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Bayesian optimizers have several desirable properties that make them well suited for various
aerodynamic shape optimization applications. For example, the design space can often be
multimodal, and Bayesian optimizers are efficient global optimizers. Bayesian optimizers also
enable the use of mixed-fidelity data, the use of inexact function and gradient evaluations,
and uncertainty quantification thanks to their use of probabilistic surrogates. The challenges
of applying a Bayesian optimizer to aerodynamic shape optimization problems include the
high-dimensional design space, the nonlinear constraints, and their limited application to local
optimization. A local optimization framework for a gradient-enhanced Bayesian optimizer is
developed in this paper that is shown to be competitive with the popular quasi-Newton based
optimizer SNOPT for the nonlinearly constrained aerodynamic shape optimization of a transonic
airfoil. A recently developed preconditioning method is used to address the ill-conditioning of
the gradient-enhanced covariance matrix, which enables the Bayesian optimizer to converge
the optimality as deeply as SNOPT. With these developments, gradient-enhanced Bayesian
optimization represents a versatile option for a wide range of challenging aerodynamic shape
optimization problems, including unimodal and multimodal problems, and chaotic flows where
calculating accurate gradients is challenging.

I. Introduction
Aerodynamic shape optimization enables the design of aircraft that generate reduced drag while satisfying geometric,

trim, and other constraints [1]. Challenges of performing aerodynamic shape optimization include the significant
computing resources required for the computational fluid dynamics (CFD) simulations, the presence of several nonlinear
constraints, and a design space that is high-dimensional and potentially multimodal [2, 3]. There is also growing
interest in using large-eddy simulation for aerodynamic shape optimization, which presents additional challenges,
namely greater computational resources and memory requirements, and most challenging of all, chaotic flows [4, 5].
Conventional methods to calculate sensitivities, such as the adjoint method, break down for chaotic systems and the
alternative methods that have been developed provide inexact gradients [6–8].

Gradient-based optimizers have been found to be more effective than gradient-free optimizers for aerodynamic shape
optimization due to the high-dimensional design space [9]. The gradients for the objective and nonlinear constraints can
be calculated efficiently using the adjoint method [10, 11]. Historically, quasi-Newton based optimizers have been used
for aerodynamic shape optimization [12, 13]. They can handle linear and nonlinear constraints and are effective in
a high-dimensional design space [14]. When the design space is multimodal, quasi-Newton based optimizers are at
risk of getting stuck in a local minimum that results in a suboptimal design. To avoid this, gradient-based multistart
has been used, which requires a large number of expensive flow solves to be performed [2, 3]. Another drawback of
quasi-Newton optimizers is that they are deterministic and thus cannot quantify the error in the function or gradient
evaluations that they are provided. An inexact gradient that does not point in a direction of descent could cause a
quasi-Newton optimizer to stall since it cannot find a suitable step size to reduce the function of interest [14].

Bayesian optimization is well suited for global optimization and to handle inexact function and gradient evaluations
[15, 16]. A Bayesian optimizer uses a Gaussian process (GP) to form a probabilistic surrogate to approximate the
function of interest. The GP can be provided with inexact function and gradient evaluations and it will estimate their
uncertainty. If the data is noise-free, the posterior of the GP can interpolate all previous function evaluations, and
gradients if they are available, thus making it well suited for multimodal design spaces [15, 17]. Unlike gradient-based
multistart, where each optimization is performed independently, all of the function and gradient evaluations can be used
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by the Bayesian optimizer to perform the global optimization efficiently, i.e. with as few expensive function evaluations
as possible.

Other desirable properties of Bayesian optimizers that could prove useful for aerodynamic shape optimization
include being able to handle mixed-fidelity data and inexact function and gradient evaluations. This latter advantage
would be useful to perform aerodynamic shape optimization when the flow is chaotic since only inexact gradients can be
calculated in such cases [6–8]. Chaotic flows arise for example with the use of large-eddy simulations, where there is
growing interest in using them for optimization [4, 5]. Bayesian optimizers are able to efficiently use inexact function
and gradient evaluations since they utilize a probabilistic surrogate, which is commonly a GP [17].

Bayesian optimization has previously been used with and without gradients to perform optimization for various
aerospace applications involving structures, aerodynamics, and tuning turbulence model coefficients [18–20]. Some of
the challenges faced in these and other applications of Bayesian optimizers include the ill-conditioning of the covariance
matrix, particularly when gradients are used, the handling of nonlinear constraints, and the limited use of Bayesian
optimizers for local optimization.

Using a gradient-enhanced Bayesian optimizer instead of a gradient-free variant helps alleviate the curse of
dimensionality [21, 22]. Unfortunately, its use has been limited by the severe ill-conditioning of the gradient-enhanced
covariance matrix [23]. The ill-conditioning problem is also present for gradient-enhanced Kriging [19, 24]. Various
methods were developed to mitigate this problem, such as limiting how close the evaluation points can get to each other
[25], constraining the hyperparameters [26, 27], or removing evaluation points until the condition number is sufficiently
low [24, 28, 29]. All of these methods result in a less accurate surrogate and are undesirable to perform efficient local
optimization. This paper uses a recently developed method that preconditions and regularizes the gradient-enhanced
covariance matrix to ensure that its condition number is below a user-set threshold [30].

For the handful of methods that have been developed for Bayesian optimizers to perform constrained optimization,
a separate GP is generally used to approximate each of the nonlinear constraints [31–33]. The most popular method
takes the product of the expected improvement acquisition function with the probabilities that each of the nonlinear
constraints are satisfied [31, 34]. Unfortunately, this method can only be applied to nonlinear inequality constraints,
whereas nonlinear equality constraints are common for aerodynamic shape optimization, e.g. lift and trim constraints.
The local optimization framework developed in this paper is able to handle nonlinear inequality and equality constraints.
Instead of using the posteriors of the GPs approximating the nonlinear constraints to form an acquisition function, their
means are provided to the acquisition function minimizer as nonlinear constraints.

The objective of this paper is to develop an efficient local optimization framework for nonlinearly constrained
problems using gradient-enhanced Bayesian optimization. This will complement the advantageous properties that
Bayesian optimizers have for solving problems that are multimodal or have inexact gradients. This expanded versatility
will enable the application of Bayesian optimizers to a wider range of optimization problems that includes aerodynamic
shape optimization.

The notation used in this paper is presented in Section II, gradient-enhanced GPs are introduced in Section III,
and the preconditioning method to address the ill-conditioning of the covariance matrix is summarized in Section IV.
Details on the Bayesian optimizer, such as its acquisition function and its trust region, can be found in Section V. A
nonlinearly constrained aerodynamic shape optimization problem is presented in Section VI. Finally, the conclusions of
this paper are in Section VII.

