic that is exploited in the mesh movement algorithm
described later. For the multi-block structured aerodynamic grids used for this work, each block is described
by a separate control volume with coincident control points at the block interfaces to ensure continuity.16

Figure 1 provides an example of a control grid and the corresponding computational grid.
In the present framework, control points on the surface of the geometry, which are represented by blue

spheres in Figure 1, are used as design variables. Planform variables like sweep and sectional twist are
defined by a combination of linear constraint and control points grouping. Values of the geometric design
variables assigned by the optimizer to describe the undeflected outer mold line are denoted by vG. During an
aerostructural analysis, surface control points are also used to describe the deflected flying shape. Coordinates
of the surface control points are given by bs, and are functions of vG and u. Section IV describes in more
detail how the surface control point coordinates are determined. The displaced surface control mesh directly
specifies the boundary conditions for the mesh movement problem described in Section III.B. Extension of
this method to parameterize the structural model is described in Section III.C.

III.B. Aerodynamic Mesh Movement

Changes in the B-spline surface control points are propagated to the interior volume via a linear elasticity
mesh movement applied to the control grid. Large shape changes are broken into m increments. Given the

coordinates of the displaced surface control points, b
(i)
s , which defines the force vector, f

(i)
M , the vector of

control point coordinates, b(i), is updated by solving16

R
(i)
M (b(i−1),b(i)) = K

(i)
M (b(i−1))[b(i) − b(i−1)]− f

(i)
M (b(i)

s ) = 0 , i = 1, · · · ,m , (5)

where R
(i)
M is the mesh residual and K

(i)
M the stiffness matrix. A spatially-varying Young’s modulus is used

to preserve the quality of the control grid, which makes K
(i)
M a function of b(i−1). For clarity, this paper

does not treat bs as a subset of b, but rather an input to (5). The solution of (5) is found by a parallel
conjugate-gradient method preconditioned by an additive Schwarz method with local Jacobi preconditioning,
all of which are available in the PETSc library.32 The new aerodynamic grid is simply re-evaluated according
to (2).

Linear elasticity mesh movement is known to be very robust even in the presence of large shape changes.
It is much cheaper to apply this method to the control grid as opposed to the full aerodynamic grid. The
quality of the aerodynamic grid is nonetheless preserved by the similarity in the relative mesh spacing between
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Figure 1: The integrated mesh movement scheme is applied to the control grid in (a) to accomplish a shape
change in (b). Surface control points for both geometries are represented by blue spheres. The corresponding
initial and final computational grids are shown in (c) and (d), respectively.

the control grid and the aerodynamic grid. Figure 1 illustrates the resulting control grid and computational
grid following a mesh movement to obtain a winglet-down geometry.

III.C. Structural Mesh Movement

In the present framework, the structural mesh remains fixed during aerostructural analysis, but shape changes
described by the geometric design variables must be translated consistently to the structural model for
accurate force and displacement transfer. Parameterization of the detailed internal structure using B-splines
would involve a complex arrangement of intersecting parametric surfaces. In contrast, FFD is geometric
fidelity independent33,18 and therefore remains the most simple and effective way to move the structural
mesh. Therefore, a novel surface-based FFD method has been developed which parameterizes the space
enclosed between the B-spline surfaces and allows it to act like an FFD volume embedding the structure.

Given a point P on the structural model, the surface-based FFD method begins by associating it with
two points U and L, on the upper and lower surfaces of the geometry, respectively. This is illustrated in
Figure 2. The coordinates of U and L are given by

U(ξ1, η) =

Nj∑
j=1

Nk∑
k=1

Nj(ξ1)Nk(η)BjkNm
and L(ξ2, η) =

Nj∑
j=1

Nk∑
k=1

Nj(ξ2)Nk(η)Bjk1 , (6)

where ξ1, ξ2 and η are the chordwise and spanwise parametric coordinates of U and L on the B-spline
surfaces, and BjkNm

and Bjk1 are the corresponding surface control points. The points P , U , and L should
be collinear, such that the coordinates of P can be described by a parametric distance ` as follows:

U(ξ1, η) + ` [L(ξ2, η)− U(ξ1, η)]− P = 0 . (7)

Once the appropriate U and L are found for each P at the start of an optimization, ξ1, ξ2, η and ` are fixed
and the coordinates of P become a function of the B-spline surface control points. Furthermore, U and L

6 of 23

American Institute of Aeronautics and Astronautics



Figure 2: The straight line which associates a structural mesh node, P , with the surfaces of a wing section
described by a constant spanwise parametric coordinate η.

are required to have the same η such that P remains in the same spanwise parametric section during shape
changes. In order to associate each P with a unique pair of (U, L), two constraints are defined based on
vector dot products:

Let:


−−→
UP = U(ξ1, η)− P
−→
LP = L(ξ2, η)− P
−→
C = TE(η)− LE(η)

, then:

{ −−→
UP ·

−→
C = 0

−→
LP ·

−→
C = 0

. (8)

Equation (8) requires the line UPL (see Figure 2), along which P is parameterized, to be normal to the chord
defined by the leading edge, LE, and trailing edge, TE, of the same η. For most topologies, these constraints
ensure that UPL is close to being tangent to the ribs and spars, and is aligned with the direction in which
sectional shape changes are defined. This can reduce the amount of unwanted distortion introduced to the
structural components during shape changes. The surface-based FFD method is functionally equivalent to
forming an FFD control lattice directly from the available B-spline surface control points, but it avoids
the potential limitations imposed on the number and distribution of control points on the upper and lower
surfaces.

