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A parametric study of multimodality in wing optimization is undertaken utilizing a
gradient-based multistart method. The lift-constrained drag minimization of a wing is per-
formed using between 17 and 33 initial geometries in subsonic and transonic viscous flows
with varying degrees of freedom and under a variety of constraints. In nearly every exam-
ined case, including the ADODG CRM case, multimodality of some degree is found. The
cross-sectional optimization of a wing is found to be unimodal to somewhat multimodal in
both subsonic and transonic flows, depending on which degrees of freedom are permitted.
Permitting large-scale planform deformations and non-planar geometries is shown to pro-
duce clear and significant multimodality in all examined cases. Requiring straight leading
and trailing edges can significantly reduce, but not fully eliminate, multimodality. Other
examined constraints, such as linear taper, linear twist, minimum thickness, and minimum
pitching moment are shown to have lesser e↵ects on multimodality. Multimodality is ulti-
mately found to be an inherent characteristic of most wing optimization design spaces, and
it is concluded that gradient-based optimization based on a single initial geometry may not
be su�cient to ensure global optimality even in tightly constrained practical problems.

I. Introduction

The spectre of anthropogenic climate change, unstable fuel prices, and diminishing returns from the
continued optimization of conventional aircraft designs are driving a search for dramatically more e�cient new
aerospace technologies.1 A major pillar of this e↵ort is research into higher-e�ciency unconventional aircraft
configurations, an undertaking that is increasingly reliant on high-fidelity aerodynamic shape optimization.

When applying numerical optimization to any problem an understanding of the multimodality, if any, of
the design space is critical. This is because the presence or extent of multimodality plays a significant role
in determining the proper tools and approaches for solving a given problem. Gradient-based optimization
algorithms utilizing the adjoint method2 are relatively cost-e↵ective, but are stymied by even low degrees
of multimodality, and any confidence that the obtained solution is the global optimum only extends so
far as the confidence that the design space is unimodal. On the other hand, gradient-free approaches like
genetic algorithms3 are quite robust with regard to even highly multimodal problems, but require a greater
investment of computational resources than comparable gradient-based methods,4 even if one considers
potential cost savings from the use of hierarchical genetic algorithms,5 surrogate methods,6–8 or hybrid
algorithms.9,10 It has been demonstrated that multimodality can exist in aerodynamic shape optimization
problems,11 and the importance of understanding multimodality in this context is underscored by the recent
inclusion of a multimodal problem in the Aerodynamic Design and Optimization Discussion Group (ADODG)
test suite at the AIAA Aviation 2017 conference.12–15

The objective of this paper is to present a detailed study of the relationship between various problem
parameters and multimodality in aerodynamic shape optimization of wings. This includes variations in
available degrees of freedom, constraints, as well as Mach number, with particular attention paid to di↵erences
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in outcome between subsonic and transonic flight regimes. This study is performed using the NASA common
research model (CRM) wing-only geometry as the baseline. The viscous optimization of this geometry has
been studied by numerous authors, including - but certainly not limited to - Koo and Zingg,16 Yu et
al.,17 Lee et al.,18 Shi-Dong et al.,19 and Lyu et al.20 Several of these studies16,17,20 directly address the
question of multimodality, generally in the context of the transonic, viscous optimization of twist and taper,
the consensus being that multimodality under these conditions is minimal to nonexistent. On the other
end of the spectrum, the existence of multimodality in the aerodynamic shape optimization of a wing in
general is demonstrated in several previous works.11,15,21 Between these extremes must lie a region in
which multimodality changes from significant to insignificant and it is a goal of this work to determine
the boundaries of these regions within the design space. This is accomplished by utilizing the free-form
deformation22 (FFD) based gradient-based multistart (GBMS) algorithm the authors published previously15

to thoroughly explore the design space, specifically addressing the causes and extent of multimodality in the
optimization of an aircraft wing under varying degrees of freedom, constraints, and operating conditions.
This is of critical importance in determining under what conditions local optimizers are su�cient to explore
a problem, and when more expensive global optimization schemes must be leveraged to provide reliable and
thorough results.

In any practical aerodynamic shape optimization problem only a finite degree of convergence is possible.
This allows the possibility of apparent local optima that would ultimately have converged to the same
optimum if further convergence could be achieved. Therefore some judgement is required to distinguish
these apparent local optima from actual local optima.

II. Methodology

A. Gradient-Based Multistart Algorithm

Gradient-based multistart is a method wherein a sampling algorithm is used to deform a single baseline
geometry into a large sample of the design space, with each sample point being a unique geometry that
is then optimized in parallel using a gradient-based method. The samples themselves are generated using
a Sobol sampling method, the specific implementation being based on Algorithm 659,23 which uses more
primitive polynomials than other algorithms, and a Gray code implementation proposed by Antonov and
Saleev.24 This yields a method that is more robust in the face of multimodality than a single gradient-
based optimization but less expensive than gradient-free methods, particularly for “moderately” multimodal
problems with O(101) or fewer local optima.11 This balance between cost and robustness makes GBMS ideal
for exploring new design spaces, particularly when the objective is to ascertain the extent of multimodality
in the system in order to determine the appropriate optimization algorithm for the particular problem class
at hand.

While the GBMS label was first coined by Chernukhin and Zingg, variations on this idea are present in
the literature under a number of di↵erent names.25–29 Chernukhin and Zingg developed specialized linear
constraints which ensure the generated samples can be easily tailored to produce feasible geometries within
the geometric bounds desired by the user. In our previous work15 we expanded on this method, utilizing FFD
geometry control to generalize these constraints to a geometry-independent form, producing an algorithm
that can be applied to any geometry or class of problem.

B. Free-Form Deformation

A common analogy is to think of FFD22 as embedding an object within a rubbery block. If one deforms
the rubber block, the underlying geometry is deformed as well. Computationally, this is accomplished by
embedding an underlying parameterization, here B-spline surfaces, inside another B-spline volume, referred
to as the “FFD volume”. Each point of the underlying parameterization is assigned a parameteric position
within the FFD volume, and as the volume is deformed, the positions of the underlying control points are
re-evaluated to keep their parametric positions constant.