II. Notation
Scalars are denoted with lowercase non-bolded symbols, which are either Greek letters or sans serif Latin letters. For

integers, the letter 𝑛 is typically used along with a subscript, e.g. 𝑛𝑥 and 𝑛𝑑 are used to indicate the number of evaluation
points and dimensions, respectively. Vectors are denoted with bold lowercase symbols and matrices with uppercase
symbols. For example, the matrix of nodal locations is given by X ∈ R𝑛𝑥×𝑛𝑑 , its 𝑖-th row is given by 𝒙𝑖:, and its entry at
the 𝑖-th row and 𝑗-th column is given by 𝑥𝑖 𝑗 . Lower and upper bounds are denoted by, for example, 𝒙 and 𝒙, respectively.

III. Gradient-enhanced Gaussian processes
A GP is typically used as the probabilistic surrogate required for a Bayesian optimizer [25, 35]. Fully defining a

Gaussian process requires a mean function, which is often taken to be a constant, and a covariance function. Two
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popular kernels that are used for the latter are the Gaussian and Matérn 5
2 kernels [17]:

𝑘G (𝒙, 𝒚; 𝜸) = 𝑘G ( ¤𝒓) = 𝑒−
1
2 ∥ ¤𝒓 ∥

2
(1)

𝑘M 5
2
(𝒙, 𝒚; 𝜸) = 𝑘M 5

2
( ¤𝒓) =

(
1 +

√
3∥ ¤𝒓∥ + ∥ ¤𝒓∥2

)
𝑒−

√
3∥ ¤𝒓 ∥ , (2)

where 𝒙, 𝒚 ∈ R𝑛𝑑 are points in the parameter space, 𝜸 ∈ R𝑛𝑑+ is a vector of hyperparameters, and ¤𝑟𝑖 = 𝛾𝑖 (𝑥𝑖 − 𝑦𝑖) ∀ 𝑖 ∈
{1, . . . , 𝑛𝑑}. The Gaussian and Matérn 5

2 kernels are popular since they are simple, they contain hyperparameters
that can be tuned, and they are at least twice continuously differentiable, which makes them suitable for use with a
gradient-enhanced Gaussian process. The Gaussian kernel is infinitely continuously differentiable, while the Matérn 5

2
kernel is only twice continuously differentiable. The gradient-free kernel matrix, which can be formed using either of
the presented kernel functions, is given by

K = K(X; 𝜸) =


1 𝑘 (𝒙1:, 𝒙2:, ; 𝜸) . . . 𝑘 (𝒙1:, 𝒙𝑛𝑥 :; 𝜸)

𝑘 (𝒙2:, 𝒙1:; 𝜸) 1 . . . 𝑘 (𝒙2:, 𝒙𝑛𝑥 :; 𝜸)
...

...
. . .

...

𝑘 (𝒙𝑛𝑥 :, 𝒙1:; 𝜸) 𝑘 (𝒙𝑛𝑥 :, 𝒙2:; 𝜸) . . . 1,


, (3)

where 𝑥𝑖: is the 𝑖-th row of X, which holds the 𝑛𝑥 points in the design space where the function of interest has been
evaluated. In general, the 𝑖-th diagonal entry of K is 𝑘 (𝒙𝑖:, 𝒙𝑖:; 𝜸), which is simply unity for the Gaussian and Matérn 5

2
kernels, but not for all kernels [17]. For a gradient-enhanced Gaussian process we also require the gradient-enhanced
kernel matrix:

K∇ (X; 𝜸) =


K 𝜕K

𝜕𝑦1
. . . 𝜕K

𝜕𝑦𝑑
𝜕K
𝜕𝑥1

𝜕2K
𝜕𝑥1𝜕𝑦1

. . . 𝜕2K
𝜕𝑥1𝜕𝑦𝑑

...
...

. . .
...

𝜕K
𝜕𝑥𝑑

𝜕2K
𝜕𝑥𝑑𝜕𝑦1

. . . 𝜕2K
𝜕𝑥𝑑𝜕𝑦𝑑


, (4)

where the derivatives of K with respect to 𝑥𝑖 and 𝑦 𝑗 indicate derivatives of the kernel function with respect to the 𝑖-th
entry of its first and second arguments, respectively. The noise-free gradient-enhanced covariance matrix is given by

Σ∇ (X; �̂�K, 𝜸, 𝜂K∇ ,W) = �̂�2
K
(
K∇ (X; 𝜸) + 𝜂K∇W

)
, (5)

where the hyperparameter �̂�2
K is the variance of the stationary residual error, W is a diagonal matrix with nonnegative

entries, and 𝜂K∇ ≥ 0 is a nugget that regularizes the covariance matrix to help alleviate its ill-conditioning.
The mean and variance of the gradient-enhanced Gaussian process are evaluated with [35]

𝜇GP (𝒙) = 𝛽 + �̂�2
K 𝒌⊤∇ (𝒙)Σ

−1
∇

(
𝒇∇ − 𝛽1̌

)
(6)

𝜎2
GP (𝒙) = �̂�2

K

(
𝑘 (𝒙, 𝒙) − �̂�2

K 𝒌⊤∇ (𝒙)Σ
−1
∇ 𝒌∇ (𝒙)

)
, (7)

where 𝛽 is the constant for the mean function of the Gaussian process, 1̌ = [1⊤𝑛𝑥
, 0⊤𝑛𝑥𝑛𝑑

]⊤, and

𝒌∇ (𝒙; X) =


𝒌 (X, 𝒙)
𝜕𝒌 (X,𝒙)

𝜕𝑥1
...

𝜕𝒌 (X,𝒙)
𝜕𝑥𝑛𝑑


, 𝒇∇ (X) =


𝒇 (X)
𝜕 𝒇 (X)
𝜕𝑥1
...

𝜕 𝒇 (X)
𝜕𝑥𝑛𝑑


, (8)

where 𝒇 (X) is the evaluation of the function of interest evaluated at each of the rows of X. A challenge of using
gradient-enhanced Gaussian processes is that Σ∇ can become extremely ill-conditioned. This is addressed in Section IV.

The hyperparameters 𝛽, �̂�2
K, and 𝜸 are set by maximizing the marginal log-likelihood [27, 36–38]:

𝐿 (𝜸, 𝛽, �̂�2
K; X, 𝒇∇ , 𝜂K∇ ) =

𝑒−
( 𝒇∇−𝛽1̂)⊤Σ−1

∇ ( 𝒇∇−𝛽1̂)
2

(2𝜋)
𝑛𝑥 (𝑛𝑑+1)

2
√︁

det (Σ∇)
. (9)
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(a) Gradient-free GP (b) Gradient-enhanced GP

Fig. 1 GPs with and without gradients that are approximating the function from Eq. (13) with 𝛽 = −0.62,
�̂�2

K = 1.07, and 𝛾 = 1.7.

Closed form solutions that maximize 𝐿 can be found for 𝛽 and, for the noise-free case considered in this paper, �̂�2
K:

𝛽(𝜸; X, 𝒇∇ , 𝜂K∇ ) =
1̌⊤Σ−1

∇ 𝒇∇

1̌⊤Σ−1
∇ 1̌

(10)

�̂�2
K (𝜸; X, 𝒇∇ , 𝜂K∇ , 𝛽) =

(
𝒇∇ − 𝛽1̌

)⊤ (
K∇ + 𝜂K∇W

)−1
(
𝒇∇ − 𝛽1̌

)
𝑛𝑥 (𝑛𝑑 + 1) . (11)

Substituting the solution for �̂�2
K from Eq. (11) into Eq. (9), applying a natural logarithm, and dropping constant terms

gives

ln(𝐿 (𝜸; X, 𝜂K∇ , �̂�K)) = −
𝑛𝑥 (𝑛𝑑 + 1) ln(�̂�2

K) + ln(det(K∇ + 𝜂K∇W))
2

. (12)

The function ln(𝐿) can be efficiently maximized with a gradient-based optimizer since it is smooth and continuous
[27, 37].