For future extensions to more complex geometries, such as a split-tip wing where a straight line through U ,
P and L may not exist for all P , (7) and (8) are programmed as a more general minimization problem solved
via SQP.34 The current implementation is also capable of handling multiple surface patches. Associating
all points on the structural model with the B-spline geometry definition is the most expensive part of this
surface-based FFD method. However, it is done only once at the beginning of an optimization, and its
cost is still negligible in comparison to the aerostructural optimization problem. Re-evaluation of the new
structural geometry involves simple algebraic expressions, so it is extremely efficient. Geometric sensitivities
of the structural mesh points with respect to the surface control points are also easy to obtain by the chain
rule.

IV. Steady-State Aerostructural Analysis

During aerostructural analysis, the integrated geometry parameterization and mesh movement technique
described in Section III is used to obtain the deformed aerodynamic grid due to structural deflections. A
three-field formulation is adopted here, where the mesh equation, RM∆, is coupled to the aerodynamic
equation, RA, and the structural equation, RS . The aerostructural residual is therefore written as follows:

RAS =

 RA(q,b∆)

RS(q,u,b∆)

RM∆(u,b∆)

 . (9)

The mesh equation, RM∆, is given by (5) with b(i) = b
(i)
J + b

(i)
∆ , j = 1, · · · ,m. To simplify the notation, let

RM∆ refer to the vector containing all the incremental mesh residuals, i.e. RM∆ = [R
(1)
M∆,R

(2)
M∆, · · · ,R

(m)
M∆]T .

The displaced mesh state, b∆, represents the changes between the B-spline control points for the jig shape,
bJ , and those for the final deflected shape, b. A simplified notation is also used for b∆, bJ , and b, such
that the control point coordinates for all increments are expressed as a single vector.

A two-field formulation, which only involves an aerodynamic and a structural equation, assumes an
explicit dependence of RA on u, or that (∂RA/∂u) 6= 0. It can be recovered from (9) by solving RM∆ = 0
for every change in u. Evaluating the sensitivities of RA with respect to u also requires the sensitivities of
the aerodynamic volume grid, G, with respect to u. However, this term cannot be easily obtained for the
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mesh movement strategy described in Section III.B, because the mesh nodes are implicitly coupled to the
surface control points according to (5). It is therefore more efficient and straightforward to use a three-field
formulation.

The present aerostructural framework is constructed over existing aerodynamic, structural and mesh
movement modules. The steady-state solution to (9) is obtained via a nonlinear block Gauss-Seidel method,
which involves sub-iterations within each module, allowing existing solution routines to be reused. Detailed
application of the nonlinear block Gauss-Seidel method is included in Section IV.C, after the aerodynamic
and structural modules are first described in Sections IV.A and IV.B.

IV.A. Aerodynamic Analysis

The aerodynamic module is capable of analysis based on both the three-dimensional Euler equations govern-
ing inviscid flow35 and the Reynolds-Averaged Navier-Stokes (RANS) equations governing turbulent flow.36

Although the present framework is capable of performing aerostructural analysis based on the RANS equa-
tions, it is currently coded for aeorstructural optimization based on the Euler equations only. The flow
equations are discretized on a multi-block structured mesh using second-order summation-by-parts (SBP)
finite-difference operators. The use of simultaneous-approximation terms (SATs) maintains solution accuracy
and time stability without requiring grid continuity at block interfaces and boundaries,35 thereby simplify-
ing interface solution coupling and boundary treatments. The discrete steady aerodynamic equation can be
written as

RA(q,b∆) = 0 . (10)

Due to the presence of the displaced mesh state, RA does not explicitly depend on u, but instead depends on
b∆ through the volume grid, G. The aerodynamic solver is equipped with a sophisticated algorithm for the
solution of (10) during the aerodynamic sub-iterations. The solution process is accelerated by an efficient
parallel implicit Newton-Krylov-Schur algorithm. An appropriate initial solution for Newton’s method is
obtained by pseudo-transient continuation, which involves a first-order Jacobian approximation with a lagged
update, and spatially varying time steps.35 Once the solution has converged to a reasonable tolerance, the
algorithm switches to an inexact-Newton method. The resulting linear system at every sub-iteration is
solved by a flexible variant of the generalized minimal residual (GMRES) method.35 The linear problem is
preconditioned by an approximate Schur factorization, where the inverse of the local Schur complement on
each process is approximated using the ILU(p) factorization of the local first-order Jacobian.35

IV.B. Structural Analysis

The structural analysis is provided by the Toolkit for the Analysis of Composite Structures (TACS).30,37 It
is a parallel finite-element code capable of handling composites and materials with geometric nonlinearity, as
well as computing design variable sensitivities.30,37 For the purpose of this work, the structural components
are modeled using second-order mixed interpolation of tensorial components (MITC) shell elements, which
are shown to be effective in avoiding shear-locking.37 A linear constitutive relationship is used and geometric
nonlinearity is not modeled. The resulting finite-element equation can be written as

RS(q,u,b∆) = KSu− fS(q,b∆) . (11)

The force vector, fS , in this case is a result of aerodynamic loading, the magnitude and direction of which are
explicit functions of q and b∆. Equation (11) is solved by GMRES preconditioned by a direct Schur method,
where the global Schur complement is factored exactly because the system is often ill-conditioned.30,37

The aerodynamic, structural and mesh equations are coupled by enforcing appropriate boundary condi-
tions at the aerostructural interface. The interface includes nodes on the aeroelastic parts of the aerodynamic
surface (e.g. the wing), and structural nodes adjacent to the aerodynamic surface. Specifically, the coupling
is achieved by the transfer of forces and displacements through the interface. The present framework uses a
rigid link method that is available in TACS.22,23 The rigid link vectors are created at the start of optimiza-
tion, where each aerodynamic node at the interface is paired with the closest point on the structural model.
These rigid links allow displacements and forces to be extrapolated between the aerodynamic and structural
domains, even though the two grids may not necessarily overlap at the interface. More details regarding this
method can be found in Martins et al.22 and Kenway et al.23
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IV.C. Aerostructural Solution

