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This paper summarizes several new developments in the theory of high-order implicit
Runge-Kutta (RK) methods based on generalized summation-by-parts (GSBP) operators.
The theory is applied to the construction of several known and novel Runge-Kutta schemes.
This includes the well-known families of fully-implicit Radau IA/IIA and Lobatto IIIC
Runge-Kutta methods. In addition, a novel family of GSBP-RK schemes based on Gauss
quadrature rules is presented along with a few optimized diagonally-implicit GSBP-RK
schemes. The novel schemes are all L-stable and algebraically stable. The stability and
relative efficiency of the schemes is investigated with numerical simulation of the linear
convection equation with both time-independent and time-dependent convection velocities.
The numerical comparison includes a few popular non-GSBP Runge-Kutta time-marching
methods for reference.

I. Introduction

Nordstrom and Lundquist1 observed that finite-difference operators satisfying the classical summation-
by-parts (SBP) property,2 along with simultaneous approximation terms (SATs), can be used to construct
high-order fully-implicit time-marching methods. With a dual-consistent choice of SAT coefficient,3,4 this
family of methods is L-stable and leads to superconvergence of linear functionals.5 In addition, those based
on diagonal-norm operators are B-stable.5 Dual-consistency also enables each time step (SBP block) to be
solved sequentially in time, rather than having to solve the global problem all at once. However, the stages
(pointwise solution) within each time step are fully-coupled and must be solved simultaneously. Given
the relatively large minimum number of stages in classical SBP time-marching methods, this approach is
relatively inefficient.

A generalization of the classical SBP property2 was presented in Del Rey Fernández et al.6 The gen-
eralized SBP (GSBP) framework enables the construction of high-order SBP time-marching methods with
significantly fewer stages. Boom and Zingg7 showed that GSBP time-marching methods have similar ac-
curacy and superconvergence characteristics and maintain the same stability properties as those based on
classical SBP operators. Using a dual-consistent implementation, where each time step is solved sequen-
tially in time, the GSBP framework yields the potential for constructing significantly more efficient SBP
time-marching methods.

In a second paper, Boom and Zingg8 showed that all dual-consistent SBP and GSBP time-marching
methods are implicit Runge-Kutta schemes. The order of the GSBP operator corresponds to the minimum
stage order. Likewise, the rate of superconvergence is related to the minimum global order of the equivalent
Runge-Kutta scheme. These minimum guaranteed results can be superseded using the full and simplifying
Runge-Kutta order conditions. Furthermore, the connection to Runge-Kutta schemes provides the tools
required to construct nonlinearly stable dense-norm GSBP time-marching methods, as well as diagonally-
implicit GSBP time-marching methods.

The objective of this paper is to summarize several recent developments in GSBP time-marching theory,
and to present several known and novel GSBP time-marching methods. The stability and relative accuracy
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of these methods is investigated and compared with classical SBP and popular non-SBP implicit time-
marching methods. This paper is organised as follows: Section II introduces GSBP time-marching methods
for the discretization of initial value problems (IVPs). In addition, it presents the characterization of dual-
consistent SBP and GSBP time-marching methods as Runge-Kutta schemes. The accuracy and stability
properties of GSBP-RK methods is summarized in Section III. This theory is then applied to the construction
and analysis of known and novel time-marching methods based on GSBP operators in Section IV. Finally,
numerical simulation in Section V is used to demonstrate various aspects of the theory, and to compare the
stability and efficiency of GSBP-RK time-marching methods. A summary concludes the paper in Section
VI.

II. Implicit Runge-Kutta Methods Based on Generalized
Summation-by-Parts Operators

II.A. Generalized summation-by-parts operators and simultaneous approximation terms

This paper considers discrete approximations of IVPs for nonlinear systems of ordinary differential equations
(ODEs):

Y ′ = F(Y, t), Y(t0) = Y0, with 0 ≤ t ≤ T, (1)

where Y ∈ CM , Y ′ = dY
dt , F(Y, t) : {CM ,R} → CM , and Y0 is the vector of initial data. Applying a

time-marching method, each time step is defined by a subdomain [t0, tf ] ⊂ [0, T ]. The motivation for time-
marching methods which satisfy the SBP or GSBP property is the ability to construct discrete estimates of
the solution which mimic the continuous case. This is done using the energy method. An estimate of the
solution is constructed by taking the inner product of the solution and IVP. The inner products are then
related to the initial condition through the use of integration-by-parts (IBP) in the continuous case and SBP
or GSBP in the discrete case. The GSBP definition presented in Del Rey Fernández et al.6 is:

u∗HDv + u∗DTHv = u∗Ẽv ≈ ŪV
∣∣tf
t0
, (2)

where Ū is the complex conjugate of the continuous function U , u is the restriction of U onto the abscissa
t = [t1, . . . , tn], u∗ is the conjugate transpose of u. H is a symmetric positive definite (SPD) matrix which
defines a discrete inner product and norm:

