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A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations
has been developed for steady aerodynamic flows. The solution is computed through a
Jacobian-free inexact-Newton method with an approximate-Newton method for startup.
The linear system at each outer iteration is solved using a Generalized Minimal Residual
(GMRES) Krylov subspace algorithm. An incomplete lower/upper (ILU) factored pre-
conditioner with reverse Cuthill-McKee reordering is utilized to increase the efficiency of
GMRES. The parameters in the solver are optimized to provide a balance between speed
and robustness. Tests are performed using a variety of flow conditions and grid sizes. The
solver demonstrates fast convergence and good correlation with experimental data.

I. Introduction

A fast, accurate and robust algorithm is necessary to solve three-dimensional aerodynamic flows for use in
shape optimization. Until recently, solving the flow over a wing in three dimensions has been hindered by

large grid sizes, inefficient solution methods and maximum computer clock speeds. New numerical methods
and faster computers allow full solutions in three dimensions to be calculated in a reasonable amount of
time.1 The objective of this research is to create a multi-block three-dimensional Newton-Krylov flow solver
for inviscid flow using structured grids. As an implicit scheme, Newton’s method is appealing due to its
property of quadratic convergence. Advantages of Newton-Krylov methods have been proven by authors
such as Venkatakrishnan and Mavriplis,2 Nielsen et al.,3 Luo et al.4 and Knoll and Keyes.5 The work
presented in this paper follows on successful two-dimensional algorithms of Pueyo and Zingg,6 Blanco and
Zingg,7 Nemec and Zingg8 and Chisholm and Zingg.9 This algorithm is intended to lay the ground-work for
a 3D Navier-Stokes and 3D optimization program.

The feasibility of a Newton-Krylov method has been well established, but the crux of the method is in
the startup. A balance between the speed versus robustness of the algorithm is a challenging issue. Tests
were conducted, and the results and justification of the parameters selected are presented in this paper. The
flow solver as presented in this work is known as TYPHOON.10

II. Three-dimensional Euler Equations

The conservative form of the three-dimensional Euler equations is:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0 (1)
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The non-dimensional conservative variables and inviscid fluxes are given by:
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(2)

A general transformation is used to map the curvilinear grid (x,y,z) into a computational domain (ξ,η,ζ)
where the spacing is uniform and equal to unity. Transforming the grid points from physical to computational
space involves calculation of nine metric terms and the metric Jacobian (J) as follows:

ξx = J (yηzζ − yζzη)
ξy = J (zηxζ − xηzζ)
ξz = J (xηyζ − yηxζ)

ηx = J (zξyζ − yξzζ)
ηy = J (xξzζ − xζzξ)
ηz = J (yξxζ − xξyζ)

ζx = J (yξzη − zξyη)
ζy = J (xηzξ − xξzη)
ζz = J (xξyη − yξxη)

(3)

J−1 = (xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ − xζyηzξ) (4)

Since centered differencing is used to calculate the metrics in three-dimensions, the metric invariants will not
be automatically satisfied as in 2D. As shown by Pulliam11 and Steger,12 averaging the central differences
of the grid values (xξ, xη, xζ etc.) and then calculating the metrics will satisfy the metric invariants. For
example, ξx is calculated as:

ξx = J [(µζδηy)(µηδζz)− (µηδζy)(µζδηz)] (5)

where δ is the central difference operator and µ is an average operator:

µηxk =
1
2

(xk+1 + xk−1) (6)

III. Three-dimensional Multi-block

Figure 1 shows a twelve-block, 28,000-node grid around the ONERA M6 wing. The multi-block grid is set
up such that each block is independent while the overall process remains fully implicit. The block faces
share physical space but exist as two separate computational planes of points. Formation of the equations
is completed inside each block separately and block to block communication is carried out using temporary
or halo nodes that hold information from the neighbouring block. The equations are not solved on the halo
nodes, they are only used to provide the current block with information about the neighbouring block. The
entire left-hand-side matrix is formed, reordered, and then the system of equations is solved. This method of
information transfer has proven successful by authors such as De Rango,13 De Rango and Zingg,14 Epstein
and Seror15 and Kim and Lee.16