Before each analysis, surface B-spline control point coordinates are determined from the geometric design
variables, vG. Control point coordinates for the undeflected geometry, bJ , are subsequently evaluated by
solving (5) with b∆ = 0 and b = bJ . The structural geometry is deformed as described in Section III.C
on page 6. The geometric design variables also provide a description of the jig shape geometry, GJs, from
which deflection is measured during analysis. After determining the aerodynamic and structural design
variables, (9) is solved via a nonlinear block Gauss-Seidel method. The solution procedure at the kth block
Gauss-Seidel iteration is outlined below:

1. Obtain displacements of the aerodynamic surface, uA, based on the structural state from the previous

iteration: u(k−1) → u
(k)
A ;

2. Calculate the exact displaced surface: G̃
(k)
∆s = GJs + u

(k)
A ;

3. Find surface control point coordinates, bs which best describe the displaced surface by least-squares

fitting: G̃
(k)
∆s → b

(k)
s ;

4. Update b∆ by solving the mesh equation until ‖RM∆(b
(k)
s , b

(k)
∆ )‖2 ≤ εM‖RM∆(b

(k)
s , b

(k−1)
∆ )‖2;

5. Evaluate the aerodynamic volume grid, G, for the deflected shape: bJ + b
(k)
∆ → G(k);

6. Update q by solving the aerodynamic equation until ‖RA(G(k), q(k))‖2 ≤ εA‖RA(G(k), q(k−1))‖2;

7. Calculate the aerodynamic surface traction, fA, on the new aerodynamic grid: q(k),G(k) → f
(k)
A ;

8. Transfer the aerodynamic forces to the structures: f
(k)
A → f

(k)
S ;

9. Solve the structural equation until ‖RS(f
(k)
S , u(k−1) +∆u(k))‖2 ≤ εS‖RS(f

(k)
S , u(k−1))‖2 for an update

∆u(k), then evaluate the new u using Aitken acceleration.38,23

The parameters εM , εA and εS determine how tightly each sub-problem is solved, and are typically set
to 10−1, 10−6, and 10−3, respectively. The Aitken acceleration used during the structural update is an
adaptive under-relaxation algorithm. It has been shown to improve the stability and convergence of the
nonlinear block Gauss-Seidel method.23 Lastly, it is necessary to clarify that G̃∆s is not equal to G on the
surface due to fitting error. Although the original force and displacement transfer scheme is consistent and
conservative,22,23,24 the current implementation no longer guarantees conservation. Some studies on the
the possible implications are included in Section VI.A on page 12. On the other hand, the grid smoothing
introduced by the B-spline fitting has led to better convergence behaviors in some cases, so it may in fact
be desirable. Continued investigations in the future are necessary to draw a definite conclusion.

The stopping criterion for the nonlinear block Gauss-Seidel iterations examines the residual norm of each
equation separately to account for differences in scaling.30,19 The solution is considered converged when the
starting residual norms for all sub-problems have been sufficiently reduced, i.e.

‖RM (u(k−1),b(k−1))‖2 < εAS‖RM (u(0),b(0))‖2 (12)

‖RA(q(k−1),b(k))‖2 < εAS‖RA(q(0),b(0))‖2
‖RS(q(k),u(k−1),b(k))‖2 < εAS‖RS(q(0),u(0),b(0))‖2 .

The relative tolerance for the aerostructural problem, εAS , is typically set to 10−7.

V. Sensitivity Evaluation by the Coupled Adjoint Method

The coupled adjoint formulation has been previously described by various authors.22,19 It is presented
here for the current aerostructural optimization methodology, using the method of Lagrange multipliers
adopted by Hicken and Zingg16 for aerodynamic optimization. Consider the optimization of a functional J ,
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subject to RAS = 0 and RMJ = 0, where RMJ is the aerodynamic mesh equation for the jig shape. The
Lagrangian function for this problem is

L = J (v,bJ , [q,u,b∆]T ) + ΨT
MJRMJ(v,bJ) +

[
ΨT

A ΨT
S ΨT

M∆

] RA(v,bJ , [q,b∆]T )

RS(v,bJ , [q,u,b∆]T )

RM∆(v,bJ , [u,b∆]T )

 , (13)

where ΨMJ , ΨA, ΨS and ΨM∆ are the Lagrange multipliers. The aerostructural residual and state vari-
ables are expanded into RAS = [RA,RS ,RM∆]

T
and [q,u,b∆]

T
, respectively, so that individual derivative

terms can be discussed separately. However, brackets are kept around the aerostructural residual and the
aerostructural state to remind the readers that these terms are in fact parts of a single term and should be
treated as one. The first-order optimality conditions require that the partial derivatives of L with respect to
bJ and [q,u,b∆]T be zero:

∂L
∂bJ

= 0 ⇒ ΨT
MJ

∂RMJ

∂bJ
+
[
ΨT

A ΨT
S ΨT

M∆

] ∂

∂bJ

 RA

RS

RM∆


 = − ∂J

∂bJ
, (14)

∂L
∂[q,u,b∆]T

= 0 ⇒
[
ΨT

A ΨT
S ΨT

M∆

] ∂

∂[q,u,b∆]T

 RA

RS

RM∆


 = − ∂J

∂[q,u,b∆]T
.

