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Application to Wing Design

Lift-constrained induced-drag minimization




Twist Optimization
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High-Fidelity Aerodynamic
Shape Optimization

® a component within high=fidelity: multi-disciplinary
optimization (MDO)

® high-fidelity physics, e.g. Euler or Reynolds-averaged
Navier-Stokes equations

® ncremental optimization 1s preceded by conceptual
and preliminary: design using lower fidelity tools

® cxploratory optimization permits large shape changes
and could be used to uncover new concepts




The Split Tip Wing

® down-up configuration: span efficiency = 1.159

® Hicken, J.E.; and Zingg, D.W., Induced Drag Minimization of Nonplanar Geometries
Based on the Euler Equations, AIAA Journal, Vol. 48, No. 11, 2010




lopics
e Computational fluid dynamics
% higher order?

* finite-difference methods? structured grids?

% summation by parts; dual-consistency, and
superconvergence

* parallel Newton-Krylov=Schur:-algorithm
e (Geometry parameterization, mesh movement, adjoint method

e Problem formulation: range of operating conditions, multiple
constraints

e (Choice of optimization algorithm: multimodality in aesrodynamic
shape optimization



CFD: 2nd or higher order?

® conventional wisdom: higher order is advantageous for
applications like LES, DNS, CAA, which are very
demanding in terms of mesh resolution

® actually can be advantageous in-any context where low
error is required

® higher order shown to be more efficient than second
order for steady RANS computations by De Rango and
Zingg, AlAA J.; Vol.-39, 2001

e DPWs show that computing drag on a 3D configuration
IS very demanding in terms of mesh resolution




Error vsS mesh spacing




Error vs computational cost




Higher order methods

® higher order generally not-achieved in practical
problems due to shocks, singularities, discontinuities,
etc.

® numerical error can nevertneless be lower on a given
mesh

® current interest is concentrated on discontinuous
Galerkin methods



Structured or unstructured
meshes?

® conventional wisdom: unstructured meshes are easier
to generate and superior for-adaptation; hence pursue
higher-order DG schemes

® Nhowever; higher-order finite difference methods on
structured meshes are much more efficient than higher-
order methods for unstructured meshes

® |s the former advantage sufficient to outweigh the latter
disadvantage?



Summation-by-Parts (SBP) Operators

® Satisfy a discrete summation-by parts property that mimics the
continuous operator

e Used in combination with simultaneous approximation terms (SATS)
at boundaries

® Rigorous development of time-stable boundary schemes for higher-
order methods

® Superconvergent functional estimates if scheme is dual consistent

= For example, the fourth-order scheme produces sixth-order
convergence in functionals

= - Hicken,J.E:-and Zingg, D:W:, Superconvergent Functional
Estimates from Summation-by-Parts Finite-Difference Discretizations,
SIAM Joumal-on Scientific Computing, Vol. 33, 2011



Dual Consistency

® A scheme is dual consistent if the associated discrete dual (or

adjoint) problem is a consistent discretization of the continuous
adjoint problem

= Dual consistency: requires suitable boundary conditions and
a particular numerical integration- method for the functional

= Can lead to superconvergence of functionals

= Can lead to much better error estimates based on adjoint-
weighted residuals (than dual inconsistent schemes)

= Hicken, J.E.;;and Zingg, D:W.; The Role of Dual Consistency in
Functional’Accuracy: Error Estimation and Superconvergence,
20th AIAA CED Conference, June 2011.