IV. Numerical Method

Spatial discretization

TYPHOON solves the governing equations using central-differencing with the scalar artificial dissipation of
Jameson et al.17 Following the spatial discretization, the system has the form

dQ̂

dt
+ R(Q̂) = 0 (7)

where Q̂ is the discrete vector of conservative dependent flow variables with length five times the number of
nodes.
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Figure 1. 28,000 node ONERA M6 grid

Inexact-Newton method

Once the equations are discretized, implicit Euler time-marching is applied. The resulting system is:
[

I

∆t
+A

](n)

∆Q̂(n) = −R(n) (8)

where A is the flow Jacobian and ∆t is the time step. It can be noted that the implicit Euler time-marching
method with local time-linearization yields Newton’s method as ∆t →∞.

There are many methods available to solve large sparse linear systems. Solving directly would be prohibitively
expensive computationally. Several methods exist that solve the system iteratively, which is appealing due
to smaller memory and computational requirements. It has been found to be faster to solve the linear system
a few orders of magnitude rather than exactly.18 This leads to the inexact-Newton method:

||R(Q̂n) +
∂R

∂Q̂
∆Q̂|| ≤ η̃||R(Q̂n)|| (9)

This equation allows the selection of the convergence tolerance (η̃). The full Newton method is recovered if
η̃ = 0 is selected. A value of η̃ that is too small will force oversolving of the system. This means that the
linear system is solved past what is needed to have an effective update to the outer iteration. Conversely,
if an η̃ that is too large is selected there is a possibility of undersolving the system. This could lead to the
outer iterations stalling because a sufficiently accurate update to the linear problem was not found.

For aerodynamic applications it has been found by many authors9,19–23 that a Krylov subspace method works
very well and is typically faster than other iterative solvers. The Generalized Minimal Residual (GMRES)
method, developed by Saad and Schultz,24 is a Krylov subspace method that iteratively solves a problem in
the form of Eq. (8) (Ax = b). Two methods of solving the equations using GMRES were investigated: an
approximate-Newton method which uses a first-order approximation of the Jacobian as well as a Jacobian-
free method.

An interesting property of GMRES is that it only requires a matrix-vector product and does not need the
actual Jacobian matrix. An approximation to the matrix-vector product can be made by taking the forward
difference of the residual vector and adding a term associated with the finite timestep:

[
A+

I

∆t

]
v ' R(Q̂ + εv)−R(Q̂)

ε
+

v

∆t
(10)
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where ε is a small scalar used to perturb the state quantities Q̂ in the direction of v. The value of ε is a
balance between an inaccurate approximation (ε too large) and introducing roundoff error (ε too small).
The value of ε is based on work by Nielsen3 and is calculated using the following equation

ε '
√

εm

v̄
(11)

where v̄ is the root mean square of v, and εm is the value of “machine zero” for the hardware being used.
The accuracy of this approximation is better than that of the approximate-Newton method and therefore
yields better convergence rates.

Preconditioning

The performance of iterative solvers can be increased significantly by preconditioning the linear system of
equations.25–27 Following preconditioning, the eigenvalue spectrum will be clustered near unity, and the
efficiency and performance of GMRES will be greatly improved.23 The preconditioner used in this work is
based on an incomplete lower-upper (ILU) factorization of a first-order approximation to the flow Jacobian.
The off-diagonal dominance of the Jacobian can be reduced by using only second-difference dissipation when
forming it.28 The left hand side coefficient of dissipation is formed using a linear combination of the right
hand side according to the following formula:

ε
(l)
2 = ε

(r)
2 + σε

(r)
4 (12)

where σ is a constant left as a free parameter, and ε2 and ε4 are the second- and fourth-difference artificial dis-
sipation terms, respectively. Using this approximation the preconditioner will be more diagonally dominant
and easier to solve while still retaining adequate accuracy for the linear solver. The reverse Cuthill-McKee
(RCM)29 re-ordering scheme has been found to improve the efficiency of a preconditioner based on an ILU
factorization2,6, 7 and is applied in TYPHOON.