Taking the transpose of the above equations leads to the following linear system :

∂RMJ

∂bJ

T
∂RA

∂bJ

T ∂RS

∂bJ

T ∂RM∆

∂bJ

T

0

∂RA

∂q

T ∂RS

∂q

T

0

0
∂RS

∂u

T ∂RM∆

∂u

T

∂RA

∂b∆

T ∂RS

∂b∆

T ∂RM∆

∂b∆

T





ΨMJ

ΨA

ΨS

ΨM∆


=



− ∂J
∂bJ

T

−∂J
∂q

T

−∂J
∂u

T

− ∂J
∂b∆

T


. (15)

Equation (15) is solved by first solving for [ΨA, ΨS , ΨM∆]T , which are coupled by the transposed aerostruc-
tural Jacobian, and then solving for ΨMJ . However, recall from Section IV on page 7 that b = bJ + b∆.
Hence the following is true:

∂

∂b∆

 RA

RS

RM∆

 =
∂

∂bJ

 RA

RS

RM∆

 , and
∂J
∂b∆

=
∂J
∂bJ

. (16)

Due to the last row in the coupled adjoint system, the first row of (15) reduces to

∂RMJ

∂bJ

T

ΨMJ = − ∂J
∂bJ

T

− ∂RA

∂bJ

T

ΨA −
∂RS

∂bJ

T

ΨS −
∂RM∆

∂bJ

T

ΨM∆ ⇒ ΨMJ = 0 . (17)

= 0

The derivation is completed by taking the partial derivative of L with respect to v:

G =
∂J
∂v

T

+
∂RMJ

∂v

T

ΨMJ +
∂RA

∂v

T

ΨA +
∂RS

∂v

T

ΨS +
∂RM∆

∂v

T

ΨM∆ , (18)

which is the expression for the total gradient of J with respect to the design variables. The Lagrange
multipliers used here are equivalent to the adjoint variables.
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Solution to the coupled adjoint problem in (15) is computed via a linear block Gauss-Seidel method. At
each iteration k, the following equations are solved in sequence:

∂RA

∂q

T

Ψ
(k+1)
A = −∂J

∂q

T

− ∂RS

∂q

T

Ψ
(k)
S (19)

KSΨ
(k+1)
S = −∂J

∂u

T

− ∂RM∆

∂u

T

Ψ
(k)
M∆ (20)

∂RM∆

∂b∆

T

Ψ
(k+1)
M∆ = − ∂J

∂b∆

T

− ∂RA

∂b∆

T

Ψ
(k+1)
A − ∂RS

∂b∆

T

Ψ
(k+1)
S . (21)

Implementation of the sensitivity terms in (19–21) follows the work of Kenway et al.23 Appropriate mod-
ifications have been introduced due to the additional mesh state and mesh equation. To facilitate further
discussions on the gradient calculations, it is convenient to first distinguish between aerodynamic function-
als, denoted by JA, and structural functionals, denoted by JS . An aerodynamic functional, such as lift and
drag, does not depend explicitly on structural variables. Conversely, structural functionals, such as mass
and the KS functions, do not depend explicitly on aerodynamic variables. Sensitivities of JA and JS can be
combined to obtain sensitivities of composite functionals, such as range.

Equation (19) is solved by a flexible variant of GCROT proposed by Hicken and Zingg.16 The transposed
aerodynamic Jacobian, (∂RA/∂q)T , is evaluated by a combination of analytical and complex-step differen-
tiation, and is subsequently stored. On the right-hand side, (∂JS/∂q)T = 0 and (∂JA/∂q)T is computed
in the same way as in aerodynamic optimization. Evaluation of the off-diagonal term, (∂RS/∂q)T , is as
described by Kenway et al.,23 where

∂RS

∂q

T

ΨS =
∂fA
∂q

T ∂fS
∂fA

T ∂RS

∂fS

T

ΨS . (22)

Sensitivities of the aerodynamic forces, fA, with respect to q are computed within the aerodynamic module,
whereas (∂fS/∂fA)T is computed in TACS by analytical differentiation of the force transfer routine.

In (20), (∂JA/∂u)T is zero due to the explicit mesh state. Similarly, contributions from the following

forces, (∂fS/∂u)T (∂RS/∂fS)TΨ
(k)
S , are also zero. The directions of the forces, fA and fS , now depend

explicitly on b∆ instead of u. Sensitivities of the aerodynamic mesh with respect to u are included in

∂RM∆

∂u

T

ΨM∆ =
∂uA

∂u

T ∂G̃∆s

∂uA

T
∂bs

∂G̃∆s

T ∂RM∆

∂bs

T

ΨM∆ . (23)

The evaluation of (∂RM∆/∂bs)
TΨM∆ uses existing routines in the aerodynamic module and is analytical.

The matrix-vector product involving the sensitivities of the displaced surface control points with respect to
the exact displaced surface, (∂bs/∂G̃∆s)

T , is obtained by analytical differentiation of the linear least-squares
surface fitting. The last term, (∂uA/∂u)T , depends on the displacement transfer scheme and is computed
analytically in TACS. Equation (20) is solved by the same routines as in structural analysis due to the
symmetry of KS .

For the mesh adjoint equation given by (21), the aerodynamic mesh state due to structural deflections
does not contribute directly to the calculation of JS , so (∂JS/∂b∆)T is zero. Furthermore, (∂JA/∂b∆)T

and (∂RA/∂b∆)TΨA are both obtained by first differentiating with respect to the aerodynamic volume grid,
G, then completing the chain rule by (∂G/∂b∆)T . Calculation of the last term,

∂RS

∂b∆

T

ΨS =
∂G

∂b∆

T ∂fS
∂G

T ∂RS

∂fS

T

ΨS , (24)

reuses matrix-vector products that are already present in the other terms, with the exception of (∂fS/∂G)T ,
which is obtained by analytically differentiating the aerodynamic grid contribution in the surface traction
calculation and in the force transfer process. Equation (21) is solved by existing mesh adjoint solution
routines in the aerodynamic module.