(u,v)H = u∗Hv, ||u||2H = u∗Hu. (3)

The norm is typically classified as diagonal or non-diagonal. We will refer to all non-diagonal norms as
dense.6 Finally, D is a linear first-derivative GSBP operator defined as:

Definition 1 Generalized summation-by-parts operator:6 A linear operator D = H−1Θ is a GSBP
approximation to the first derivative of order O(hqn) on the abscissa t = [t1, . . . , tn], where all ti are unique
and hn =

tf−t0
n , if D satisfies:

Dtj = jtj−1, j ∈ [0, q], (4)

with q ≥ 1, where tj = [tj1, . . . , t
j
n]T forms a monomial with the convention that t−1 = 0, and (Θ + ΘT ) = Ẽ

such that

(ti)∗Ẽtj = (i+ j)

∫ tf

t0

t̃i+j−1dt̃ = ti+jf − ti+j0 , i, j,∈ [0, r], (5)

with r ≥ q.

The existence of GSBP operators and their relationship to a quadrature rule of order O(hτn) is presented
in Del Rey Fernández et al.6 Sharper bounds on some of these results are presented in Boom.9 The classical
SBP definition differs in that Ẽ must be equal to diag(−1, 0, . . . , 0, 1), and therefore u∗Ẽv is strictly equal

ŪV
∣∣tf
t0

.
IVPs require a means to impose the initial condition. In addition, it is often most efficient to use multiple

time steps, necessitating a means to couple the solution between time-steps. A natural approach when using
GSBP operators is to use SATs.1,5, 7–9 The SAT technique requires an approximation of the solution at the
beginning and end of each time step ỹt0 ≈ Y(t0) and ỹtf ≈ Y(tf ). In general, these values may be projected
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from the stage solution values, similar to early work presented in Refs. 10–13. The projection operator χ is
defined by

χTt0t
j = t0

j and χTtf tj = tf
j , j ∈ [0, q ≤ r ≤ n− 1]. (6)

Following References 6–9, the fully-discrete form of (1) using a single time step can then be written as

(D ⊗ IM )yd = Fd − σ(H−1χt0 ⊗ IM )((χTt0 ⊗ IM )yd − (In ⊗ Y0)), (7)

with

yd =


yd,1

...

yd,n

 , Fd =


F(yd,1, t1)

...

F(yd,n, tn)

 , yd,i =


yd,k,1

...

yd,k,M

 , (8)

where σ is the SAT penalty parameter. A natural choice of SAT penalty parameter is σ = −1, which
renders the discretization dual-consistent.3–5,7 In addition, when using multiple time steps, this choice of
SAT penalty parameter decouples the solution within each time step from the solution in subsequent time
steps. This enables each time step to be solved sequentially in time like a Runge-Kutta method.

To ensure the compatibility of the SBP and GSBP operators with the SAT implementation, the following
condition is imposed:6

Condition 1
Ẽ = Θ + ΘT = χtfχ

T
tf
− χt0χTt0 . (9)

Furthermore, to guarantee a unique solution for linear IVPs, a second condition is imposed:1,5

Condition 2 For σ ≤ −1/2, all eigenvalues of Θ− σχt0χTt0 must have strictly positive real parts.

II.B. Runge-Kutta Characterization

Boom and Zingg8 showed that all dual-consistent SBP and GSBP time-marching methods are implicit
Runge-Kutta schemes. Consider the ith time step of a dual-consistent SBP or GSBP time-marching method
(σ = −1) applied to (1) with M = 1:

Dy
[i]
d = H−1Θy

[i]
d = f

[i]
d −H

−1χ
t
[i]
0

(
χT
t
[i]
0

y
[i]
d − χ

T

t
[i−1]
f

y
[i−1]
d

)
. (10)

The simplification to a scalar IVP (M = 1) is done without any loss of generality. Rearranging for the stage
solution values and simplifying gives

y
[i]
d =

(
Θ + χ

t
[i]
0
χT
t
[i]
0

)−1
Hf

[i]
d + 1ỹ[i−1], (11)

where ỹ[i−1] = χT
t
[i−1]
f

y
[i−1]
d and 1 = [1, . . . , 1]T . Projecting (11) to the end of the time step yields