Dual Consistency

Example: adjoint field shows oscillations in dual
iInconsistent case
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Results for Inviscid vortex flow

Solution error Functional error
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Results for ONERA M6 wing

Dual Consistent: 2nd order
Dual Consistent: 3rd order
Dual Inconsistent: 2nd order
Dual Inconsistent: 3rd order




FLOW SOLVER

® Structured multi-block grids

® High-order finite-difference method with- summation-oy-
parts operators and simultaneous approximation terms

e Parallel Newton-Krylov-Schur solver

® Jacobian-free Newton-Krylov-algorithm with approximate
Schur parallel preconditioning

® Promising dissipation-based continuation method for
globalization
= Hicken, J.E.;-and Zingg, D.W.,"A parallel Newton-Krylov solver for the Euler

equations discretized using simultaneous approximation terms, AlAA
Journal, Vol."46, No. 11,2008



Turbulent Flow Solver

ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 1.88 million mesh nodes, 16 processors
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Parallel Scalability (Euler)

— jdeal (relative)
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® mesh with 38 million nodes

® O-order residual reduction In 15 minutes on
1024 processors



INTEGRATED GEOMETRY PARAMETERIZATION
AND MESH MOVEMENT

® Must provide flexibility for large shape changes with-a modest number of
design variables

» B-spline patches represent surfaces

»  B-spline control points are design variables

® Mesh movement must maintain quality through large shape changes

» through tensor products; B-spline volumes map a cube to an arbitrary volume with the
appropriate topology

» can be arbitrarily discretized in the cube domain to create a mesh

»  B-spline volume control points can be manipulated to move the mesh in response to
changes in the surface control points

»  efficiently generates a high quality mesh

= Hicken, J.E.;-and-Zingg, D.W., Aerodynamic Optimization Algorithm with Integrated Geometry
Parameterization and Mesh Movement, AIAA Journal, Vol. 48, No. 2, 2010



Mesh Movement Example

flat plate to blended-wing body: = 1 million nodes




DISCRETE-ADJOINT GRADIENT COMPUTATION

e (ost independent of the number of design variables

e [Efficient if the number of design variables exceeds the number of
constraints

® Hand linearization complemented by judicious use of the complex
step method for difficult terms

e Adjoint equation solved by parallel Schur-preconditioned modified
Krylov method GCROT(m;k)

= Hicken; J.E;;-and Zingg, DWW A Simplified and Flexible Variant of GCROT for
Solving Nonsymmetric Linear-Systems, SIAM Journal on Scientific Computing, Vol.
32, No. 3;-March-2010



Design Problem Definition

« Aerodynamic design specification for a hypothetical
aircraft:

* Cruise Mach number range: 0.78 - 0.88

* Cruise weight range: 60,000 - 100,000 Ibs

* Cruise altitude range: 29,000 - 39,000 ft

« Target airfoil thickness to chord ratio: 11.8%

* On-design operating conditions: cruise and long-
range cruise

» Off-design operating conditions: dive conditions, low-
speed conditions

* Wing area: 1000 sq.ft.
Wing sweep angle: 35 degrees




Weighted Integral Objective Function

Design objective: maximize L/D over a range of cruise
operating conditions

Optimal solution minimizes the integral of D/L over a
range of Mach numbers, aircraft weights, and altitudes

A weighting function 2 is used to prioritize operating
conditions
The weighted integral is defined as:
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Designer Priority Weighting Function

« A sample weighting function is applied to test cases to
llustrate the weighted integral approach

« Assume a constant cruise altitude...flight envelope is

represented by a 2D integral:
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« Compare with cases where equal priority is given to all of
the operating conditions; i.e. 2 = 1

a

= e ——
= ‘-'-;,-': iy .O.V&EM /
o ) meresemee
= =

= S —_—— Mw/' i
ot e e ——— T",‘:Q‘j"'!fl".‘ld‘!'m"“-‘s;:_;;:A-._..,A_,,, 3



Integral Approximation

* Objective function is defined as an
approximation of the weighted integral

Nﬂ,[ NVV 1‘1/ 2 ﬂfg
D D
T=> Ty~ (Mi, Wy) D (M, Wy) AMAW ~ / / - (M. W)D (M, W) dMdW

=1 7=1 Wy My

* Nu x Nw is the number of quadrature points
used in M, W

e 7, are the weights used to approximate the
integral using the trapezoidal quadrature rule