To highlight the advantage of using gradients to construct a GP, the following one-dimensional function is
approximated

𝑓 (𝑥) = sin(𝑥) + sin
(

10𝑥
3

)
. (13)

This function was evaluated at four points and its hyperparameters were selected by maximizing the marginal log-
likelihood from Eqs. (10), (11), and (12). The gradient-free and gradient-enhanced GP can be seen in Figs. 1a and 1b,
respectively. It is clear from these figures that the use of gradients to construct the GP provides a significantly more
accurate surrogate with lower uncertainty. The benefit of using gradients grows as the dimensionality of the problem
increases since they provide more information relative to a single function evaluation. For a gradient-enhanced GP to be
effective, it is crucial that the ill-conditioning of its covariance matrix be addressed, which is considered in the following
section.

IV. Addressing the ill-conditioning of K∇
The gradient-free kernel matrix K and especially the gradient-enhanced kernel matrix K∇ are known to quickly

become severely ill-conditioned as the number of evaluation points increases and as they get closer together [21, 39].
The preconditioning method from Marchildon and Zingg [30] to address this ill-conditioning problem is summarized in
this section.

A common approach to mitigate this is to regularize the matrix, i.e. to add a nugget 𝜂 > 0 to its diagonal [40]. The
minimum and maximum eigenvalues of K are 𝜆min and 𝜆max, respectively, which are real and nonnegative since the
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Algorithm 1 Stable Cholesky decomposition for gradient-enhanced GP
1: Select evaluation points X and hyperparameters 𝜸
2: Calculate ¤K∇ with Eq. (16)
3: Calculate 𝜂 ¤K∇

with Eq. (19), or Eq. (18) for the Gaussian kernel
4: ¤L ¤L⊤ = ¤K∇ + 𝜂 ¤K∇

I
5: L = P¤L, where �̂�2

KLL⊤ = �̂�2
K

(
K∇ + 𝜂 ¤K∇

PP
)
= Σ∇

matrix is symmetric positive semidefinite [17]. To ensure that 𝜅(K + 𝜂KI) ≤ 𝜅max, we select 𝜂K to satisfy the following
relation:

𝜅(K + 𝜂KI) − 𝜆max + 𝜂K
𝜆min + 𝜂K

≤ 𝜆max + 𝜂K
𝜂K

≤ 𝜅max

𝜂K ≥ 𝜆max
𝜅max − 1

, (14)

where the condition number is based on the ℓ2 norm and 𝜆max is the largest eigenvalue of K. For a kernel that gives
𝑘 (𝒙, 𝒙; 𝜸) = 1, such as the Gaussian and Matérn 5

2 kernels from Eqs. (1) and (2), respectively, the diagonal of K is unity
and thus its trace is 𝑛𝑥 . Since

∑
𝜆𝑖 = tr (K) = 𝑛𝑥 and 𝜆𝑖 ≥ 0∀ 𝑖 ∈ {1, . . . , 𝑛𝑥}, we have 𝜆max ≤ tr (K) = 𝑛𝑥 . From

Eq. (14), a sufficient nugget 𝜂K to ensure that 𝜅(K(𝜸) + 𝜂KI) ≤ 𝜅max ∀𝜸 > 0 is

𝜂K∇ =
𝑛𝑥

𝜅max − 1
. (15)

For the gradient-enhanced case, this approach to select a nugget value cannot be used on its own to ensure that
𝜅(K∇ (𝜸) + 𝜂K∇ I) ≤ 𝜅max ∀𝜸 > 0 since tr (K∇) = 𝑛𝑥 (1 + 𝜸𝑇1). Consequently, using Eq. (14) to select 𝜂K∇ with
𝜆max ≤ tr (K∇) results in a value of 𝜂K∇ that can become arbitrary large if any entry in 𝜸 is large. To avoid this, the
gradient-enhanced kernel matrix can be preconditioned with [24, 30]

¤K∇ = P−1K∇P−1 (16)

P = diag
(√︁

diag(K∇)
)
. (17)

Eq. (16) ensures that the diagonal entries of ¤K∇ are all unity and thus tr
( ¤K∇

)
= 𝑛𝑥 (𝑛𝑑 + 1), which is independent of

𝜸. Eq. (14) could be used to provide a sufficient 𝜂 ¤K∇
to ensure that 𝜅( ¤K∇ (𝜸) + 𝜂 ¤K∇

I) ≤ 𝜅max ∀𝜸 > 0, but this would
give a nugget value that scales as 𝜂 ¤K∇

= O(𝑛𝑥𝑛𝑑). Instead, the Gershgorin circle theorem can be used to prove that
𝜅( ¤K∇ (𝜸) + 𝜂 ¤K∇

I) ≤ 𝜅max ∀𝜸 > 0 can be ensured for the Gaussian kernel with the following nugget:

𝜂 ¤K∇
(𝑛𝑥 , 𝑛𝑑; 𝜅max) =

1 + (𝑛𝑥 − 1) 1+
√

1+4𝑛𝑑
2 𝑒

− 1+2𝑛𝑑−
√

1+4𝑛𝑑
4𝑛𝑑

𝜅max − 1
, (18)

which scales as 𝜂 ¤K∇
= O(𝑛𝑥

√
𝑛𝑑) [30]. Eq. (18) is specific to the Gaussian kernel and does not guarantee that

𝜅( ¤K∇ (𝜸) + 𝜂 ¤K∇
I) ≤ 𝜅max ∀𝜸 > 0 for all kernels. To ensure the last inequality holds for any kernel, the following nugget

can be used [30]:

𝜂 ¤K∇
(�̂�K, 𝜸, 𝜂K∇ , �̂� 𝑓 , �̂�∇ 𝑓 ; X, 𝜅max) =

max𝑖
∑𝑛𝑥 (𝑛𝑑+1)

𝑗=1

�� ¤K∇
��
𝑖 𝑗

𝜅max − 1
, (19)

which depends on 𝜸, but for the Gaussian kernel it is bounded from above by Eq. (18). Eq. (19) could also be applied to
K in order to provide a smaller nugget value than Eq. (15) while still guaranteeing 𝜅(K(𝜸) + 𝜂KI) ≤ 𝜅max ∀𝜸 > 0.