Algorithm startup

Algorithm startup is the most critical phase when solving the equations using Newton’s method. Speed is a
dominant factor in designing a program, but robustness is equally important. By definition Newton’s method
works extremely well when the initial guess is near to the solution, but can diverge otherwise. The current
algorithm uses a variable time step to modify Newton’s method (Implicit Euler), which is an approach used
successfully by many authors, such as Venkatakrishnan and Mavriplis,2 Orkwis,22 Chisholm and Zingg30,31

and Manzano et al.32

TYPHOON uses a variable time step in conjunction with an approximate-Newton method and Jacobian-free
GMRES in the solution process. The advantages of both the approximate-Newton and Jacobian-free strate-
gies are combined into one hybrid method, as suggested by Blanco and Zingg.7 The robustness in startup
of the approximate-Newton method is combined with the rapid convergence of the Jacobian-free method.

The solution is converged two orders of magnitude using the approximate-Newton method. The Jacobian-
free method is then used to converge the solution to machine zero. A drawback with the Jacobian-free
method is that due to the presence of large non-linearities, even with small time steps this method has
the potential to diverge. In the early iterations, inaccurate forward difference approximations to the flow
Jacobian lead to possible solution divergence. It is desirable to reduce the amount of time spent using the
approximate-Newton method since the convergence is slower, but if sufficient convergence is not attained,
the Jacobian-free method could fail.
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The ∆t term in Eq. (8) is used to stabilize the system during startup and is also known as pseudo-transient
timestepping. This time term strengthens the diagonal of the Jacobian, thereby increasing the efficiency of
the linear solver. Based on Pulliam11 the time step is scaled to the size of each cell thereby making it a local
time step:

∆t
(n)
j,k,m =

∆t
(n)
ref

1 +
√

Jj,k,m

(13)

∆tref is the reference time step and is increased as the solution proceeds toward convergence.

Approximate-Newton

This phase uses a first-order approximation (A1) to the flow Jacobian based on Eq. (12) in place of the true
Jacobian. The system becomes less accurate, but requires less computation than the true Jacobian. If the
first-order Jacobian is substituted into the system in Eq. (8) the result is:

[
I

∆t
+A1

](n)

∆Q̂(n) = −R(n) (14)

This system is more diagonally dominant and easier to solve than one using the true Jacobian. This strategy
is also found to be more robust than the Jacobian-free method during startup. Since this system is solving
an approximate system, the convergence rate of the outer iterations is linear.

The time step used in the first phase is a simple geometric formula as used in the flow solver HURRI-
CANE,33,34 which is given by:

∆t0ref = A; ∆tnref = B∆tn−1
ref (15)

where A and B are constants with values of A = 1.0 and B = 1.7. The algorithm begins using this preset
time step sequence combined with the approximate-Newton method.

Jacobian-free GMRES

The second phase of the startup procedure involves a variable time step based on the residual and Jacobian-
free GMRES. The Switched Evolution Relaxation method of Mulder and van Leer35 is used to calculate the
reference time step:

∆tnref = max
[

α

Rd
β
, ∆tmin

]
(16)

where α and β are constants, and ∆tmin is set to 50. Typically, α=1.0 and β =1.3. The relative residual
R

(n)
d is calculated as follows:

R
(n)
d =

||R(n)||
||R0|| (17)

where ||R0|| is the starting residual.