The two-level FFD implementation used in this work was developed by Gagnon and Zingg,30 and is
notable for its use of an underlying B-spline parameterization as the embedded points, rather than the
computational grid nodes themselves. This control scheme also includes axial control, which adds a NURBS
curve – referred to as the “axial” curve – which is used to drive large scale deformations. In this approach, the
FFD volume is divided into planar slices referred to as cross sections, constrained to be locally perpendicular
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to the axial curve and o↵ering sectional control through various transformations of the cross section and
the manipulation of two rows of control points on the upper and lower surfaces of the FFD volume. The
axial curve is controlled through a series of axial control points; deforming the curve in this way produces
large scale deformations of the entire volume, while leaving the local coordinate systems untouched. There
are a total of six types of geometric degrees of freedom available in this system: twist, taper and section
(cross-sectional) and sweep, span and dihedral (axial).

C. Aerodynamic Shape Optimization Framework

Optimization is accomplished using Jetstream,30–32 which couples a three-dimensional, finite-di↵erence,
structured, multiblock, parallel, implicit flow solver (“Diablo”) that can be applied to either the Euler33

or Reynolds-averaged Navier Stokes (RANS)34 equations, with a gradient-based optimization code built
around the SQP Sparse Nonlinear OPTimizer (SNOPT),35 and an integrated linear-elasticity mesh move-
ment algorithm.31

In Diablo, the equations are discretized via second-order summation-by-parts operators with scalar or
matrix numerical dissipation; boundary conditions and block interfaces are enforced with simultaneous ap-
proximation terms. The resulting equations are solved using a parallel Newton-Krylov-Schur algorithm, con-
sisting of an approximate-Newton phase which obtains the initial iterate for a subsequent inexact-Newton
phase. Both stages solve the large linear systems with GMRES, a Krylov iterative solver with approximate-
Schur preconditioning. The RANS equations are closed with the Spalart-Allmaras one-equation turbulence
model.36

Gradients provided to the optimizer are calculated using the adjoint method, so the cost is nearly in-
depedent of the number of design variables. Optimality is ensured by enforcing the Karush-Kuhn-Tucker
optimality conditions.37 The preconditioned conjugate gradient method is applied to the mesh adjoint
system, while a flexible variant38 of the GCROT Krylov method39 solves the flow adjoint system.

D. Test Structure

The objective of this work is to o↵er a detailed exploration of the circumstances under which multimodality
becomes a concern and to what extent during the optimization of a wing where the flow is governed by
the RANS equations. To accomplish this, a number of tests are run using identical baseline geometries and
numerical meshes, specifically the NASA CRM wing-only case, described in more detail in Section III.A.
In each case, a parameter is varied – generally the number and type of degrees of freedom, the linear or
nonlinear constraints, or the operating conditions – and a large sample is generated using the algorithm from
Streuber and Zingg.15 Seventeen tests, 16 samples and the baseline geometry, are then optimized in parallel
to either failure or until su�cient convergence has been achieved; the resulting geometries are examined to
determine how many local optima have appeared. If multiple local optima are discovered, they are noted
and the test is stopped. Otherwise, a further 16 cases are run, and if once again no local optima appear, the
problem is considered to be unimodal for the purposes of this study. We are not seeking here to locate the
global optimum; doing so with confidence for an unknown design space would require a substantially larger
number of initial geometries. A sample of this size is su�cient to show with some confidence whether or not
a given problem is multimodal and to permit a discussion of the relative degrees of multimodality between
separate problems.

Two indicators are used to determine whether two geometries represent distinct optima: performance
and geometric variation. For the first, a material di↵erence in performance must be apparent between the
geometries, generally defined as something on the order of one or more drag counts. For the second indicator,
the two geometries should be substantially di↵erent; this is done by comparing the root mean square di↵erence
between the surface control points of each geometry, with di↵erences greater than approximately 5 ⇥ 10�2

being considered “substantial”, though judgement is exercised in this manner by visually inspecting the
geometries as well. If either of these criteria are met, the geometries in question are considered to be two
discrete optima. It is not enough to solely check the geometric variation, as there are numerous scenarios in
which small geometric di↵erences can produce material variations in performance – changes to the spanwise
twist distribution being a notable example. Once all optima have been located, several metrics, discussed
below, can be used to draw conclusions on the degree and importance of multimodality within the design
space, and the impact of the tested parameters on those values.
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E. Multimodality Metrics

The overall amount of multimodality in a design space can be fully described through several quantities.
The first is the number of local optima, this is the number of distinct local optima that the initial geometries
ultimately converged to. The second is the performance range, defined as the di↵erence in the performance
between the best and worst local optima. The third is the dominance, the percentage of converged geometries
which arrived at the most frequent – though not necessarily best performing – local optimum. These provide
a clear high-level picture of the degree of multimodality in a design space and the ranges within which
the local optima, if any, lie. However, they give us little to no information on how the local optima are
distributed within the design space, which is critical to determining the best approach to the solution of a
given problem.

Consider two design spaces, each with 10 local optima, a minimum drag of 180 drag counts, and a
performance range of 15 drag counts. In design space A, nine of the local optima are clustered near the
global optimum, with only a single non-dominant optimum at the upper performance range. In design space
B, the optima are more scattered throughout the design space, with one or two near the minimum and the
rest evenly distributed in terms of performance. If one is focused on locating the minimum drag in the design
space, whether you are in design space A or B will significantly change the ideal approach to the problem:
in A the vast majority of initial positions will converge to near the optimal design, and so a handful of
initial geometries should be su�cient to have confidence that the global optimum has been reached. In
B the likelihood of finding a significantly inferior optimum is much higher, and so a reliable optimization
would require a commensurately larger sample size or – depending on the problem – considering a move to
hybrid or gradient-free algorithms. Alternatively, suppose we are focused on locating all unique geometries
within these design spaces – as perhaps these novel geometries o↵er other, non-aerodynamic benefits that
may outweigh their inferior drag values. In this scenario, A is in fact the more di�cult design space, as an
insu�ciently large sample would make it easy to miss the outlying optima, only capturing the likely highly
similar geometries near the global optimum. Conversely, the more evenly distributed nature of B makes
it more likely that a comparatively small sample will capture all the major geometric trends in the design
space.