Block Gauss-Seidel iterations involving (19–21) are repeated until all residual norms drop below a specified
tolerance relative to their initial values. Once the adjoint variables are obtained, they are substituted into (18)
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for the total gradient. Sensitivities with respect to aerodynamic design variables, vA, and structural design
variables, vS , are reduced to

GA =
∂J
∂vA

T

+
∂RA

∂vA

T

ΨA and GS =
∂J
∂vS

T

+
∂RS

∂vS

T

ΨS , (25)

respectively. Sensitivities with respect to geometric design variables, vG, are more involved. For aerodynamic
functionals, the terms (∂RA/∂vG)TΨA and (∂JA/∂vG)T are both zero. The grid dependence of RA and
JA is expressed through the mesh adjoint term in (18), where

∂RM∆

∂vG

T

ΨM∆ =
∂G̃∆s

∂vG

T
∂bs

∂G̃∆s

T ∂RM∆

∂bs

T

ΨM∆ . (26)

Kenway et al.23 have pointed out that the exact displaced surface, G̃∆s, depends explicitly on vG through
changes in both the jig shape and the rigid link vectors. This subtle relationship has been included to
accurately evaluate (∂G̃∆s/∂vG)T in (26). Calculations involving (∂bs/∂G̃∆s)

T reuse the routine for the
same term in (23). For structural functionals, the sensitivities of RS and JS with respect to vG come from
changes in the structural mesh, MS , as a result of geometric changes. They are calculated as follows:

∂RS

∂vG

T

ΨS =

(
∂MS

∂vG

T ∂KS

∂MS

T ∂RS

∂KS

T

+
∂r

∂vG

T ∂fS
∂r

T ∂RS

∂fS

T
)

ΨS , (27)

∂JS
∂vG

T

=
∂MS

∂vG

T ∂JS
∂MS

T

, (28)

where (∂MS/∂vG)T involves differentiating (7) for each point on the structural model with respect to the jig
shape surface control points. The second term on the right-hand side of (27) captures the effect of changing
the rigid link vectors on the force transfer calculations.

VI. Verification and Validation

The main objective of this section is to verify and validate various aspects of the current aerostructural
analysis and optimization framework. First, the performance of the force and displacement transfer scheme
is analyzed and compared to an existing framework. Then, the aerostructural analysis capability is validated
by comparing computational results to experimental data. Finally, a thorough gradient verification test is
performed to ensure that the analytical gradients provided to the optimizer are reasonably accurate.

VI.A. Force and Energy Conservation

The main objective of this section to investigate whether the errors associated with fitting the displaced
surface, as described in step 3 of Section IV.C on page 9, degrade the performance of the aerostructural
solver. Specifically, it is important to ensure that this particular transfer scheme does not hinder the grid
convergence characteristics of functionals of interest such as lift and drag. This is an essential consideration
in practical application of the optimization framework. To accomplish this goal, an aerostructural analysis
on an optimized wing is performed and the resultant forces as well as the work done on the two domains
are compared. Then, a grid refinement study on the aerodynamic mesh is performed to demonstrate that
a functional of interest becomes independent of the grid resolution within a specific tolerance. The node
density of the structural domain is kept constant. A more thorough approach would be to characterize the
effects of the structural mesh density on the grid convergence characteristics of the aerodynamic functional
of interest. However, that is outside the scope of the present study due to the fact that in most practical
applications, the structures are sized for a given structural mesh density.

An important characteristic of a desirable transfer scheme is that it conserves the resulting forces as well
as the work done by the aerodynamic and structural nodes at the interface.39,40,41,42 The degree to which
the current transfer scheme violates this principle is an indication of the error introduced by fitting the
displaced surface during an aerostructural analysis. Thus, to fully understand the implications of the fitting
step, this error is also monitored as the aerodynamic mesh resolution increases. Furthermore, this error is
compared to the results produced by another framework that uses the same transfer scheme, but captures
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X
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Z

Figure 3: The outer mold line of the initial wing
with the structural components inside the wingbox.

Figure 4: Geometry parameterization shown with
the surface patches and control points.

the displacements exactly,43 i.e. without fitting error, so that it preserves the consistency and conservation
property from the original transfer scheme.24,23 For clarity, this methodology will be referred to as the
second framework. Both frameworks use inviscid aerostructural analysis for this study.

To obtain the wing geometry for the analysis involved in this study, an aerostructural optimization is
performed to obtain a suitable design. The planform of this design, shown in Figures 3 and 4, is based on the
Boeing 737-900 wing. The optimization minimizes the drag under cruise conditions while maintaining the
structural integrity of the wing at a 2.5g load condition. The cruise Mach number is 0.74 at an altitude of
30, 000 feet, while the Mach number for the 2.5g load condition is equal to 0.85 at an altitude of 20, 000 feet.
The wing material is based on the 7075 Aluminum with a Poisson’s ratio of 0.33 and Young’s modulus of
70GPa. The optimizer is free to change the sectional shape and twist of the wing along the span. However,
the thickness-to-chord ratio of the wing is not allowed to reduce by more than 10% of the initial value
anywhere along the chord. The optimization is launched with the RAE 2822 airfoil as the initial section.
The optimized wing is then used for the purpose of this study using the current framework.

The wing geometry used to perform the mesh refinement studies with the second framework is obtained
by performing a similar aerostructural optimization case using the second framework. As a result, this
optimized wing differs slightly from the one described above. This is done in part to develop a better
understanding of the differences between the two optimized wings that are obtained with the two different
frameworks. However, the subtle differences observed in the two optimal designs are not discussed here.

Figure 5 shows the convergence of lift coefficient with increasing grid density and control point resolution
obtained from the present framework. Figure 6 shows the drag coefficient in drag counts (10−4). The control
points are used to fit every patch on the surface of the wing. The upper and lower surfaces of the wing each
have 10 patches, as illustrated in Figure 4. Only the number of chordwise control points is increased because
it has the greatest impact on whether or not the airfoil shape is captured correctly by the fitting process.
The sequence of aerodynamic grids is obtained by doubling the total number of grid nodes at every level
using the B-spline parameterization technique to maintain a consistent distribution of grid nodes. These
graphs demonstrate that lift and drag change by less than 1% from the second finest to the finest grid level.