Algorithm 1 provides the five required steps to get a stable Cholesky decomposition of the gradient-enhanced
covariance matrix Σ∇ . This algorithm can be used when evaluating the mean and variance of the surrogate with Eqs. (6)
and (7), respectively, and when optimizing the hyperparameters with Eqs. (10), (11), and (12). Algorithm 1 considers
the case when there is no noise on the function and gradient evaluations. For the case when there are noisy evaluations,
see Marchildon and Zingg [30].
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V. Bayesian optimization framework for local optimization

A. Optimization problem
Consider the following general constrained optimization problem

min
𝒙≤𝒙≤𝒙

𝑓 (𝒙) subject to A𝑔𝒙 ≤ 𝒃𝑔 (20)

Aℎ𝒙 = 𝒃ℎ

𝑔𝑖 (𝒙) ≤ 0 ∀ 𝑖 ∈ {1, . . . , 𝑛𝑔,nlin}
ℎ𝑖 (𝒙) = 0 ∀ 𝑖 ∈ {1, . . . , 𝑛ℎ,nlin},

where 𝒙 and 𝒙 are the lower and upper bounds on the design variables 𝒙, respectively, for the linear constraints we
have A𝑔 ∈ R𝑛𝑔,lin×𝑛𝑑 , 𝒃𝑔 ∈ R𝑛𝑔,lin , Aℎ ∈ R𝑛ℎ,lin×𝑛𝑑 , 𝒃ℎ ∈ R𝑛ℎ,lin , and 𝒈(𝒙) ∈ R𝑛𝑔,nlin and 𝒉(𝒙) ∈ R𝑛ℎ,nlin are the nonlinear
inequality and equality constraints, respectively.

To track the progress of constrained optimizations we use a merit function and the optimality. First, we consider the
Lagrangian, which is given by

L = 𝑓 (𝒙) + 𝝍⊤
𝑔 𝒈all + 𝝍⊤

ℎ 𝒉all, (21)

where 𝒈all and 𝒉all are vectors holding all of the inequality and equality constraints, respectively, i.e. the bound, linear
and nonlinear constraints from Eq. (20), while 𝝍𝑔 and 𝝍ℎ are the Lagrange multipliers for the inequality and equality
constraints, respectively [14]. The necessary first-order optimality conditions for a solution 𝒙∗ to be a local solution to
Eq. (20) are 𝜕L

𝜕𝒙

��
𝒙∗

= 0, 𝒈(𝒙∗) ≤ 0, 𝒉(𝒙∗) = 0, 𝝍𝑔 ≥ 0, and 𝜓𝑔𝑖𝑔𝑖 = 0∀ 𝑖 ∈ {1, . . . , 𝑛𝑔,nlin} [14].
Our merit function is given by

𝑚(𝒙) = 𝑓 (𝒙) + 𝝍⊤
𝑔 𝒈all + 𝝍⊤

ℎ 𝒉all + 𝜌

(
∥𝒈+∥2

2 + ∥𝒉∥2
2

)
, (22)

which is the Lagrangian along with a quadratic penalty term with 𝜌 = 10 and 𝑔+
𝑖
= max(𝑔𝑖 , 0) ∀ 𝑖 ∈ {1, . . . , 𝑛𝑔,nlin}.

The optimality and feasibility are calculated with

𝜙opt (𝒙) =




𝜕 𝑓 (𝒙)𝜕𝒙

+ 𝝍⊤
ℎ

𝜕𝒉all (𝒙)
𝜕𝒙

𝝍⊤
𝑔

𝜕𝒈all (𝒙)
𝜕𝒙






2

(23)

𝜙fsb (𝒙) =
𝑛ℎ∑︁
𝑖=1

|ℎ𝑖 (𝒙) | +
𝑛𝑔∑︁
𝑖=1

| max(𝑔𝑖 (𝒙), 0) |, (24)

where the optimality is the ℓ2 norm of the gradient of the Lagrangian with respect to the design variables. The Lagrange
multipliers are selected by solving a constrained least-squares problem that seeks to minimize the optimality with the
constraint 𝝍𝑔 ≥ 0, which comes from the first-order optimality conditions.

B. Data region
For global optimization, which is the class of problems that Bayesian optimizers are most commonly applied to,

all of the evaluation points are typically used to construct a surrogate that can be evaluated across the entire design
space [15, 41]. However, for local optimization the surrogate only needs to be accurate in the region around one local
minimum. The maximization of the marginal log-likelihood from Eq. (12) using all of the evaluation points results
in hyperparameters that provide a surrogate that is reasonably accurate around all evaluation points. However, the
surrogate can be more accurate near the local minimum when only evaluation points near the local minimum are used.
A consequence of this is that the surrogate is not as accurate near evaluation points far from the local minimum, which
is not problematic for local optimization.

A data region is used to select the evaluation points that are used to maximize the marginal log-likelihood to select
the hyperparameters and to evaluate the posterior of the GP. The objective and gradient evaluations from all of the
evaluation points in the data region are used. The data region includes the three most recent evaluation points along
with the 20 evaluation points with the shortest Euclidean distance to 𝒙best, which is the evaluation point with the lowest
merit function evaluation from Eq. (22). If too few evaluation points are used, the resulting surrogate will only be
accurate in a very small region around 𝒙best. On the other hand, if too many evaluation points are kept in the data region,
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then the resulting surrogate is less accurate around 𝒙best. The inclusion of the 20 closest points was found to be a good
compromise between these two factors.

It is important to contrast the differing goals of the data region and of the method that reduces the number of
evaluation points to mitigate the ill-conditioning of the covariance matrix [28]. The data region selects evaluation points
to get an accurate local surrogate, while the only consideration of the latter method is to have the condition number of
the covariance matrix below a set threshold. This results in dropping evaluation points that are clustered together, which
occurs near a local minimum, since points that are close to each other make the ill-conditioning problem worse [39].

Another benefit of using the data region is that it reduces the computational cost of selecting the hyperparameters
and of evaluating the posterior of the GP. Each time the hyperparameters are changed, a new Cholesky decomposition is
required for the gradient-enhanced covariance matrix Σ∇ , which has a cost that scales as O

(
𝑛3

data (𝑛𝑑 + 1)3
)
, where

𝑛data is the number of evaluation points in the data region. Once the Cholesky decomposition has been performed, the
marginal cost of evaluating the posterior of the GP is O

(
𝑛2

data (𝑛𝑑 + 1)2) . Therefore, using a data region with 𝑛data ≪ 𝑛𝑥
can significantly reduce the computational cost of selecting the hyperparameters and of evaluating the posterior of the
GP.

C. Trust region
The use of trust regions is common for local optimizers since it helps ensure that the merit function is reduced after

each function evaluation. A trust region can also be used with a Bayesian optimizer to avoid evaluating the posterior of
the GP in regions where it has a large uncertainty.