These conflicting priorities – sometimes wishing to bypass all outliers, and other times needing to locate
as many as possible – are reflected in two supplementary multimodality metrics which seek to quantify the
distribution of optima within the design space. The first is the performance metric, Pm, defined as

P

m

= 100

P
ni|Ji � J

best

|
J
best

P
ni

, (1)

where Ji is the objective function at the i

th local optimum, J
best

is the best performance achieved at any
optimum, and ni is the number of initial geometries which converged to the ith local optimum. The equation
is scaled by a factor of 100 for convenience and readability, so that the resulting values will be on the order
of O(10�1) to O(100). This quantifies not just the number of local optima, but how common each is and
how their performance di↵ers from the best optimum. Generally, a larger value of Pm indicates a design
space in which the best performing geometry is increasingly di�cult to locate and suggests that confidence
in the obtained solution will require a GBMS method with a progressively larger sample size, or moving to
a hybrid or gradient-free approach.

The second metric is the geometric metric, denoted as Gm and defined as

G
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as before ni is the number of initial geometries which converged to the ith local optimum, and Ri is the root
mean square di↵erence between the i

th and the most dominant local optimum, or the optimized baseline if
no optimum is most dominant. The values of x define the three-dimensional coordinates of each point on
the surface of the geometry. An important detail is that Gm and Pm are inversely weighted with respect
to ni. Therefore, Pm penalizes dominant, inferior local optima which are likely to impede progress towards
the global optimum, while Gm penalizes non-dominant, geometrically di↵erentiated local optima which are
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likely to be di�cult to locate. A large Gm value suggests that there are many unique geometries in di�cult-
to-access regions of the design space and that therefore locating all major geometric modes will require a
very thorough exploration of the design space.

III. Results

All tests are performed using the same baseline geometry, presented below. For clarity, within this paper
“baseline” is taken to refer to the fundamental initial geometry and problem definition that the study is
built around. This problem definition is varied throughout this paper to study various parameters, and the
baseline geometry itself is modified by the sampling algorithm to produce the initial geometries which are
then optimized. The first study looks for multimodality within the fundamental CRM ADODG test case,
this is followed by an investigation of the impact of degrees of freedom on multimodality, then the e↵ect of
Mach number is studied, and finally an exploration of how constraints a↵ect multimodality is undertaken.

A. Problem Definition

The problem and baseline geometry here are derived from the CRM wing-body configuration from the Fifth
Drag Prediction Workshop,40 with the fuselage removed and the wing scaled by the mean aerodynamic
chord. The problem definition itself naturally varies, as it is the purpose of this paper to examine the impact
on multimodality of variations in the problem definition. However, the fundamental core of the problem,
defined below, remains fixed. Specifically, this is the RANS-based optimization of an aircraft wing. The
Mach and Reynolds numbers vary from case to case and will be clearly stated where relevant. Volume is
constrained to be no less than the initial volume of 0.2617 cubed reference units, and projected area must
equal the initial value of 3.407 square units, while the lift coe�cient is constrained to CL = 0.5. Formally,
the optimization problem can be written as:

minimize CD

w.r.t. v

subject to CL = 0.5

S = 3.407

V � 0.2617

(3)

It should be noted that this is a very lightly constrained problem, and intentionally so. Generous upper
and lower bounds are set for each design variable to maintain a bounded design space; unless otherwise
stated there are no other significant constraints on the design variables during optimization.

B. Geometry Control

The baseline geometry is depicted in Figure 1a. Control is provided by two FFD volumes, which meet at
the crank. The inboard FFD volume is controlled by three cross sections, while the larger outboard volume
is divided into five. Large scale deformations of both volumes are driven by one of two axial curves, each
controlled by five axial control points. This control scheme remains fixed throughout all tests, though the
available degrees of freedom do vary.

C. Optimization Grid

A single moderately dense grid is used for all analyses, as the focus is on the number of local optima obtained
from each test and as such high numerical accuracy is not needed in the values of the force and moment
coe�cients. Relevant parameters for this grid are provided in Table 1.

D. CRM ADODG Case

Prior to examining more open-ended problems, we first study the ADODG CRM test case. This is performed
at a Mach number of 0.85 and a Reynolds number of 5 million, using only twist and sectional control design
variables. In addition to the constraints listed in the fundamental problem definition, a pitching moment
constraint is enforced, requiring that CM � �0.17. In accordance with the previously outlined test procedure,
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(a) Baseline geometry (b) Baseline mesh

Figure 1: Geometry and mesh for baseline geometry

Table 1: Common Research Model mesh parameters

Grid Nodes O↵-wall Spacing (mean aerodynamic chord) Transonic y

+ Subsonic y

+

L0 925,888 2.19⇥ 10�6 0.34 0.27

a total of 17 initial geometries were optimized, 16 of which converged successfully. The results of this study
are provided in Table 2. We find this problem to be clearly multimodal, though highly dominated by the
apparent global optimum. Four of the five local optima are within 2 drag counts of each other, with a single
outlying optimum accounting for the 9.6 drag count performance range.

The twist distribution for each local optimum is plotted in Figure 2a and shows the presence of at least
three distinct twist distributions between the five identified local optima. The orange curve corresponds to
the worst performing local optimum. The spanwise lift distributions are also plotted, in Figure 2b; all five
optima produce similar and nearly-elliptical lift distributions. This indicates that the combination of twist
and section control permits the optimizer multiple avenues to produce an optimal lift distribution, with
varying results vis-a-vis non-induced drag. Regarding the lift distributions the orange curve is once again
the clearest outlier; though the fact that this optimum is the furthest from an ideal elliptical lift distribution
is not surprising given its inferior performance.