Figure 7 shows the convergence of lift coefficient with increasing grid density and control point resolution
obtained from the second framework, which is capable of capturing the displaced surface without fitting
error. Figure 8 shows the drag coefficient. Figures 7 and 8 show the same convergence trends observed
from the results obtained by the present framework. This means that the fitting error introduced during the
transfer process does not hinder the convergence of aerodynamic functionals of interest.

To further support the above observations, it is necessary to quantify the transfer error in force and
energy conservation. Accuracy of the force transfer can be assessed by how well the resultant forces are
conserved between the aerodynamic and structural domains during transfer. Moreover, if there is an error,
it must decrease with grid refinement. The same comparison is done for the second framework, which has
no fitting error, as a benchmark. Figure 9 shows the variation of the error in all directions for three control
point densities with increasing grid resolution. In addition, the error produced by the second framework is
shown on the same plot. Note that the error is nonzero for both frameworks possibly due to the fact that
the structural solver uses a different force integration scheme than the aerodynamic solver. Hence the error
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appears to be independent of the number of surface control points. However, it is clear that in all cases, the
error in force transfer introduced by the current framework is similar to the error produced by the second
framework.

A similar assessment is conducted for energy conservation, which requires that the work done on the
aerodynamic and structural sides of the interface are equal. Figure 10 shows the variation of the error in
the energy transfer for various surface control point densities with increasing mesh resolution. Moreover, the
same error is shown on the same plot for the second framework. The error in Figure 10 is due to the force
transfer error in Figure 9 and the error in the displacement transfer due to surface fitting. It is evident that
although the current force and displacement transfer scheme is not conservative, it is producing a similar or
lower error in comparison to the framework that captures the displacements exactly. Therefore, it is safe to
conclude that the error introduced by fitting has a minor impact on the accuracy of the transfer.

VI.B. Validation Based on the HIRENASD Wing

The HIgh REynolds Number Aero-Structural Dynamics (HIRENASD) Project was initiated to provide
experimental aeroelastic data for a large transport wing-body configuration.44,45,46 Figure 11 provides
details about the geometry and wind tunnel assembly of the HIRENASD wing. The main objective of this
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Figure 11: Geometric planform and wind tunnel setup of the HIRENASD wing model.a

section is to compare static aeroelastic computational results obtained using the present framework with the
HIRENASD experimental data.

The test condition Mach number, angle of attack, and Reynolds number are 0.80, 1.5◦, and 7.0 × 106,
respectively. An aerostructural analysis is performed to obtain the computational results. The one-equation
Spalart-Allmaras turbulence model is used to model the turbulent flow in this test case. Osusky and Zingg36

provide comprehensive details of the Reynolds-Averaged-Navier-Stokes flow solver.
A multiblock structured grid is used for the aerodynamic solver with 3, 548, 095 nodes. The average

y+ value is equal to 0.24. The finite-element model provided by the HIRENASD project contained solid
elements. However, the structural solver, TACS, accepts MITC shell elements only. Furthermore, the current
structural model does not include the leading and trailing edges. Thus, an effort has been made to ensure
that the structural finite-element model used in this analysis most closely represents the original structure of
the HIRENASD wing. This finite-element model for the structures has approximately 38, 000 second-order
MITC shell elements.

Figure 12 provides a comparison of the computational static aerostructural results with the experimental
data. Specifically, the contours of pressure coefficient at various spanwise locations on the surface of the
wing are being compared to experimental results. In addition, the rigid-body results (where there are no

aUsed with permission from: http://heinrich.lufmech.rwth-aachen.de/en/windtunnel-assembly
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Figure 12: Comparison of experimental and computational pressure coefficient results for the HIRENASD
wing geometry. The experimental, static aeroelastic, and rigid-wing results are shown for each spanwise
station.

structural deflections) are provided for reference. Figure 12 demonstrates that the static aerostructural
results obtained from the present framework compare well with the experimental data.

VI.C. Gradient Verification

This section compares the gradient values by the coupled adjoint method with second-order finite-difference
approximations. The geometry in Figure 3 and 4 is again used. The aerodynamic mesh has 2, 044, 056 nodes
and is divided into 192 blocks. Each block is parameterized by 6× 5× 9 B-spline control points. The wing
structure has 2 main spars and 30 ribs, as shown in Figure 3. The corresponding finite-element mesh consists
of 30, 473 second-order MITC shell elements and 174, 204 degrees of freedom. The functionals considered
include the drag and lift forces, as well as the KS functions for structural failure. Due to the nature of the
stress distribution, three KS functions with an aggregation parameter of 30.0 are used to monitor structural
failure in the 1) ribs and spars, 2) top skin, and 3) bottom skin. All KS functions incorporate a safety factor
of 2.0. The design variables include a uniform thickness value for all structural members, AoA, and the span.
The study is conducted at a Mach number of 0.74 at an altitude of 30, 000 feet, with an AoA of 3.0◦. An
initial thickness of 5mm is used for all structural members. The material used for the structures is based
on the 7075 Aluminum with a Poisson’s ratio of 0.33 and Young’s modulus of 70GPa. Figure 13 plots the
relative error between the calculated gradient values and the finite-difference approximations for different
step sizes. The largest minimum relative error is on the order of 10−7, but the majority of the gradient
values have a minimum relative error on the order of 10−8. This shows excellent agreement between the
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Figure 13: Relative error in functional and constraint gradients between the adjoint method and finite-
differences.

Figure 14: Illustration of substantial geometry changes achieved by the integrated geometry parameterization
and mesh movement. The right-most figure shows the new geometry and its Mach contour under structural
deflection, which is superimposed on the undeflected geometry

computed gradients and the finite-difference approximations.