For quasi-Newton optimizers the objective is approximated with a quadratic model, the constraints are typically
linearized [14], and the trust region is usually a hypersphere around 𝒙best:

𝑔trc (𝒙; 𝒙best) = ∥𝒙 − 𝒙best∥2
2 (25)

≤ 𝑔
𝑗
trc,

where 𝑔 𝑗
trc is the maximum squared Euclidean distance around 𝒙best that satisfies the trust region at the 𝑗-th optimization

iteration. The uncertainty estimate of the GP can also be used to construct a trust region:

𝑔tr𝜎 (𝒙;𝜎GP, 𝑓 , �̂�K, 𝑓 ) =
𝜎2

GP, 𝑓 (𝒙)
�̂�2

K, 𝑓
(26)

=

(
1 − 𝒌⊤∇

(
K∇ + 𝜂K∇W

)−1
𝒌∇

)
(27)

≤ 𝑔
𝑗
tr𝜎 ,

where 𝑔 𝑗
tr𝜎 is the upper bound for this trust region, and the second equality holds for all kernels that satisfy 𝑘 (𝒙, 𝒙) = 1 and

when there are no noisy function or gradient evaluations. Since K∇ + 𝜂K∇W is positive definite, we have 0 ≤ 𝑔tr𝜎 (𝒙) ≤ 1
and thus the upper bound should be set to 0 < 𝑔

𝑗
tr𝜎 < 1∀ 𝑗 ∈ Z+. The circular trust region from Eq. (25) is used at all

iterations. On the other hand, the probabilistic surrogate from Eq. (26) is only used once there have been at least 10
function evaluations since the uncertainty estimate from the posterior of the GP is not accurate if there are too few
function evaluations.

The upper bounds 𝑔 𝑗
trc and 𝑔

𝑗
tr𝜎 for the two trust regions change depending on whether the optimizer is making

progress or not, i.e. whether the merit function is being reduced. The upper bounds for the trust regions are increased by
a factor of two if progress was made at the last iteration, kept constant if progress was made at the second last iteration
but not the last one, and they are reduced if no progress was made during the last two iterations.

D. Hidden constraints
For aerodynamic shape optimization, the numerical optimizer returns new values of the design variables that control

the shape of the geometry. However, certain geometries can cause mesh movement failures or can result in the flow
solver not converging. In these cases, there are no function or gradient evaluations that are returned to the optimizer for
the objective function or for the nonlinear constraints. It is generally not possible to explicitly define a constraint that
determines when these mesh movement or flow solve failures will occur. Therefore, these are commonly referred to as
hidden constraints [42, 43]. These are binary constraints since the only information known about them is whether or not
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they are satisfied at an evaluation point. This makes them challenging to handle since the numerical optimizer does not
know if a small change in the variables will result in these hidden constraints being satisfied or not. Furthermore, the
lack of function and gradient evaluations for the objective and nonlinear constraints prevents the surrogates that are
approximating these functions from being updated when these hidden constraints are not satisfied.

Support vector machines have previously been used to enable a Bayesian optimizer to handle binary constraints [44].
Another approach that has been used to handle hidden constraints is to model them using a radial basis function [42], or
a GP [45]. The only data available to select the hyperparameters of the surrogate approximating them is the sign of the
hidden constraints at the evaluation points, i.e. −1 if they are not satisfied and +1 otherwise. A recent method that was
used to handle hidden constraints for a Bayesian optimizer applied to the aerodynamic shape optimization of an aircraft
was a 𝑘-nearest neighbour classifier [43].

Here the hidden constraints are handled by adding a hypersphere around each of the points where the hidden
constraints are not satisfied. These points are denoted as �̌� and the constraint is given by

𝑔 �̌�𝑖 (𝒙; �̌�𝑖) = ∥�̌�𝑖 − 𝒙∥2
2 ≥ 𝑔

�̌�𝑖
∀ 𝑖 ∈ {1, . . . , 𝑛 �̌�}, (28)

where 𝑛 �̌� is the number of evaluation points where the hidden constraints are not satisfied and 𝑔
�̌�𝑖

is the lower bound for
the constraint. The squared Euclidean distance is used, just like the circle trust region from Eq. (25), since its gradient is
always well defined. However, the constraint around �̌� uses a lower bound on the hypersphere, unlike the circle trust
region 𝑔trc (𝒙), which uses an upper bound. The lower bound 𝑔

�̌�𝑖
is set to 60% of the Euclidean distance between �̌�𝑖

and the closest evaluation point 𝒙 that satisfies the hidden constraints. This method was used to handle the hidden
constraints since it is simple to implement, inexpensive to evaluate, and it was found to be effective with the local
optimization framework that was developed.

E. Acquisition function minimization
The acquisition function is minimized to determine the next point in the design space where the objective and the

nonlinear constraints will be evaluated along with their gradients. This function is intended to balance exploration and
exploitation. The upper confidence and expected improvement are popular choices for acquisition functions and are
given by

𝑞UC (𝒙;𝜔) = 𝜇GP,f (𝒙) − 𝜔𝜎GP, 𝑓 (𝒙) (29)

𝑞EI (𝒙; 𝑓best) =
∫ 𝑓best

−∞
( 𝑓best − 𝑓 )𝜃pdf

(
𝑓 − 𝜇 𝑓 (𝒙)
𝜎 𝑓 (𝒙)

)
𝑑𝑓

=
(
𝑓best − 𝜇 𝑓 (𝒙)

)
𝜃cdf

(
𝑓best − 𝜇 𝑓 (𝒙)

𝜎 𝑓 (𝒙)

)
+ 𝜎 𝑓 (𝒙)𝜃pdf

(
𝑓best − 𝜇 𝑓 (𝒙)

𝜎 𝑓 (𝒙)

)
, (30)

where 𝜔 ≥ 0 promotes exploration when it is larger, 𝑓best = 𝑓 (𝒙best), while 𝜃pdf (·) and 𝜃cdf (·) are the Gaussian
probability and cumulative distribution functions, respectively.

It is common for nonlinear constrained Bayesian optimization to use a separate GP to approximate each of the
individual nonlinear constraints in addition to the objective function. A popular approach to handle the nonlinear
constraints is to use the expected improvement acquisition function with the probability of feasibility [31, 34, 46].

Two drawbacks of this method are that it requires the initial solution to be feasible and it cannot handle nonlinear
equality constraints since in both cases the probability of feasibility will be zero. For aerodynamic shape optimization
nonlinear equality constraints are common, e.g. a lift target. To be able to solve Eq. (20), which includes nonlinear
inequality and equality constraints, the following constrained optimization formulation is used for the minimization of
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the acquisition function:

𝒙next = argmin
𝒙≤𝒙≤𝒙

𝑞(𝒙) subject to A𝑔𝒙 ≤ 𝒃𝑔 (31)

Aℎ𝒙 = 𝒃ℎ

𝑔trc (𝒙) ≤ 𝑔
𝑗
trc

𝑔tr𝜎 (𝒙) ≤ 𝑔
𝑗
tr𝜎

𝑔 �̌�𝑖 (𝒙; �̌�𝑖) ≥ 𝑔
�̌�𝑖

∀ 𝑖 ∈ {1, . . . , 𝑛 �̌�}

𝜇GP,𝑔𝑖 (𝒙) ≤ 0 ∀ 𝑖 ∈ {1, . . . , 𝑛𝑔,nlin}
𝜇GP,ℎ𝑖 (𝒙) = 0 ∀ 𝑖 ∈ {1, . . . , 𝑛ℎ,nlin},

where 𝒙next is the next point in the design space where the objective and nonlinear constraints will be evaluated, the
trust regions 𝑔trc (𝒙) and 𝑔tr𝜎 (𝒙) are obtained from Eqs. (25) and (26), respectively, and Eq. (28) provides 𝑔 �̌�𝑖 (𝒙). The
nonlinear constraints are enforced by providing the mean of the posterior of the GPs approximating the nonlinear
constraints and setting the bounds to be the same as the nonlinear constraints from the original optimization problem
from Eq. (20). The means of the posteriors of the GPs approximating the nonlinear constraints are used since they are
inexpensive to evaluate and should be a good approximation to the nonlinear constraints in the trust regions.