Earlier CRM studies32 suggested the possibility of multimodality in this problem, though more recent
work16,17,20 has concluded that the design space is unimodal. While we conclude that the problem permits
multiple local optima, the design space appears heavily dominated by a single particular optimum. Twelve
of the 16 successfully converged geometries, including the baseline, converged to the best optimum. The
remaining four geometries each converged to a distinct local optimum. Any study which does not explore
the design space in su�cient breadth would be quite likely to miss these local optima. While the study of
the basic CRM wing-only case yielded a multimodal design space, this represents just one of a plethora of
wing optimization cases commonly examined, either in industrial or research settings. These include varying
degrees of freedom, flow conditions, and constraints; one must be careful extrapolating the results from
this single case to wing optimization in general. To better understand multimodality in aerodynamic shape
optimization, we now examine how multimodality is impacted by these various parameters.

E. Transonic Degree of Freedom Study

To explore the impact of variable degrees of freedom on multimodality we perform a study with the CRM
wing as a baseline while permitting the optimizer to utilize di↵erent combinations of degrees of freedom at a
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Table 2: ADODG CRM Multimodality Study Results

Successful
Tests

Number of
Optima

Best (drag
counts)

Range (drag
counts)

Dominance Pm Gm

16 5 196 9.6 75% 0.44 0.34
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Figure 2: Spanwise lift and twist distributions for ADODG CRM case. Best optimum in black.

constant Mach number of 0.85 and Reynolds number of 5 million. Beginning with relatively small, practical
problems we gradually add freedom, moving towards increasingly exploratory problems. Only the standard
lift, projected area, and minimum volume constraints are enforced. Neither the pitching moment constraint,
nor any other significant geometric constraints are enforced on these problems. As such, this is a very
loosely constrained problem and the multimodality found here can best be interpreted as an upper bound
on the multimodality present for a given combination of design variables, with any additional constraints
or requirements likely leading to a commensurately lower degree of multimodality. The impact of various
constraints is studied in Section G.

Seven sub-problems are solved by varying the type and number of degrees of freedom available to the
optimizer. Each test here is denoted by a five digit code of the form xxx xx. The first three digits refer to
the cross sectional degrees of freedom (from left to right, twist, taper, section shape), while the latter three
refer to the sweep and dihedral axial degrees of freedom. Each digit takes a value of either 1 or 0, indicating
whether that degree of freedom is active for the case in question. For example, 001 00 denotes a case where
only section shape design variables are active, while 111 01 denotes a case where all cross sectional degrees
of freedom are permitted, but dihedral is the only active axial degree of freedom.

The results from all seven cases are tabulated in Table 3, which displays the number of successful tests
(the number of attempted tests less any which failed to converge adequately), as well as the number of local
optima ultimately located, the best performance achieved in drag counts, and the total performance range
from best to worst performing local optima, as well as Pm and Gm values.

Several trends are apparent in this data. As expected, multimodality tends to increase with the number of
degrees of freedom. This can be seen through growth in the number of local optima and performance ranges,
decreasing values of dominance, and increasing values of Pm and Gm. Across all cases, all local optima
are shock-free. Examining the cross-section only cases - 001 00, 011 00, 101 00, 110 00, and 111 00 results
(corresponding to di↵erent combinations of twist, taper, and section control), shows that under these lightly
constrained conditions, even a relatively small amount of freedom provides the potential for multimodality,
with three cases – 011 00, 101 00, and 111 00 – producing multiple local minima. In all three of these cases
a material di↵erence in performance between local optima is seen; however, the consistently low Pm and
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Table 3: Degree of Freedom Multimodality Study Numerical Results. M=0.85, Re=5 million. Each test is
identified using a five digit code of the format xxx xx. From left to right each digit indicates whether twist,
taper, section shape, sweep, or dihedral freedom is permitted.

Test
Code

Successful
Tests

Optima Best
(drag
counts)

Range
(drag
counts)

Dominance Pm Gm

001 00 31 1 193 0.0 100% 0.00 0.00

011 00 14 2 188 1.3 86% 0.01 0.75

101 00 17 4 193 2.0 65% 0.16 0.26

110 00 33 1 208 0.0 100% 0.00 0.00

111 00 15 3 187 2.2 73% 0.23 3.92

111 01 12 11 181 7.6 17% 1.35 29.16

111 11 10 9 178 34.8 20% 6.10 74.41

Gm values, particularly for the 011 00 and 101 00 cases, indicates that this multimodality is nevertheless
not of a very large degree and that a GBMS algorithm with a small number of initial geometries should be
su�cient to fully explore the design space. The 101 00 case di↵ers from the ADODG CRM case only in the
absence of a pitching moment constraint, with the 101 00 showing a performance range roughly 25% as large
and producing much lower values of Pm and Gm compared to the ADODG case. The results imply that the
design space is in fact more di�cult to navigate with the pitching moment constraint than without. These
di↵erences are entirely due to the single significantly outlying local optimum identified in the ADODG case.
Removing this optimum from the results yields a performance range of 2.1 drag counts and Pm and Gm

values, respectively, of 0.14 and 0.26, nearly identical to those listed in Table 3 for 101 00.
This presents two likely explanations: first, that this additional optimum is not present in the 101 00

design space, or secondly that it is present in both design spaces but was not located in the 101 00 study.
While the constraint study undertaken in Section III.G shows that the predominant impact of increasing
constraints is to reduce multimodality, constraints also potentially introduce new trade-o↵s into the design
problem which could in some cases lead to the introduction of new local optima. This is hinted at by the
inconsistent relationship between some of the studied constraints in Section III.G and the resulting degree
of multimodality. With regard to the second possible explanation, the sample sizes used in this work are not
su�cient to ensure an exhaustive study of the design space. For this reason, rare or di�cult-to-find local
optima may be missed, this is a possibility that will be raised at several points throughout this work. With
this in mind, it is important to understand the results presented here as a statement of whether a given
problem is multimodal or not and a discussion of the relative multimodality of various problems, not as an
exhaustive study of all local optima present within the design space in question.