V. Parametric studies

Parametric studies were conducted to investigate the effect of several key variables on the performance and
stability of the flow solver. Since nonlinear equations are being solved, the parameters must be coupled;
therefore, finding a truly optimum set of parameters is an iterative process. In most cases, a clear optimum
can be found by assuming that the parameters are independent of each other. The parameters tested
are: ILU fill level (k), preconditioner parameter (σ), linear system tolerance (η̃), and approximate-Newton
convergence parameter (Rdtol

). The ONERA M6 wing geometry combined with a grid of 100, 000 nodes was
used to test all the parameters at two flight conditions: subsonic M = 0.5, α = 3◦ and transonic M = 0.84,
α = 3.06◦. Each parameter was tested individually while the others remained fixed at the following values:
k = 1, σ = 5, η̃ = 0.01 and Rd = 0.01.
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(a) ILU fill level (k) vs. relative residual (Rd) (b) Total number of GMRES iterations vs. σ

(c) η̃JF vs. total number of GMRES iterations (d) Values of Rdtol
vs. total number of GMRES iterations

Figure 2. Results of parameter studies

ILU fill level (k)

The effect of the fill level on the approximate-Newton and Jacobian-free phases was tested using various fill
levels for both subsonic and transonic cases. The effect of level of fill on the convergence rate of the Jacobian-
free method for the transonic case is shown in Figure 2(a). It can be seen that a fill level of unity achieves
the fastest convergence. The results from this set of tests demonstrate that a fill level of unity (k = 1) is
the best balance between a sufficiently accurate preconditioner and the computational time required to form
and apply it. Similar results were also found for the approximate-Newton startup.

Preconditioner parameter (σ)

The formation of the preconditioner uses a parameter σ to combine the fourth-difference with the second-
difference dissipation. Figure 2(b) shows how different values of σ affect the performance of the solver for the
transonic case. Values of σ ≈ 3 require fewer inner GMRES iterations and therefore less CPU time overall,
but it was found that serious stability issues can arise when values of σ ≤ 3 are used. It is recommended
that σ = 5 be used as a good balance between speed and robustness.
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Linear system tolerance (η̃)

The linear system tolerance (η̃) sets the convergence tolerance of the inner GMRES iterations. A value of
0.1 for the approximate-Newton linear system tolerance (η̃AN ) was found to be sufficient to minimize the
total number of GMRES iterations. The results for the Jacobian-free parameter (η̃JF ) test are shown in
Figure 2(c). It is clearly shown that a value of η̃ = 0.01 minimizes the number of GMRES iterations.

Approximate-Newton convergence parameter (Rdtol
)

The parameter Rdtol
controls the switch from the approximate-Newton phase to the Jacobian-free phase.

The program must be converged sufficiently before switching to Jacobian-free operation or the solution can
diverge. Figure 2(d) shows the results of the Rdtol

parameter tests. Values of Rdtol
= 0.02 and Rdtol

= 0.015
were found to be minimums for the subsonic and transonic cases respectively. For flows with shocks, values
of Rdtol

≥ 0.1 should be avoided. Difficult cases should use lower values of Rdtol
to ensure that the solution

is converged enough for the Jacobian-free method to take over.

Optimized algorithm

Based on the parameter studies, the optimal parameters are summarized below:

• ILU(1) preconditioner based on the first-order Jacobian with σ = 5

• Reverse Cuthill-McKee reordering based on an initial node located downstream

• Approximate-Newton startup convergence tolerance: Rdtol = 0.02

• Approximate-Newton linear system tolerance: η̃AN = 0.1

• Jacobian-free linear system tolerance: η̃JF = 0.01

• GMRES limited to 40 search directions and no restart

VI. Test cases

TYPHOON is tested using four grids around the ONERA M6 wing geometry. Table 1 summarizes the
details of the grids used. All have a 12 block H-mesh structured grid configuration and were created using
the elliptical grid generator: GEM3D.36,37 Four test cases containing a variety of flow conditions are used
to show the results and performance of TYPHOON. Table 2 shows the details of these test cases. All test
cases are inviscid without roll or yaw. Only the angle of attack (pitch) and Mach number are varied.