VII. Application to Aerostructural Analysis and Optimization

This section demonstrates the capabilities of the current aerostructural analysis and optimization frame-
work through its application to two cases. The first is an aerostructural analysis of a C-wing geometry in
transonic flow. This case shows that the present framework is able to deform a planar wing to a complex
C-wing geometry using the integrated mesh movement scheme and perform an analysis successfully. The
second case investigates the fundamental tradeoff between weight and drag that is involved in the design of
conventional wings. In the context of aircraft design, weight and drag are competing objectives. The results
demonstrate that the current framework is able to capture this tradeoff by manipulating the quarter-chord
sweep angle of a planar wing.

VII.A. Analysis of a C-Wing

To demonstrate the capability of the integrated geometry parameterization and mesh movement to handle
large shape changes, a simple initial wing geometry is deformed into a user-specified C-wing geometry using
the integrated methodology, and aerostructural analysis based on the Euler equations is performed on the
resulting geometry. The initial geometry shown on the left in Figure 14 is planar, swept back, and tapered
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Figure 15: Cell aspect ratio distribution of the aerodynamic grids for the initial, undeflected jig, and final
deflected shapes.

with the RAE 2822 airfoil. The aerodynamic grid, which is not shown, consists of 193, 536 nodes and 112
blocks. Each block is parameterized by 6× 6× 6 control points. The surface geometry consists of 20 surface
patches, which leads to 30 surface control points in the spanwise direction and 12 in the chordwise direction.
The structural model has 30, 473 second-order MITC shell elements and it is shown in blue with the initial
geometry and the undeflected C-wing. It is evident that surface-based FFD successfully moved the internal
structure during the initial shape change without distorting the individual components.

The aerostructural analysis of the C-wing uses a Mach number of 0.785 at an AoA of 0.0◦, and it
assumes an altitude of 35, 000 feet. The material used for the structures is based on the 7075 Aluminum
with a Poisson’s ratio of 0.33 and Young’s modulus of 70GPa. All structural components in the wing have a
thickness of 7.5mm. These parameters are chosen to induce a realistic structural deflection in the wing, which
is observed in the final geometry shown on the right in Figure 14. The aerostructural analysis converged
by 7 orders of magnitude in 11 nonlinear block Gauss-Seidel iterations, requiring a total solution time of
approximately 11 minutes with 64 processors. Figure 15 shows that the aspect ratio distribution has not
changed significantly from the initial grid. Thus, the quality of the grid generated around the initial geometry
shown in Figure 14 has been preserved. This study demonstrates that the geometry parameterization and
mesh movement algorithm has sufficient flexibility and robustness to be extended to applications involving
exploratory design optimization, as well as gradient-based multi-start optimization.48

VII.B. Inviscid Transonic Wing Sweep Optimization

There is a fundamental tradeoff between weight and drag in the design of aircraft wings. For instance,
at transonic speeds, increasing the quarter-chord sweep angle of a wing reduces the wave drag, but the
corresponding increase in the weight may overshadow the drag benefit in such a way that the resulting range
is reduced. The main objective of this section is to investigate whether the current framework is able to
capture this important tradeoff correctly in the context of an aerostructural optimization of a conventional
planar wing.

The choice of the objective function in optimization influences the final optimized design. In the practical
design of aircraft wings, the objective is carefully chosen based on the design requirements for a particular
aircraft. However, for the purpose of this study, only the tradeoff between weight and drag is of interest.
For this reason, the objective function has the form

J = β
D
D0

+ (1− β)
W
W0

, (29)

where β is a parameter between zero and unity, D is the inviscid drag of the wing in cruise, W is the
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Figure 16: Grid resolution of the surface and sym-
metry plane for the fine optimization mesh.

Figure 17: The planforms for the three wings show
that the optimal sweep angle, Λ, increases with in-
creasing β, i.e. increasing emphasis on drag.

calculated weight of the wing satisfying the structural failure constraints at a 2.5g load condition, and D0

and W0 are the respective initial values. As β is varied from zero to unity, the emphasis on drag in the
objective function is increased while reducing the emphasis on weight. Three values for β have been chosen:
0.0, 0.5, and 1.0.

There are two lift constraints; one corresponds to the cruise load condition, the other to the 2.5g load
condition. The cruise Mach number is 0.74 at an altitude of 30, 000 feet while the Mach number for the
2.5g load condition is 0.85 at an altitude of 20, 000 feet. Since the weight of the wing is a function of the
structural thickness values, it changes over the course of the optimization. The total weight of the aircraft is
assumed to be equal to the computed weight of the wing plus a fixed weight of 785, 000N. This fixed weight
is estimated based on the maximum takeoff weight of a Boeing 737-900 discounted by the approximate wing
weight. The approximate wing weight is equal to 7% of the maximum takeoff weight.

The stresses on the wing due to the aerodynamic loads at the 2.5g load condition are aggregated using
three KS functions with an aggregation parameter of 30.0. There is one KS function for the ribs and spars,
one for the top skin, and one for the bottom skin of the wing. These KS functions are constrained to ensure
structural integrity of the wing. The material is based on the 7075 Aluminum with a Poisson’s ratio of 0.33
and Young’s modulus of 70GPa. The yield stress is 434MPa, and a safety factor of two is applied. The
reduction in the thickness of the wing is limited to 10% of the initial value.

The aerostructural optimizations are initiated with a planar wing geometry based on the Boeing 737-900
planform. Figure 3 shows the layout of the wing and the structures inside the wingbox. Initially, a coarse
CFD grid is used with 193, 536 nodes and 112 blocks. Once the optimizer satisfies the nonlinear constraints
on this coarse mesh, the optimization is restarted using a finer mesh with 653, 184 nodes and 112 blocks.
Figure 16 shows the grid resolution of the surface and symmetry plane for the fine mesh. Each block is
parameterized with 6 × 6 × 6 control points. The upper and lower surfaces of the wing are parameterized
with 10 B-spline surface patches. The structures mesh has 30, 473 second-order MITC shell elements.