Considering all three cross-sectional degrees of freedom simultaneously, as in the 111 00 case, produces a
larger increase in multimodality than a simple monotonic relationship would suggest based on the previous
results. None of the reported values, save G

m

, are unprecedented, taking values that are at most marginally
di↵erent from those obtained in 101 00 or 011 00 – the next most multimodal cross-section only cases.
However, a more than 4-fold increase in Gm is registered relative to those earlier cases. This indicates that
while simply locating the minimum drag in this case would require approximately the same e↵ort as the
101 00 case, if one wanted to fully explore the design space a more robust method would be necessary here
than in the other cases examined thus far .

The local optima taper distributions for all relevant cross-section-only cases are shown in Figure 3. It is
apparent from this figure that the behaviour of taper is linked with the other available degrees of freedom.
Both 011 00 and 110 00 produce a single clearly distinct planform shape – two optima are shown for the
former because variations in tip geometry have produced a roughly 1.3 drag count change in performance,
but the overall planforms are highly similar. While both produce a single general planform shape, the
planform in question changes substantially between cases, demonstrating a coupling between the optimal
taper distribution and the ability to modify section shape and twist design variables. When all three cross-
sectional degrees of freedom are considered in 111 00, the resulting design space appears to simply be the
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Figure 3: Wing planforms for transonic cross-section only optimization. Best optimum in black.

superposition of the two global optima found previously. If this linear behaviour persists for taper with
regards to other degrees of freedom or various constraints, then there would be a significant potential for
multimodality in the taper design variables.

Spanwise twist distributions for applicable cross-section-only cases are provided in Figure 4. These results
mirror and reinforce what was observed in the ADODG CRM case. The degree of multimodality in twist
appears low and consistent, with each case producing between one and three twist distributions. The form
of these local optima appears to be highly sensitive to the availability of other design variables, with the
twist distributions varying notably between cases. The lift distributions plotted in Figure 5 reveal that all
local optima find largely identical near-elliptical lift distributions, but with significantly varying total drag.
As these trends are consistent across all examined transonic cases with both section and twist degrees of
freedom, this strengthens the earlier conclusion that twist and section in concert permit multiple avenues to
produce an elliptical lift distribution.

The overall conclusion we can draw is that in the cross-section-only optimization of a wing at transonic
speed, multimodality can be present in small amounts, particularly under lightly-constrained conditions.
When axial control is added, the presence of multimodality becomes far clearer than in the cross-section
only cases. Both such cases – 111 01, 111 11 – exhibit clear and significant multimodality, with the degree
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Figure 4: Twist distributions for relevant cross-section only transonic optimization local optima. Best
optimum in black.
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Figure 5: Spanwise lift distributions for relevant cross-section only transonic optimization local optima. Best
optimum in black.

increasing as each additional degree of freedom is added. Before discussing axial results, it bears repeating
that the forthcoming cases are high dimensional and lightly constrained – as such they do not represent
practical wing design problems. The primary utility of these cases is to establish an upper bound on the
multimodality that may be expected in a given class of problem. The question of what e↵ect the addition
of various constraints may have on mitigating this multimodality is addressed later.

The first case with axial freedom, 111 01, permitting all cross-sectional freedom as well as dihedral,
produces a clear increase in multimodality. Most convincingly, a 6-fold increase in Pm and nearly 8-fold
increase in Gm both indicate a design space that is considerably more demanding to navigate than the
cross-section-only cases. If one examines the taper distributions in Figure 6a it is apparent that the taper
multimodality exhibited in 111 00 has again vanished, with all geometries finding largely similar variations
on the previously-noted concave inboard trailing edge design. The most obvious source of multimodality in
this case is dihedral, where at least three dihedral modes, depicted in Figure 6b, are clear. The first two are
variations on the expected dihedral-up and dihedral-down designs – though with considerable variance in
the inboard dihedral distribution, ranging from relatively flat inboard sections to reflexed designs where the
wing droops down before sweeping up into a hook-like dihedral. Even if one groups these variations into a
single local optimum, a third mode is apparent in green, characterized by a flat inboard leading to a largely
linear dihedral-down configuration. This stands in contrast to the mostly rounded dihedral designs of other
minima.

Adding sweep control, as in the 111 11 case, produces still further multimodality. While neither the
number of local optima nor the dominance has appreciably changed relative to 111 01, the performance
range has increased nearly five-fold, the multimodality metrics have continued to climb exponentionally, and
as depicted by Figures 7a and 7b, the geometric variation in the local optima has expanded. Forward- and

10 of 22

American Institute of Aeronautics and Astronautics



X

Y

Z

(a1) Dihedral down configurations

X

Y

Z

(a2) Dihedral up configurations

(a) Planform distributions

(b) Dihedral distributions

Figure 6: Local optima for transonic 111 01. Best optimum in black.

back-swept geometries are observed, and once again both positive and negative dihedral designs are well
represented in the final geometries. The same trends in dihedral as 111 01 are replicated, but the geometries
have become more extreme. As with previous cases, taper behaves inconsistently. Examining taper profiles,
particularly inboard, multimodality is once again observed and variations on many previously-noted taper
distributions are visible. The concave, convex, and linear inboard trailing edge designs all appear. As well,
designs reminiscient of the global taper optimum from 110 00 have been produced.

As in the cross-section only cases, all local optima in the axial-freedom cases are shock free. The incon-
sistencies in the earlier noted geometric trends, or at least the di�culty in fully understanding them, may be
explained in part by di�culties with convergence. The cases with axial control, particularly the 111 11 test,
are high dimensional problems with extremely sparse constraints, representing a significant challenge to the
optimizer – far more than the lower-dimensional problems considered previously, or the more constrained
problems discussed later. This is expressed in much higher failure rates, and much shallower convergence for
cases which do succeed. Therefore, we find ourselves exploring a highly multimodal design space that is also
inherently di�cult to traverse. Nevertheless, the multimodal nature of these problems is clear, and we can
confidently conclude that the inclusion of large-scale planform deformations and non-planar configurations
has a substantial impact on multimodality, particularly in lightly-constrained problems.
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Figure 7: Local optima for transonic 111 11. Best optimum in black.