Table 1. ONERA M6 grids used to test TYPHOON

Off-wall Leading Edge Root Tip Nodes on
Grid Grid Far Field Spacing Clustering Spacing Spacing Wing

Size (semi-spans) (×10−3 (×10−3 (×10−3 (×10−3 Surface
semi-spans) semi-spans) semi-spans) semi-spans)

A 99,840 5 2.0 2.0 10.0 10.0 1,200
B 248,000 10 1.0 2.0 10.0 5.0 3,000
C 500,000 10 1.0 1.0 5.0 2.0 3,600
D 1,008,000 20 1.0 1.0 5.0 5.0 4,800
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Table 2. Flow conditions for the four inviscid test cases

Case Flow Mach Angle of Attack
Condition Number (degrees)

1 Subsonic 0.3 8.0
2 Subsonic 0.5 3.0
3 Transonic 0.699 3.06
4 Transonic 0.84 3.06

Table 3. Convergence data for the coefficient of lift and drag for case 4

Convergence TYPHOON grid size
criterion 100,000 500,000 1,000,000

0.5% of CL 5.9 min 42 min 90 min
0.1% of CL 6.3 min 47 min 105 min
0.01% of CL 6.5 min 67 min 127 min
0.5% of CD 7.0 min 47 min 98 min
0.1% of CD 8.0 min 64 min 118 min
0.01% of CD 8.3 min 71 min 125 min

VII. Algorithm performance

The unit used to benchmark the performance of TYPHOON that is independent of computer architecture is
the number of equivalent function evaluations (FE). A function evaluation is defined as one right-hand-side
evaluation or one residual evaluation. The total number of FE’s is calculated by dividing the total CPU time
by the CPU time needed to calculate one right-hand-side. A single function evaluation includes calculation
of the fluxes, pressure field, artificial dissipation and boundary conditions. First, TYPHOON is compared
across all the grids using the subsonic case 2. Figure 3(a) shows the CPU time in function evaluations and
allows comparison of the wide range of grid sizes on a similar scale. The 100,000 node grid requires about
2,400 function evaluations to converge to machine zero, while the 1,000,000 node grid requires about 6,300.
A single 1000MHz EV68CB Alpha processor was used for testing and this corresponds to about 10 minutes
for 100k nodes and 6.3 hours for the one million node case.

One of the goals of the flow solver is to calculate the coefficients of lift and drag, and another measure
of code performance is how quickly these values are attained. Figure 3(b) shows the convergence history
for the lift and drag coefficients on the 100k and 500k grids. Table 3 shows the convergence times to given
criteria for the 100k, 500k and 1000k grids. On the 100k grid, TYPHOON produces results for the coefficient
of lift to four decimal places in 6.5 minutes. For the same target, TYPHOON will solve the 500k node grid
in 67 minutes and the one million node grid in 127 minutes. The resulting CL and Cd values for the ONERA
M6 were calculated to be 0.3048 and 0.0116 for the 100k grid, 0.3014 and 0.0108 for the 500k grid and 0.3031
and 0.0107 for the 1000k grid.

Grid scaling

An important aspect of a flow solver is the correlation between the CPU time and the problem size. From
the tests conducted (cases 1 to 4) using grids A through D as well as a 50,000 and 75,000 node grid, the
CPU time in function evaluations for convergence to machine zero is plotted as a function of the grid size in
Figure 4. A similar analysis was performed by Pueyo and Zingg28 on the PROBE solver23 and ARC2D.11

The results from Pueyo’s tests along with the TYPHOON data are plotted. The equation of a line of best
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(a) Residual vs. function evaluations for M = 0.5, α = 3◦ (b) Normalized CL and CD vs. CPU time for case 4