After Eq. (31) is solved, the objective and nonlinear constraints are evaluated at 𝒙next along with their gradients. A
new data region is selected as detailed in Section V.B, the hyperparameters are updated by maximizing the marginal
log-likelihood from Eq. (12), the upper bounds for the circular and trust regions are updated depending on whether
progress was made during the last two iterations or not, and then Eq. (31) is solved once again. This process is repeated
until the desired convergence criteria are achieved.

VI. Aerodynamic shape optimization

A. Methodology and problem definition
For our aerodynamic shape optimization study we use Jetstream, which has been developed at the University of

Toronto [47, 48]. The computational fluid dynamics simulations come from Diablo, which solves the Reynolds-averaged
Navier–Stokes (RANS) equations with the Spalart-Allmaras one-equation turbulence model [49, 50]. Second-order
summation-by-parts operators are used for the spatial discretization on a multiblock structured mesh, and a parallel
Newton-Krylov-Schur algorithm is used to converge to a steady state. Geometry control is achieved with the use of
free-form deformations and B-splines, and the mesh deformation is handled with an efficient linear elasticity model [47].
Gradients for the objective and nonlinear constrains are calculated in Jetstream using the discrete adjoint method [47].
Jetstream has historically used the gradient-based optimizer SNOPT, which uses a sequential quadratic programming
method with the Hessian approximated using the BFGS update formula [51]. A cross validation of Jetstream and the
in-house aerodynamic shape optimization framework at Bombardier demonstrates Jetstream’s effectiveness for complex
aerodynamic shape optimization problems [48].

Lift-constrained drag minimization of an airfoil at transonic speed was performed using Jetstream along with the
Bayesian optimizer presented here and its performance is compared to the performance of SNOPT. The initial geometry
is the RAE 2822 airfoil. Due to a limitation in the mesh movement implementation for two-dimensional cases, the
airfoil needed to be extruded to three dimensions for this case. A single block was used in the extruded direction with 11
nodes, and symmetry boundary conditions were applied. The three-dimensional mesh had a total of 292 248 nodes,
26 568 nodes for each two-dimensional slice around the airfoil. The three-dimensional RANS equations were solved
with the Spalart-Allmaras one-equation turbulence model at a (two-dimensional) Mach number of 0.74, a Reynolds
number of 9 × 106, and the flow was assumed to be fully turbulent.

Two cross sections with design variables were used, which were linked together with linear equality constraints.
Each cross section has six design variables on the top, and six on the bottom that control the thickness of the airfoil.
This makes for a total of 25 design variables with the angle of attack. Bound constraints were used but none of them
were active at the solution. Linear inequality constraints were used to ensure that the thickness of the airfoil at each
design point was no smaller than 0.25 times and no greater than 4.0 times the initial thickness of the airfoil. Similar
to the bound constraints, none of these linear inequality constraints were active at the solution. A nonlinear equality
constraint was included to set the coefficient of lift 𝐶L to 0.78, and a nonlinear inequality constraint was used to ensure
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that the optimized geometry has a cross-sectional area 𝑔area that is no smaller than that of the initial geometry. Both
nonlinear constraints were active at the solution. The objective to be minimized is the coefficient of drag 𝐶D, and the
optimization problem is given by

min
𝒙≤𝒙≤𝒙

𝐶D subject to A𝑔𝒙 ≤ 𝒃𝑔 (32)

Aℎ𝒙 = 𝒃ℎ

𝐶L = 0.78
𝑔area ≥ 0.0778.

B. Dimension reduction with linear equality constraints
By extruding the airfoil to a third dimension the number of design variables is nearly doubled, from 13 to 25, where

the angle of attack is the only design variable that is not impacted. Linear equality constraints are used such that the
design variables at the same location on the two cross sections are equal. This does not impact the final optimized shape
of the airfoil, but it does significantly impact the performance of the Bayesian optimizer. It is shown in Appendix A.A
that increasing the number of design variables results in weaker correlations between evaluation points and thus greater
uncertainty in the surrogate.

The linear equality constraints can be used to reduce the number of free variables. We begin by assuming that the
matrix Aℎ for the set of linear equality constraints Aℎ𝒙 = 𝒃ℎ has full row rank and that 𝑛ℎ,lin < 𝑛𝑑 , i.e. there are fewer
linear equality constraints than design variables. If the rank of Aℎ is less than 𝑛ℎ,lin, then there are redundant constraints
that can be removed. A general solution that satisfies the linear equality constraints is given by

𝒙 = 𝒙𝑝 + Zℎ �̃�, (33)

where 𝒙𝑝 is a non-unique solution (if 𝑛ℎ,lin < 𝑛𝑑) that satisfies the linear equality constraints, �̃� ∈ R𝑛𝑑−𝑛ℎ,lin is the
solution vector in the reduced dimension space, and Zℎ ∈ R𝑛𝑑×(𝑛𝑑−𝑛ℎ,lin ) spans the null space of Aℎ, i.e. AℎZℎ = O. The
null space matrix Zℎ is non-unique and its selection is described in Appendix A.B. One method of calculating 𝒙𝑝 is with

𝒙𝑝 = A+
ℎ𝒃ℎ, (34)

where A+
ℎ

is the Moore-Penrose pseudoinverse of Aℎ. The optimization of the nonlinearly constrained optimization
problem from Eq. (20) in the lower-dimensional problem is given by

min
�̃�

𝑓 (�̃�) subject to Ã𝑔 �̃� ≤ �̃�𝑔 (35)

𝑔trc (𝒙) ≤ 𝑔
𝑗
trc

𝑔tr𝜎 (𝒙) ≤ 𝑔
𝑗
tr𝜎

𝑔 �̌�𝑖 (�̃�; �̌�𝑖) ≥ 𝑔
�̌�𝑖

∀ 𝑖 ∈ {1, . . . , 𝑛 �̌�}

𝜇GP,𝑔𝑖 (�̃�) ≤ 0 ∀ 𝑖 ∈ {1, . . . , 𝑛𝑔,nlin}
𝜇GP,ℎ𝑖 (�̃�) = 0 ∀ 𝑖 ∈ {1, . . . , 𝑛ℎ,nlin},

where

Ã𝑔 =


Zℎ

−Zℎ

A𝑔Zℎ

 , �̃�𝑔 =


𝒙 − 𝒙𝑝

𝒙𝑝 − 𝒙

𝒃𝑔 − A𝑔𝒙𝑝

 .
Appendix A.C derives Ã𝑔 and �̃�𝑔 by applying a linear transformation to the linear inequality constraints and the bound
constraints. The gradient of the objective function and nonlinear constraints with respect to �̃� is also provided in
Appendix A.C.