F. Subsonic Degree of Freedom Study

The second set of cases seek examine the impact of flow regime on multimodality. This is accomplished
by repeating the degree of freedom study undertaken in Section E but at a subsonic Mach number of 0.5,
and a Reynolds number of 2.94 million. Other than this variation in flow regime, the problem definition is
identical to that of the transonic degree of freedom tests, consisting of the baseline viscous lift-constrained
drag minimization with minimum volume and fixed projected area. Once again, apart from generous upper
and lower bounds on each design variable, no additional constraints are used. The naming convention from
those previous tests is duplicated here as well, with each test case denoted by a five digit code of the form
xxx xx, where the first three digits refer to the cross sectional degrees of freedom (twist, taper, section
control), the latter two correspond to the sweep and dihedral axial degrees of freedom, and each digit takes
a 0 or 1 to denote whether that degree of freedom is permitted in a particular test.

Numerical results from each of the seven subsonic cases are tabulated in Table 4. Overall, it is observed
that the general trends from the transonic cases are consistent across the subsonic cases as well. Regarding
the cross-section only tests – 001 00 through 111 00 – the immediately apparent e↵ect of moving to a subsonic
regime is a clear reduction in the degree of observed multimodality. While varying, but consistently small,
amounts of multimodality were noted in the transonic cross-section only cases, here all except the 111 00 case
are fully unimodal. As in the transonic case, the 111 00 is the most multimodal of the cross-sectional cases
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Table 4: Degree of Freedom Multimodality Study Numerical Results. M=0.50, Re=2.94 million. Each test
is identified using a five digit code of the format xxx xx. From left to right each digit indicates whether
twist, taper, section shape, sweep, or dihedral freedom is permitted.

Test
Code

Successful
Tests

Optima Best
(drag
counts)

Range
(drag
counts)

Dominance Pm Gm

001 00 33 1 193 0.0 100% 0.00 0.00

011 00 33 1 192 0.0 100% 0.00 0.00

101 00 33 1 193 0.0 100% 0.00 0.00

110 00 33 1 201 0.0 100% 0.00 0.00

111 00 17 2 191 1.9 94% 0.06 4.47

111 01 10 7 183 14.9 30% 3.72 52.72

111 11 9 8 180 7.3 22% 2.08 52.08

– though here that is merely by virtue of being the only cross-sectional case to exhibit any multimodality
whatsoever.

Turning to geometry, to parallel the transonic discussion we will primarily focus on the taper and twist
design variables in the cross-section-only discussion. What we find is quite consistent with the transonic
regime. Figure 8 displays the 011 00, 110 00, and 111 00 taper distributions, showing the same patterns
as observed in the transonic cases. Once again, both 011 00 and 110 00 produce one dominant taper
distribution, as before the 011 00 case generates a concave inboard trailing edge and tapered wingtip, while
the 110 00 case prefers a more convex inboard – here almost linear with a slight bulge – leading to a wingtip
similar to that in the 011 00 case. Finally, 111 00 again produces two planforms which correspond to each
of the planforms found in the other two cases. While the geometries do vary – for instance the concave
subsonic 111 00 local optimum and the transonic 110 00 best optimum both bulge at the inboard trailing
edge more than the subsonic 110 00 best optimum, the trends are clearly consistent.

Regarding twist, relevant distributions are found in Figure 9. While the 101 00 and 110 00 twist dis-
tributions bear little resemblance to their transonic counterparts, the form of the 111 00 distributions is
remarkably similar across both flow regimes. Based on this evidence we can conclude that in the sub-
sonic regime, twist appears to be either unimodal or possessing a small number of local optima. Figure 10
illustrates that all subsonic section-only local optima are able to locate an elliptical lift distribution.

Examing the cases with axial degrees of freedom permitted – 111 01, 111 11 – the trends become less clear.
The initial jump in multimodality between 111 00 and 111 01, which reflects the e↵ect of adding dihedral
control, is larger in the subsonic case than the transonic. However, the subsequent growth of multimodality
is less steep, with the peak subsonic Pm value being approximately 30% the peak transonic value, and
Gm only achieving a value approximately two-thirds the magnitude of the maximum in the transonic tests.
Pm also no longer monotonically increases as control is added, dropping between the subsonic 111 01 and
111 11 tests while the same step caused an approximately 400% increase in Pm in the transonic regime.
The relative multimodality for cases between flow regimes is also inconsistent: measured by the Pm and Gm

values, the 111 11 case produces significantly more multimodality in the transonic than subsonic regime,
while the 111 01 case shows the opposite trend, with the subsonic metric values being notably higher than
the transonic. In all cases, the relatively small variations in the number of optima and dominance values are
deceptive, with variations in Pm and Gm being predominantly driven by changes to the range and distribution
of the local optima. As in the transonic examinations, slow convergence and flow solve or mesh movement
failures continue to be problematic for the subsonic axial cases, particularly the 111 11 test, though less so
than in the transonic results.

Overall, a decrease in multimodality is noted when moving to the subsonic region, as the majority of
examined cases showed significant reductions in all relevant multimodality metrics, the one notable exception
being 111 01.

13 of 22

American Institute of Aeronautics and Astronautics



X

Y

Z

(a) 011 00 best optimum

X

Y

Z

(b) 110 00 best optimum

X

Y

Z

(c) 111 00 local optima

Figure 8: Wing planforms for subsonic cross-section only optimization. Best optimum in black.