ỹ[i] = χT
t
[i]
f

(
Θ + χ

t
[i]
0
χT
t
[i]
0

)−1
Hf

[i]
d + ỹ[i−1], (12)

where ỹ[i] = χT
t
[i]
f

y
[i]
d . These two equations ((11) and (12)) describe a Runge-Kutta method with n internal

stage approximations:

yk = ỹ[i−1] + hN

n∑
j=1

AkjF(yd,j , t
[i−1] + cjh) for k = 1, . . . , n, (13)

and solution update

ỹ[i] = ỹ[i−1] + hN

n∑
j=1

bjF(yd,j , t
[i−1] + cjh). (14)
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The matrices Akj and bj define the coefficients of the Runge-Kutta method with abscissa c, and step size
hN = tf − t0. Formally, the coefficient matrices of the equivalent Runge-Kutta scheme defined in terms of
the components of a GSBP-SAT discretization are:

A = 1
hN

(
Θ + χt0χ

T
t0

)−1
H,

bT = χTtfA = 1
hN
χTtf

(
Θ + χt0χ

T
t0

)−1
H,

(15)

with abscissa

c =
t− 1t[i]0
hN

. (16)

The additional factors of h−1N in (15) remove the step size implicitly defined in the norm H. Similarly, the
form of the GSBP-RK abscissa (16) rescales and translates the interval from [t0, tf ] to [0, 1].

III. Properties of Implicit Runge-Kutta Methods Based on Generalized
Summation-by-Parts Operators

This section reviews common properties of implicit Runge-Kutta methods and how they relate to the
conditions imposed on SBP and GSBP time-marching methods. It further explores concepts which are not
imposed by the GSBP theory and how they can be exploited to generate more favourable GSBP time-
marching methods in terms of accuracy, stability, and efficiency.

III.A. Stage-order conditions

It is common to discuss the accuracy of SBP and GSBP spatial operators with respect to the pointwise error.
In the context of IVPs, it is more common to discuss the accuracy of the solution projected to the end of each
time step. However, the accuracy of the internal stages can impact of the convergence of the solution at the
end of each time step for stiff IVPs.14,15 This phenomenon is known as order reduction. For Runge-Kutta
methods, the accuracy of the internal stage approximations is called stage order. A Runge-Kutta method is
said to have stage order O(hq̂N ) if:

ci = iAci−1, for i ∈ [1, q̂], (17)

Boom and Zingg8 showed that the minimum stage order of GSBP-RK time-marching methods is equivalent
to the order of accuracy of the GSBP operator. Therefore, by definition all Runge-Kutta time-marching
methods based on GSBP operators of order q also have stage order q̂ ≥ q.

III.B. Order conditions

We now consider the global order of accuracy of GSBP-RK time-marching methods, the accuracy of the
solution projected to the end of each time step. This does not address the rate of order reduction exhibited
by IVPs with a stiff source term or singular perturbation problems.

To begin, consider what has been shown for linear IVPs through the theory of superconvergence. Hicken
and Zingg3,4 developed the theory of superconvergent functionals for classical SBP-SAT discretizations of
linear problems. The theory implies that the stage value coincident with the end of each time step is
superconvergent. Boom and Zingg7 extended this theory for GSBP time-marching methods, proving that
when the solution is projected to the end of each time step, it remains superconvergent. The rate of
superconvergence is restricted by 2q + 1 and by the accuracy ρ with which the norm H approximates the
L2 inner product. For diagonal norms, this is simply the order of the associated quadrature rule of order
τ ≥ 2q. In the case of dense norms it is more complex;6,9 however ρ is always greater than or equal to the
order q of the GSBP operator itself.

These results were extended in Boom and Zingg8 for general nonlinear IVPs by examining the simplifying
order conditions for Runge-Kutta schemes derived in Butcher.16 For diagonal-norm GSBP time-marching
methods, the global order for nonlinear problems was shown to be consistent with to the superconvergence
theory, i.e. min(2q + 1, τ). For the dense-norm GSBP time-marching methods, it was only shown that the
methods are guaranteed to converge with a minimum order of min(ρ, q + 1) for nonlinear problems. These
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are minimum guaranteed order results based on the definition of the GSBP operators and their relation to
the SATs.

Boom and Zingg8 also observed that the simplifying Runge-Kutta order conditions, as well as the full
Runge-Kutta order conditions,17,18 can be used to construct higher-order GSBP-RK methods relative to
their stage order. The order of these methods supersede the guaranteed minimum order discussed above.
This can be used for constructing high-order diagonally-implicit time-marching methods which are limited
to stage-order one. An example of this is given in Section IV.