For the aerodynamic shape optimization problem from Eq. (32) there are 14 linear equality constraints, 12 that
relate the two cross sections and the last two relate the first and last design variables on the top and bottom of the cross
sections. The optimization problem from Eq. (35) therefore has 𝑛𝑑 − 𝑛ℎ,lin = 11 design variables, while Eq. (20) has
𝑛𝑑 = 25 design variables.
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(a) Full range of drag counts: 𝐶D × 104
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(b) Drag counts near the minimum: 𝐶D × 104
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(c) Normalized optimality from Eq. (23)
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(d) Feasibility from Eq. (24)

Fig. 2 Convergence history for the Bayesian optimizer with different settings for the constrained aerodynamic
shape optimization of a transonic airfoil. The Bayesian optimizer uses the Gaussian 𝑘G and Matérn 5

2 𝑘M 5
2

kernels from Eqs. (1) and (2), respectively. The acquisition functions 𝑞UC and 𝑞EI come from Eqs. (29) and (30),
respectively, and the dimension reduction from Section VI.B is used for all cases except the one in magenta.

C. Optimization results
Fig. 2 shows the optimization results for the Bayesian optimizer with different settings to solve Eq. (32). Figs. 2a and

2b plot the drag count (𝐶D × 104) for the entire optimization process and the final five drag count reduction, respectively.
The optimality and feasibility are shown in Figs. 2c and 2d, respectively. For all of these plots, the value shown at each
iteration is from the iteration with the lowest merit function evaluated thus far. The initial geometry has a drag count of
220, i.e. 𝐶D × 104, which is reduced below 160 in the first five iterations for all settings of the Bayesian optimizer. For all
of the cases, except for the data in magenta, the linear equality constraints are used to reduce the dimensionality of the
optimization, as described in Section VI.B. The Bayesian optimizer using the Matérn 5

2 kernel and the upper confidence
acquisition function with dimension reduction achieves the deepest convergence, as shown by the green data in Fig. 2c.

The blue line in Fig. 2b shows that the use of the Gaussian kernel significantly slows down the progress of the
Bayesian optimizer compared to when the Matérn 5

2 kernel is used. The twice continuously differentiable Matérn 5
2

kernel is thought to provide a better approximation to the highly nonlinear objective function than with the infinitely
differentiable Gaussian kernel.

In Fig. 2b the magenta case is the only one for which the linear equality constraints were not used to reduce the
number of design variables. Comparing the magenta case to the one in green, which uses the dimension reduction
technique along with the same kernel and acquisition function as the magenta case, we can see that the Bayesian
optimizer makes faster progress at reducing the drag when the number of design variables is reduced.

The expected improvement acquisition function, which is shown in cyan in Fig. 2, promotes more exploration than
the upper confidence acquisition function, which is shown in green. This is beneficial for the first 60 iterations when
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Fig. 3 The airfoil and coefficient of pressure for the initial RAE 2822 airfoil and the optimized airfoil using the
Bayesian optimizer with the Matérn 5

2 kernel with dimension reduction and the upper confidence acquisition
function.

there are significant reductions in the drag. However, this additional exploration impedes the Bayesian optimizer in
reducing the final few drag counts and in converging the optimality when it is near the minimum, unlike the upper
confidence acquisition function.

Fig. 3 shows the shape and pressure coefficient of the initial and optimized airfoil using the Bayesian optimizer with
the Matérn 5

2 kernel, the upper confidence acquisition function, and the dimension reduction from Section VI.B. The
converged optimization runs for the Bayesian optimizer with its different settings all provided final solutions at the same
local minimum, i.e. the same optimized airfoil geometry. The primary source of the drag reduction is seen to be the
elimination of the shock wave on the upper surface of the airfoil.

Fig. 4 compares the Bayesian optimizer with the upper confidence acquisition function, the dimension reduction
from Section VI.B, and the Matérn 5

2 kernel to the quasi-Newton optimizer SNOPT [51]. Fig. 4a shows the reduction
of the final five drag counts while Fig. 4b plots the remaining reduction of the drag on a log plot to achieve
𝐶D,min = 127.29 × 10−4, which is the value that both optimizers converged to. The results in these figures show that the
Bayesian optimizer initially makes faster progress at reducing the drag, and gets passed by SNOPT for the reduction of
the final 1.4 drag counts. The Bayesian optimizer remains competitive with SNOPT for the final drag count reduction
and takes only 7 additional iterations to get within 0.02 of the final drag count. Quasi-Newton optimizers are known to
converge quickly once they are near a minimum [14]. With additional development, the convergence of the Bayesian
optimizer near a minimum could be accelerated. Figs. 4c and 4d show that both the Bayesian and SNOPT optimizers
achieve a final optimality reduction of five orders of magnitude and a feasibility below 10−8. The final airfoil geometry
for SNOPT and the Bayesian optimizer are indistinguishable from each other.

VII. Conclusions
In order to complement the capabilities of Bayesian optimization with respect to multimodal problems and problems

with inaccurate gradients, an efficient gradient-enhanced Bayesian optimizer has been developed for local nonlinearly
constrained optimization. The ill-conditioning of the gradient-enhanced covariance matrix was addressed with a recently
developed simple but effective preconditioning method. To enable efficient local optimization, a data region was used to
select a subset of evaluation points that provides a more accurate surrogate near the local minimum. Furthermore, the
Bayesian optimizer uses two trust regions, one of which leverages the probabilistic surrogate to limit the exploration to
regions where the surrogates for the objective and nonlinear constraints are accurate. The means of the posteriors of the
GPs approximating the nonlinear constraints are provided to the acquisition function minimizer as nonlinear constraints,
enabling nonlinear inequality and equality constraints to be handled.
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(c) Normalized optimality from Eq. (23)
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Fig. 4 Comparison of the Bayesian and SNOPT optimizers for the nonlinearly constrained optimization of
Eq. (32) for an airfoil at transonic speeds. The Bayesian optimizer uses the dimension reduction from Section VI.B,
the upper confidence acquisition function, and the Matérn 5

2 kernel. Both optimizers converge to a solution with
a final drag coefficient of 𝐶D,min = 127.29 × 10−4.

The Bayesian optimizer developed was applied to nonlinearly constrained aerodynamic shape optimization of an
airfoil at transonic speed with the flow governed by the Reynolds-averaged Navier-Stokes equations and gradients
computed via the discrete adjoint method. Using the linear equality constraints to reduce the number of design variables
was found to improve the performance of the Bayesian optimizer. Evaluation points are farther from each other in a
higher-dimensional design space, resulting in lower correlations between evaluation points, and thus greater uncertainty
in the posterior of the GPs. The Bayesian optimizer was found to be more effective when it used the Matérn 5

2 kernel
instead of the Gaussian kernel. Finally, it was found that using the expected improvement acquisition function was
competitive initially with the use of the upper confidence acquisition function. However, the expected improvement
acquisition function promotes more exploration, which was found to impede the deep convergence of the Bayesian
optimizer relative to when it used the upper confidence acquisition function.