G. Constraint Study

The previous tests examined the relationship that degrees of freedom and flow regime have with multimodal-
ity. While the minimally-constrained nature of the previous cases are useful for establishing an upper bound
on the multimodality that may be present in a problem, understanding the presence of multimodality in
more practical problems requires a focused study of the relationship between constraints and multimodality.
The ultimate goal of this study is to determine whether multimodality is present in a high dimensional prob-
lem subject to practical geometric constraints. The same baseline problem is considered as in the degree
of freedom test; however now rather than varying the degrees of freedom as in earlier tests, the degrees of
freedom are fixed and the constraints are varied. The transonic 111 11 case is used as an “unconstrained”
baseline; this was selected as a high dimensional case permits us to examine a wide variety of constraints.
If common structural or manufacturability constraints – such as a minimum thickness or straight leading
and trailing edges – can eliminate multimodality in a case such as this, then it is highly likely that most or
all practical problems of lower dimensionality are unimodal. However, if multimodality persists even under
tightly constrained circumstances, then multimodality must be accounted for even in practical optimization
problems.

A selection of common constraints are examined in di↵erent combinations, in a similar manner to the
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Figure 9: Twist distributions for relevant cross-section only subsonic optimization local optima. Best opti-
mum in black.
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Figure 10: Lift distributions for relevant cross-section only subsonic optimization local optima. Best optimum
in black.

above degree of freedom investigation. The constraints examined are linear twist and taper – requiring the
design variables to follow a linear distribution between the root and tip of each FFD volume, though not
necessarily across volumes – minimum thickness – constraining thickness variations to between 0.85 and 1.5
times the initial thickness of each section – constant sweep and dihedral – which enforce constant sweep or
dihedral angles across both FFD volumes – and pitching moment – which constrains the pitching moment
coe�cient to be greater than or equal to -0.17. Each test is denoted by a five digit code of the form xxx xx
where each digit from left to right corresponds to the twist, taper, section control, sweep, and dihedral. If a
constraint is present on a degree of freedom, that digit will take one of several letters to indicate the kind
of constraint used, corresponding to (L)inear, (M)inimum or (C)onstant. The su�x “NPM” is appended to
certain names to indicate that a pitching moment constraint is not enforced.

Fundamentally, this test was envisioned as starting with a clearly multimodal, unconstrained problem,
and gradually adding constraints to determine when multimodality is reduced or eliminated entirely. The
most practical optimizations require fully straight leading and trailing edges, a common requirement in
design problems achieved through a combination of linear constraints. Straight leading and trailing edges
in the xy plane require linear taper and constant sweep – denoted as 0L0 C0. Straight leading and trailing
edges in the yz plane require constant dihedral – 000 0C. Tests with all three of these constraints will have
fully straight leading and trailing edges.

One of the degrees of freedom which displayed the most varied behaviour in the previous sections was
taper, and as such the linear taper constraint was studied first; further tests were selected by adding one
constraint at a time to each previous test. Numerical results from these tests are found in Table 5, for
clarity, the cases are grouped according to major shared properties, specifically: lack of a pitching moment
constraint, lack of any leading and trailing edge restrictions, partial leading and trailing edge restrictions, or
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Figure 11: Local optima for subsonic 111 01. Best optimum in black.

fully straight leading and trailing edges.
Multimodality, measured by any of the reported values, tends to decrease as constraints are added –

though this trend is not monotonic. More interesting is the persistence of multimodality in tightly con-
strained problems, with every examined case indicating multimodality of some degree. This includes the
most stringently constrained tests, those requiring fully straight leading and trailing edges. This is accom-
plished in cases LL0 CC and 0L0 CC by requiring linear taper, constant dihedral, and constant sweep – in
addition to linear twist in the former case. The final optima from the LL0 CC case are plotted in Figures
13a and 13b. Comparing these to the optima produced by the unconstrained, transonic 111 11 case which
provides the basis of this test – shown in Figures 7a and 7b – it is apparent that multimodality has been
reduced in the constrained case. This conclusion is corroborated by the reduction in nearly every reported
value in Table 5 between these two cases; in particular the dihedral-up mode has disappeared and dihedral
appears largely unimodal with perhaps some variation in angle between modes. However, there remains
clear multimodality within the planform shapes depicted in Figure 13b. Beyond the forward and back-swept
geometries, there is evidence of at least two, perhaps three, distinct taper distributions within these optima.
The only multimodality metric which does not drop in the constrained case is Gm, which increases signifi-
cantly relative to the unconstrained case. This is driven by the same trend driving the Pm value down: the
relative rarity of outlying optima in this design space. While the overall geometric spread of the optima
has clearly decreased relative to the unconstrained test, the relative dominance of the more similar optima
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Figure 12: Local optima for subsonic 111 11. Best optimum in black.

has increased, rendering those outlying optima more di�cult to locate. This is a recurring trend in the
constrained test results.

Removing the linear twist constraint, the 0L0 CC case, produces significant changes to the design space.
Table 5 shows that doing so causes the number of optima to double and the dominance to fall by a third,
suggesting a design space that is appreciably more multimodal; this is supported by Figure 14 which shows a
notable increase in the variety of planform designs and comparable variability in dihedral relative to LL0 CC.
However, examining the Pm and Gm values reveals a more nuanced perspective. Relative to the linear-twist
constrained case, the performance range has dropped and the optima have clustered more closely around the
minimum drag; this produces a marginally reduced Pm value, suggesting that it is somewhat easier to get
close to the minimum drag in this case, despite the additional optima. However, most of the geometrically
outlying optima are relatively rare, many with only a single example out of 15 successful initial geometries.
This produces a large Gm and indicates that while one may be able to use a relatively small number of
samples and have confidence that one is not losing significant performance in the final design, ensuring that
one has located all major geometric modes requires a far more in-depth study of the design space.