Figure 3. Algorithm performance graphs

Table 4. Newton-Krylov statistics

Approximate-Newton Jacobian-Free Total Outer Total Inner
Grid Case Outer Inner Outer Inner Iterations Iterations i−it

o−it FE

Iters Iters Iters Iters (o-it) (i-it)
A 1 12 92 8 280 20 372 18.6 2796
A 2 12 88 8 229 20 317 15.9 2576
A 3 16 137 6 183 22 320 14.5 2616
A 4 17 165 8 220 25 385 15.4 3048
D 1 24 390 22 684 46 1074 23.3 6703
D 2 40 484 13 523 53 1007 19.0 6619
D 3 46 456 15 471 61 927 15.2 6619
D 4 31 412 9 467 40 879 22.0 5025

fit on the log-log plot can be represented by:

ω = κNβ (18)

where N is the grid size, ω is the CPU time in function evaluations, and κ and β are constants. The ideal
case for a flow solver is to have the function evaluations remain constant with the grid size (β = 0). For
ARC2D: β = 0.73, PROBE: β = 0.325 and TYPHOON: β = 0.288. Therefore, the scalability of the 3D
multi-block solver TYPHOON is found to be very good.

Newton-Krylov solver statistics

Table 4 shows the details of TYPHOON’s inner and outer iterations and performance for grids A and D.
The average number of inner iterations per outer iteration remains relatively constant and independent of
grid size. The number of outer iterations is higher for larger grids due to the need for more approximate-
Newton iterations during startup. During Jacobian-free operation, more inner iterations per outer iteration
are needed when compared to the approximate-Newton phase.
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Figure 4. Grid scaling comparison

VIII. Solutions

Solutions are compared to a classic set of experimental results for the ONERA M6 wing by Charpin and
Schmitt38 in 1979. The test case used here is transonic flow at M = 0.84, α = 3.06◦ (Case 4 from Table 2).
The most distinctive feature of this case is the pattern of the shock wave on the upper surface of the wing.
The λ shock pattern on the upper surface can be seen clearly in Figure 5(a). This figure shows the coefficient
of pressure (Cp) contours on the top surface (a) and on the bottom surface (b) for grid D. To compare the
results of TYPHOON to the experiment, it is necessary to take spanwise slices on the wing and compare the
coefficient of pressure (Cp). Six slices are plotted in Figure 6. Three grid sizes are overlaid along with the
experimental data in this figure. Overall, the results correspond well to the experimental data. TYPHOON
predicts the leading edge pressure rise very well and captures the shock with minimal overshoot.

IX. Conclusions

A three-dimensional multi-block Newton-Krylov flow solver for the Euler equations has been developed for
steady aerodynamic flows. A Krylov subspace method (GMRES) is used to solve the linear system that arises
at each Newton iteration. This linear system is preconditioned using an incomplete lower/upper (ILU) fac-
torization, which increases the effectiveness of the linear solver. A combination of approximate-Newton and
Jacobian-free solution methods are combined to form a robust and fast algorithm capable of handling a
variety of flow conditions on various grids. The main focus of the work is to find a balance between speed
and robustness for the algorithm. The approximate-Newton startup is found to be very robust, which makes
it ideal for algorithm startup in the region where the Jacobian-free method is not stable. The objective is
to switch to the Jacobian-free method early enough to benefit from the increased convergence rate, but late
enough so that the solution is in the Newton convergence region.

Tests were conducted on grids up to 1,000,000 nodes and flow conditions from M = 0.3, α = 8◦ to M = 0.84,
α = 3.06◦. The flow solver converges to machine zero in 2,400 function evaluations (10 minutes) for a 100,000
node grid and 6,300 (6.3 hours) for a one million node grid on a single processor. Lift and drag coefficients
are converged in about eight minutes on a grid with 100,000 nodes, one hour on a grid with 500,000 nodes,
and two hours on a grid with one million nodes. The scalability of TYPHOON is found to be good with the
CPU cost proportional to the grid size to the power of 1.288.
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(a) Top surface (b) Bottom surface

Figure 5. Pressure contours on the ONERA M6 wing, M = 0.84, α = 3.06◦, grid D, 1 million nodes
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(c) 65% span (d) 80% span

(e) 90% span (f) 96% span

Figure 6. ONERA M6 wing Cp distribution, M = 0.84, α = 3.06◦
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