III.C. Stability

Lundquist and Nordström showed that classical SBP time-marching methods are unconditionally stable for
linear problems. This includes A-stability and L-stability. In addition, they showed that classical SBP time-
marching methods associated with a diagonal-norm are unconditionally stable for nonlinear problems. This
includes both B-stabilitya and energy-stability. The latter is a stability definition introduced in Lundquist
and Nordström,5 and similar in nature to the definition of monotonic schemes in Burrage and Butcher.20

In Boom and Zingg7 these results were extended for GSBP time-marching methods. With the connection
to Runge-Kutta schemes, Boom and Zingg8 observed that these results imply that all SBP and GSBP
time-marching methods are AN-stable and algebraically stable.15,18,19 This is a result of the equivalent
Runge-Kutta methods being non-confluent,15 i.e. all ci are unique.

IV. Examples of Implicit Runge-Kutta Methods Based on Generalized
Summation-by-Parts Operators

This section reviews some known and novel Runge-Kutta schemes which are based on GSBP operators.

IV.A. Lobatto IIIC Runge-Kutta methods

Many spatial and temporal discretizations are based on the Gauss-Lobatto family of quadrature rules. For
example, Gassner21 considered diagonal-norm GSBP operators based on these quadrature rules. Applying
the GSBP operators of Gassner as dual-consistent SBP time-marching methods leads to the family of Lobatto
IIIC discontinuous-collocation Runge-Kutta methods. For example, consider the four-stage diagonal-norm
GSBP operator based on Gauss-Lobatto points in the interval [−1, 1] :

t =
[
−1 − 1

5

√
5 1

5

√
5 1

]T
. (18)

The corresponding norm, whose entries are the Gauss-Lobatto quadrature weights, and resulting GSBP
operator are:

H =


1
6

5
6

5
6

1
6

 , D =


−3 − 5

√
5√

5−5 − 5
√
5√

5+5
1
2

√
5√

5−5 0
√
5
2 − 5

√
5√

5+5√
5√

5+5
−
√
5

2 0 − 5
√
5√

5−5

− 1
2

5
√
5√

5+5
5
√
5√

5−5 3

 , (19)

with exact projection operators χ−1 = [1, 0, . . . , 0]T and χ1 = [0, . . . , 0, 1]T . Applying the Runge-Kutta
characterization, the coefficients of the equivalent Runge-Kutta scheme are

A =



1
12 −−

√
5

12
−
√
5

12 − 1
12

1
12

1
4

10−7
√
5

60

√
5

60

1
12

10+7
√
5

60
1
4 −

√
5

60

1
12

5
12

5
12

1
12

 , (20)

aB-stability is sometimes referred to as BN-stability when the distinction between autonomous and non-autonomous ODEs
is made (Compare Definitions 2.9.2 and 2.9.3 of Jackiewicz19 and Definition 12.2 in Hairer and Wanner15).
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and
b =

[
1
12

5
12

5
12

1
12

]
, (21)

with abscissa:

c =
[

0 1
2 −

1
10

√
5 1

2 + 1
10

√
5 1

]T
. (22)

This is the four-stage Lobatto IIIC discontinuous-collocation Runge-Kutta scheme.22–26 Likewise, using the
approach of Gassner21 or that of Carpenter and Gottlieb27 on Radau quadrature points leads to the families
of Radau IA and IIA discontinuous-collocation Runge-Kutta schemes.

IV.B. Gauss GSBP-RK time-marching methods

The generalized framework cannot be used in the same way to construct the well-known Gauss collocation
Runge-Kutta methods of Butcher16 and Kuntzmann.28 The methods of Butcher and Kuntzmann are of
order 2n, where n is the number of stages; however GSBP-RK schemes are limited to order 2q + 17,8 with
q ≤ n−1. Therefore, the maximum order of a GSBP-RK scheme is 2n−1. However, GSBP-RK schemes are
by definition L-stable, while the above methods of Butcher and Kuntzmann are not. Consider the four-stage
GSBP operator based on Gauss quadrature points in the interval [−1, 1], shown here to sixteen decimal
places:

t = [ −0.8611363115940526 −0.3399810435848563 0.3399810435848563 0.8611363115940526 ]
T
. (23)

The corresponding norm, whose entries are the Gauss quadrature weights, and resulting GSBP operator are:

H =

 0.3478548451374539

0.6521451548625461

0.6521451548625461

0.3478548451374539

 , (24)