The absence of any dihedral-up designs in either of the two constrained tests examined thus far is
somewhat unexpected as there is little reason to suspect that the variety of dihedral-up modes observed in
other cases would be entirely eliminated by a constant dihedral constraint. In fact, a constant-dihedral-up
optimum is located by 000 0C, shown in Figure 15, which enforces only a constant dihedral constraint. This
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Table 5: Constrained numerical results. M=0.85, Re=5 million. 000 00 NPM case corresponds to transonic
111 11. “L” requires a design variable to have a linear distribution, “C” requires a constant distribution, “M”
enforces a strict minimum value, and “NPM” denotes that a pitching moment constraint is not enforced.

Test Code Successful
Tests

Optima Best
(drag
counts)

Range
(drag
counts)

Dominance Pm Gm

No Pitching Moment Constraint

000 00 NPM 10 9 178 34.8 20% 6.10 74.41

0L0 00 NPM 10 10 178 20.4 10% 2.56 45.75

0L0 0C NPM 15 4 183 11.0 67% 0.50 6.84

No LE/TE Restrictions

0L0 00 10 10 183 11.2 10% 3.56 21.58

0LM 00 10 10 189 7.0 10% 1.43 17.83

LL0 00 10 9 185 20.8 20% 3.81 51.60

LLM 00 12 10 189 15.7 17% 1.86 36.01

Some LE/TE Restrictions

000 0C 10 6 186 6.9 50% 0.92 24.68

0L0 0C 10 4 187 7.1 70% 0.54 6.84

0L0 C0 12 4 183 4.4 42% 0.91 104.73

0LM 0C 13 4 194 15.4 77% 0.97 59.60

0LM C0 12 6 191 14.8 33% 1.16 60.16

LL0 0C 13 4 187 4.5 54% 0.26 44.04

LL0 C0 15 9 183 7.4 27% 1.36 40.87

Straight LE/TE

0L0 CC 15 8 188 7.3 40% 0.98 84.01

LL0 CC 15 4 188 8.9 60% 1.13 129.13

particular optimum was located by just one of the 17 attempted geometries, presenting the possibility that
if such modes do exist within the 0L0 CC and LL0 CC design spaces they are non-dominant and potentially
di�cult to locate.

This result also highlights the impact that constant sweep and dihedral constraints have on multimodality,
even when applied in isolation. Throughout the tested cases, the addition of a constant sweep or dihedral
constraint – denoted as xxx xC or xxx Cx – has a consistent negative impact on multimodality, indicated
by large reductions in the number of located optima and Pm and corresponding increases in dominance.
This can be seen by comparing any of the reported values for 0L0 00 with 0L0 0C or 0L0 C0, the results
for 0LM 00 with its sweep or dihedral constrained varients, or any other relevant cases. The one consistent
exception to this relationship is Gm, which quite frequently is observed to increase with the addition of
these constraints. This is related to the previous discussion on the possible presence of dihedral-up modes in
constant-dihedral cases, suggesting that these constraints may not eliminate all geometrically outlying modes,
but merely render some much rarer and therefore harder to locate. This should serve to caution readers
against assuming that merely by constraining critical design variables one can ensure an easy-to-navigate
design space.

Among the other tested constraints – linear twist, linear taper, minimum thickness, and pitching moment
– few strong, consistent relationships are apparent. Pitching moment appears to have at most a moderate
impact on multimodality, serving to flatten performance variations and redistribute local optima relative
to an unconstrained test but having little to no e↵ect on the number of local optima found, and a highly
inconsistent relationship with the resulting Pm and Gm values. A similar relationship is noted for the
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Figure 13: Local optima for LL0 CC. Best optimum in black.
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Figure 14: Local optima for 0L0 CC. Best optimum in black.

minimum thickness constraint, whose impact is largely confined to a large reduction in the performance
range achieved by the optimizer. The impact of linear taper and linear twist appear to be highly related to
other problem parameters, including which other constraints are applied simultaneously. As a result, both
constraints have highly variable relationships, appearing to cause large increases in various metrics at some
times, and large decreases in others. However, it appears that linear taper, at least, has a minimal impact
when enforced in isolation. Comparing the numerical results in Table 5 for 000 00 NPM and 0L0 00 NPM
one can see that while the performance range has decreased there is little notable change in the number
of optima or dominance; indeed examining the local optima produced by the 0L0 00 NPM case in Figures
16 shows little material change in the optima obtained relative to those in in Figures 7a and 7b. That
considered, while the number of local optima has not changed, large reductions in both Pm and Gm point
to a redistribution of those optima within the design space, producing a problem that is significantly less
burdensome to navigate.

Overall, the most important conclusion that can be drawn from these results is the consistent presence of
multimodality in nearly every examined design space. This demonstrates that multimodality can and does
exist in well-constrained practical wing optimization problems. The data presented here strongly suggest that
using a gradient-based optimization algorithm starting from a single initial geometry will not be su�cient
to ensure that the global optimum is found.
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Figure 15: Dihedral distributions for 000 0C local optima
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Figure 16: Local optima for 0L0 00 NPM. Best optimum in black.
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IV. Conclusion

This paper has presented a thorough parametric study of multimodality in the RANS-based optimization
of a wing. The data indicate that for wings in both subsonic and transonic flows, optimization of the cross-
section through twist, taper, and section shape is somewhat multimodal, while permitting changes to the
sweep and dihedral produces moderately to highly multimodal design spaces. Generally, wing optimization
in subsonic flows appears less multimodal than in transonic flows, but clear evidence for multimodality is
present in both. Multimodality in cases permitting large planform deformations can be reduced but not
eliminated by enforcing a requirement for straight leading and trailing edges. Other constraints, such as
linear twist or taper, minimum thickness, or a pitching moment constraint appear to have inconsistent
impacts on multimodality; however multimodality remains to some degree under all examined constraint
combinations

Overall, multimodality has been shown to be an intrinsic component of the design space for wing optimiza-
tion under many circumstances. The multimodality observed is of variable degree, but appears persistent
across various flow regimes and constraints. Based on these results, while global optimization algorithms
may not be necessary for all problems, if one chooses to use a local optimization scheme for the aerodynamic
shape optimization of a wing, the possible presence of multimodality must be understood as an inherent risk.
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