The Bayesian optimizer with the Matérn 5
2 kernel and upper confidence acquisition function was compared to the

quasi-Newton optimizer SNOPT. The Bayesian optimizer is initially faster than SNOPT at reducing the drag while
SNOPT is faster at reducing the final 1.4 drag counts. Both optimizers achieve an optimality reduction of five orders of
magnitude and a feasibility below 10−8. These results demonstrate that gradient-enhanced Bayesian optimization can be
competitive with a popular quasi-Newton optimizer that has been extensively used for this class of problems. Further
enhancements of gradient-enhanced Bayesian optimizers for nonlinearly constrained local optimization should enable
faster convergence once the optimizer is near a minimum. With the developments presented here, Bayesian optimization
provides a versatile option applicable to a range of aerodynamic shape optimization problems, including problems that
are unimodal or multimodal, and problems where accurate gradients are not available, such as chaotic flows.
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A. Dimension reduction with linear equality constraints

A. Impact of a higher-dimensional design space on correlations
To satisfy the linear equality constraints, the design variables at the same location on the two cross sections must

be equal. The derivative of the objective and nonlinear constraints with respect to each paired design variable will
be equal since there is no spanwise variation in the shape of the extruded airfoil. The use of design variables on two
cross sections linked with linear equality constraints will not impact the final solution but it does have a significant
impact on the performance of the Bayesian optimizer. To demonstrate this, consider a problem with 2𝑚 parameters,
where there are linear equality constraints equating parameter 𝑖 and 𝑖 + 𝑚 and 𝜕 𝑓

𝜕𝑥𝑖
=

𝜕 𝑓

𝜕𝑥𝑖+𝑚
∀ 𝑖 ∈ {1, . . . , 𝑚}. The

symmetry of this problem ensures that the hyperparameters that maximize the marginal log-likelihood will satisfy
𝛾𝑖 = 𝛾𝑖+𝑚 ∀ 𝑖 ∈ {1, . . . , 𝑚}. For the Gaussian kernel from Eq. (1) we have

𝑘 (𝒙, 𝒚; 𝑛𝑑 = 2𝑚) = 𝑒−
1
2
∑2𝑚

𝑖=1 𝛾
2
𝑖
(𝑥𝑖−𝑦𝑖 )2

= 𝑒−2( 1
2
∑𝑚

𝑖=1 𝛾
2
𝑖
(𝑥𝑖−𝑦𝑖 )2)

= (𝑘 (𝒙′, 𝒚′; 𝑛𝑑 = 𝑚))2
,

where 𝒙′ and 𝒚′ hold the first 𝑚 entries of 𝒙 and 𝒚, respectively. The Gaussian and Matérn 5
2 kernels from Eqs. (1) and

(2), respectively, satisfy 0 ≤ 𝑘 (𝒙, 𝒚) < 1∀ 𝒙 ≠ 𝒚. Therefore, for 𝒙′ ≠ 𝒚′ we have

𝑘 (𝒙, 𝒚; 𝑛𝑑 = 2𝑚) = (𝑘 (𝒙′, 𝒚′; 𝑛𝑑 = 𝑚))2

< 𝑘 (𝒙′, 𝒚′; 𝑛𝑑 = 𝑚).

This demonstrates that having 2𝑚 parameters with 𝑚 linear equality constraints results in weaker correlations than a
problem with only 𝑚 parameters and no linear equality constraints. From a geometric perspective, evaluation points
in a 2𝑚-dimensional space satisfying the 𝑚 linear equality constraints are

√
2 times farther from each other than in

an equivalent 𝑚-dimensional parameter space without the linear equality constraints. The weaker correlations create
additional uncertainty in the posterior of the GPs approximating the objective function and nonlinear constraints. This
results in the Bayesian optimizer taking shorter steps in the parameter space, thus slowing down the optimization.

B. Selecting Zℎ

The null space of Aℎ that satisfies AℎZℎ = O is not unique. We seek a matrix Zℎ that is as sparse as possible such
that the entries in the vector of design variables �̃� in the reduced dimensional space depend on the fewest number of
entries from the vector 𝒙 from the full-dimensional design space. We thus select Zℎ to satisfy the following optimization
problem:

Zℎ = argmin
Zℎ

∥Zℎ∥0 subject to Aℎ (Zℎ):𝑖 = 0∀ 𝑖{1, . . . , 𝑛𝑑 − 𝑛ℎ,lin} (36)

rank(Zℎ) = 𝑛𝑑 − 𝑛ℎ,lin
𝑛𝑑∑︁
𝑗=1

��(Zℎ) 𝑗𝑖
�� = 1∀ 𝑖{1, . . . , 𝑛𝑑 − 𝑛ℎ,lin}.

The solution of Eq. (36) is also not unique since swapping the order of columns of Zℎ does not impact the objective
value or the constraints. For simple linear equality constraints, the null space Zℎ can be formed to satisfy Eq. (36)
without resorting to a numerical optimizer. Consider the following linear equality constraints for a five-dimensional
design space:

Aℎ =

[
−1 1 0 0 0
0 0 −1 1 0

]
, 𝒃ℎ =

[
0
0

]
, (37)
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which requires that 𝑥1 = 𝑥2 and 𝑥3 = 𝑥4 for the linear constraints to be satisfied. A null space for Aℎ that satisfies
Eq. (36) is

Zℎ =
1
2



1
1

1
1

2


. (38)

The null space for the matrix of linear equality constraints from Eq. (32) takes a similar form to the one in Eq. (38).

C. Linear transformation for constraints and gradients
With the change of variable from 𝒙 to �̃� from Eq. (33) the bound constraints become

𝒙 ≤ 𝒙 ≤ 𝒙

𝒙 ≤ 𝒙𝑝 + Zℎ𝒚 ≤ 𝒙

𝒙 − 𝒙𝑝 ≤ Zℎ𝒚 ≤ 𝒙 − 𝒙𝑝 , (39)

which are now linear inequality constraints. The linear inequality constraints for 𝒙 remain linear inequality constraints
for �̃� and they given by

A𝑔𝒙 ≤ 𝒃𝑔

A𝑔

(
𝒙𝑝 + Zℎ �̃�

)
≤ 𝒃𝑔

A𝑔Zℎ �̃� ≤ 𝒃𝑔 − A𝑔𝒙𝑝 . (40)

The gradients for the objective function and nonlinear constraints with respect to �̃� are given by

𝜕 𝑓

𝜕�̃�
=

𝜕 𝑓

𝜕𝒙

𝜕𝒙

𝜕�̃�
=

𝜕 𝑓

𝜕𝒙
Zℎ (41)

𝜕𝒈

𝜕�̃�
=

𝜕𝒈

𝜕𝒙

𝜕𝒙

𝜕�̃�
=

𝜕𝒈

𝜕𝒙
Zℎ (42)

𝜕𝒉

𝜕�̃�
=

𝜕𝒉

𝜕𝒙

𝜕𝒙

𝜕�̃�
=

𝜕𝒉

𝜕𝒙
Zℎ . (43)
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