Optimization Setup Parameters For Test Cases

Initial airfoil geometry: RAE 2822
« Geometry parameterization:

— 15 B-spline control points

— 12 design variables
 Mesh parameters:

— C topology

— 18785 nodes

— Off-wall spacing = 2 x 10e-6
» Off-design constraints:

— At dive conditions: My < 1.35

— At low-speed conditions: Cjmax = 1.60
» Geometric constraints:
— 2 thickness constraints at 95% and 99% chord
— Area constraint




Comparison of Equal Weighting vs.
Mach-Number-Dependent Weighting

Equal weighting
Mach-number-dependent weighting

Equal weighting
Mach-number-dependent weighting
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Trade offs

Q
O

o

T
o
@

o
©
S
@
>
<

_IllllllllIIIIIIIllIIlIIIIIlIIlIIIIIIlIIlIIII

1.5 1.6 1.7 1.8 1.9
Lower Bound on C Constraint

Imax

Pareto front showing trade-off between cruise condition drag
performance and Cimax constraint at low-speed conditions.




Problem formulation

® demonstrated an effective approach to formulating design
problems as optimization problems

® Nhowever, an aircraftt has an enormous number of
configurations, maneuvers, and cases that must be
INncluded

® some thought must be given to determining the minimum
number of operating conditions that need to be
considered



Genetic algorithm or
gradient-based adjoint method?

e (Global optimization algorithms; e.g. genetic algorithms,
are generally slow

e (Gradient-based algorithms converge to a local minimum

e Preference depends on multimodality, among other
considerations

® Yet there are virtually no studies of multimodality in
aerodynamic shape optimization

= Chernukhin; O.;-and Zingg, D.\W., An Investigation of Multi-Modality in Aerodynamic
Shape Optimization, 20th- AIAA Computational Fluid Dynamics Conf, June 2011



Multimodality questions

® Are our design spaces multimodal?

® |f SO, are they highly:multimodal,"moderately multimodal,
somewhat multimodal; or unimodal?

® [or each category, what is the best optimization algorithm
for finding the global minimum??



Four Optimization Algorithms

e Gradient-based algorithm (GB)

o Multi-start Sobol (GB-MS): initial- guesses based on Sobol
sequences cover the design: space in-a deterministic
manner (sampling in-linear feasible region)

e Hybrid method (HM)::combination of genetic algorithm,
Sobol sampling; and gradient-based algorithm (SNOPT is
run on each chromosome)

® (Genetic algorithm (GA)




Multimodality in 2D (RANS)

Multistart procedure for 2D airfolloptimization
(transonic lift-constrained:-drag:mininiization;:6:DVs)




Multimodality?

A unique global optimumi:in:2BR:=-no:localzoptimal




Multimodality in 3D (Euler)

® fransonic lift-constrained drag minimization, 129 DVs

® 3 |ocal minima found - somewhat multimodal
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Hybrid wing-body optimization

® 10 initial geometries ... 5 local optima ...




What can we conclude?

e 2D RANS airfoil optimization appears to be unimodal
» gradient-based algorithm is suitable

e 3D Euler wing optimization somewhat multimodal depending on
degree of geometric flexioility

» gradient-based multi-start algorithm-is preferred

® Hybrid wing-body optimization -has a higher degree of multimodality
presumably because of its high degree of geometric flexibility

» global optimization algorithm (but not a GA) preferred for
exploratory optimization

» multi-start gradient-based algorithm based on Sobol sequence a
good place to start



Future Work

® higher-order dual consistent SBP operators for viscous terms
® |aminar-turbulent transition in:optimization

® acrostructural optimization

® strategies for improving efficiency

® strategies for improving automation

® applications
» unconventional configurations: development and evaluation
» both incremental and exploratory - what can we discover?

» flow control design through optimization (unsteady)