The initial airfoil is the RAE 2822. The optimizer is free to change the tip twist and section shape at 16
spanwise stations in addition to the quarter-chord sweep angle. Each spanwise station is parameterized by
24 control points, 14 of which are design variables. The sweep angle is varied in such a way that the initial
span of the wing is maintained. The total number of geometric design variables is equal to 226. Furthermore,
there are a total of 156 structural design variables which determine the thickness of structural components
inside the wingbox. Finally, there are two angle of attack design variables; one for cruise, the other for the
2.5g load condition.
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Figure 18: Cruise and 2.5g load distributions along
the span of the wing for the β = 1.0 case.
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Figure 19: Cruise and 2.5g load distributions along
the span of the wing for the β = 0.0 case.

As β is varied from 0.0 to 1.0, i.e. as more emphasis is placed on drag and less on weight, the optimizer
should take advantage of the available freedom to increase the sweep angle of the wing in order to reduce drag.
As a result, the sweep angles of the optimized designs should increase with increasing β. Figure 17 shows the
planform of the three optimized wings. It is clear that the optimizer has produced the expected trend. This
means that the present aerostructural optimization framework is capable of capturing the tradeoff between
weight and drag. Furthermore, it is interesting to note that the quarter-chord sweep angle of the optimized
wing for the β = 0.5 case is equal to 23◦, close to that of the Boeing 737-900, which is 25◦.

Figures 18 and 19 show the spanwise lift distributions at the cruise and 2.5g load conditions for the
β = 1.0 and β = 0.0 cases, respectively. All lift values have been normalized by the elliptical lift at the
root of the wing for cruise. For the β = 1.0 case, the cruise lift distribution closely follows the elliptical
load, while the 2.5g spanwise lift distribution is much more triangular in comparison to cruise. This means
that the optimizer is taking advantage of aeroelastic tailoring to minimize inviscid drag in cruise both by
maintaining an optimal lift distribution and increasing the quarter-chord sweep angle. This is done while
maintaining the structural integrity of the wing at the 2.5g load condition by reducing the tip loading. It is
also insightful to examine the β = 0.0 case. With β = 0.0, the lift distributions for both the cruise and 2.5g
load conditions are triangular because the objective function is simply the normalized weight of the wing.
At the 2.5g load condition, the tip loading is in fact negative allowing for a significant reduction in the root
bending moment.

The β = 0.0 case is particularly difficult to converge. With β = 0.0, the objective function is equal to the
normalized weight of the wing. Since the quarter-chord sweep angle is free to change, the optimizer reduces
the sweep as much as possible in order to take advantage of the corresponding reduction in structural weight.
This leads to designs that have strong shock waves on the upper and lower surfaces of the wing. As a result,
the β = 0.0 case presented in this paper is not converged as deeply as the rest of the cases. The highest
nonlinear constraint violation for this case is 5.3×10−4, almost two orders of magnitude larger than the rest
of the cases. Therefore, the reader should not attach too much significance to the value of the quarter-chord
sweep angle for this case. However, this does not skew the main conclusions because the expected trends
have indeed been recovered.

Figures 20 and 21 show the optimized thickness distribution of structural components for the β = 0.0 and
β = 1.0 cases, respectively. The optimizer has increased the thickness inboard in both cases. Furthermore,
it is clear that the β = 0.0 has lighter components in comparison to the β = 1.0 case. Although only a single
critical structural load condition has been considered in all cases, these results show that at least some of
the correct trends in the structural sizing of the wings have been captured.
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Figure 20: The optimized thickness distribution of structural components for the β = 0.0 case.
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Figure 21: The optimized thickness distribution of structural components for the β = 1.0 case.

VIII. Conclusion

This paper describes and demonstrates the application of the integrated geometry parameterization and
mesh movement algorithm of Hicken and Zingg16 to high-fidelity aerostructural optimization problems. This
approach analytically describes the undeflected geometry and the flying shape of the design using B-spline
surface control points. It has numerous advantages compared to other CAD-free geometry parameterization
techniques which operate on discrete geometry representations. The geometry parameterization is tightly
integrated with an efficient and robust mesh movement algorithm that allows high quality computational
grids to be obtained for the aerodynamic domain in response to any shape changes. The present framework
includes the introduction of a novel structural mesh movement strategy. A three-field formulation has
also been proposed to simplify the analysis and the coupled adjoint problem, where B-spline control point
coordinates are treated as explicit state variables. Implementation details on the aerostructural solution
procedure and the coupled adjoint calculations have also been provided.

The accuracy of the described framework is validated via several analysis and optimization studies.
First, effects of the surface fitting during displacement transfer have been quantified for both analysis and
optimization. The study shows that although the B-spline surface does not exactly capture the displacements
described by the original transfer scheme,22,23,24 it does not affect the grid convergence of functional values.
The same study further shows that during an analysis, forces and energy are conserved to approximately the
same degree with and without the displaced surface fitting. In the second study, the present framework has
accurately modeled static aerostructural experimental data from the HIRENASD project. A further study
verifies the coupled adjoint gradient calculation through comparison with finite-difference approximations
using varying step sizes. The minimum relative error is on the order of 10−8. Based on the above studies, it
can be concluded that the present framework is sufficiently accurate to be used in practical aerostructural
design problems.

Two examples are included to show how the present framework performs in aerostructural applications.
The first case is the analysis of a C-wing that is generated from a simpler geometry using the integrated
geometry parameterization and mesh movement methodology. This has demonstrated the robustness of the
framework in the presence of aggressive shape changes. The framework is also applied in a wing sweep
optimization study involving a realistic number of design variables. The results of this study accurately
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reflect the fundamental tradeoff between weight and drag in aerostructural design problems.
Future development will include the application of the present framework to more practical design

problems and exploratory optimization studies. The gradient calculations will be extended to incorpo-
rate aerostructural RANS analysis. More efficient and robust aerostructural solution strategies, such as
monolithic methods, will be sought to further improve the feasibility and convenience of this framework as
a practical design tool.
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