D =

 −3.3320002363522817 4.8601544156851962 −2.1087823484951789 0.5806281691622644

−0.7575576147992339 −0.3844143922232086 1.4706702312807167 −0.3286982242582743

0.3286982242582743 −1.4706702312807167 0.3844143922232086 0.7575576147992339

−0.5806281691622644 2.1087823484951789 −4.8601544156851962 3.3320002363522817

 , (25)

with projection operators

χ−1 = [ 1.5267881254572668 −0.8136324494869273 0.4007615203116504 −0.1139171962819899 ]
T

(26)

and
χ1 = [ −0.1139171962819899 0.4007615203116504 −0.8136324494869273 1.5267881254572668 ]

T
(27)

Applying the Runge-Kutta characterization, the coefficients of the equivalent Runge-Kutta scheme are

A =

 0.0950400941860569 −0.0470608105772507 0.0330840931816566 −0.0116315325874891

0.1772065313616314 0.1906741915282288 −0.0555183314150631 0.0176470867327749

0.1781035081124255 0.3263151032211517 0.1906741915282288 −0.0251022810693778

0.1694061893528291 0.3339017452341202 0.3322201270240200 0.0950400941860569

 , (28)

and
b = [ 0.0869637112843635 0.1630362887156365 0.1630362887156365 0.0869637112843635 ] , (29)

with abscissa:

c = [ 0.0694318442029737 0.3300094782075719 0.6699905217924281 0.9305681557970263 ]
T
. (30)

Note that the abscissa and solution update are equivalent to the methods of Butcher and Kuntzmann. Only
the A coefficient matrix for the stages is different. The method based on the GSBP operator, which to
our knowledge has not been presented previously, is seventh order accurate with stage order three. This is
one order lower than the corresponding method of Butcher and Kuntzmann for both stage order and global
order; however the GSBP-RK scheme is L-stable.
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IV.C. Diagonally-implicit GSBP-RK methods

To demonstrate the application of the extended theory, diagonally-implicit Runge-Kutta schemes are con-
structed which are based on GSBP operators. Diagonally-implicit methods are often more efficient than
fully-implicit schemes, especially in terms of memory usage, and are therefore of particular interest. For
these examples, coefficients of the GSBP operator are first constrained such that the resulting Runge-Kutta
scheme is diagonally-implicit and satisfies the minimal requirements of Definition 1. The former is done by
using the fact that the inverse of a lower triangular matrix is also lower triangular. Therefore, decomposing
Θ into symmetric ΘS = 1

2 Ẽ and anti-symmetric components ΘA (See Ref. 6), the coefficients of ΘA are
chosen such that H−1(Θ +χ

t
[i]
0
χT
t
[i]
0

), the inverse of the coefficient matrix A, is lower triangular. The remain-

ing coefficients in the GSBP operator and corresponding Runge-Kutta scheme, including the abscissa and
weights of the associated quadrature, are solved for using the full-order conditions of Runge-Kutta schemes.

The first example is a novel three-stage third-order GSBP scheme. Several coefficients are determined
by solving the full order conditions. The remaining free coefficients are chosen to minimize the L2-norm of
the fourth-order conditions.29 The abscissa of the GSBP operator to sixteen decimal places is:

t = [ 0.0585104413419415 0.8064574322792799 0.2834542075672883 ]
T
, (31)

which is already chosen to be for the domain [0, 1]. The norm is determined to be:

H =

[
0.1008717264855379

0.4574278841698629

0.4417003893445992

]
, (32)

which are the weights of the associated quadrature rule, and the GSBP derivative operator is:

D1 =

[
−12.3737796851209214 −3.4099304182988046 15.7837101034197260

−1.6186577488308495 1.2158491567586837 0.4028085920721658

−0.9626808228023090 1.4979849320764039 −0.5353041092740949

]
, (33)

with projection operators:

χ0 = [ 1.7239953104443755 0.1995165337199744 −0.9235118441643498 ]
T
, (34)

and
χ1 = [ −0.6898048930346554 1.0733748002069487 0.6164300928277068 ]

T
. (35)

It is interesting to note that the abscissa is not ordered, ti ≯ ti−1. This is not uncommon for time-marching
methods, though it is often chosen for GSBP operators.6 This additional flexibility enables a third-order
method that is diagonally-implicit to be constructed with only three stages. The equivalent diagonally-
implicit Runge-Kutta scheme has the following coefficient matrices:

A =

[
0.0585104413426586

0.0389225469556698 0.7675348853239251

0.1613387070350185 −0.5944302919004032 0.7165457925008468

]
, (36)

and
b = [ 0.1008717264855379 0.4574278841698629 0.4417003893445992 ] , (37)

with c = t. Note that even though the GSBP derivative operator is dense, the resulting Runge-Kutta
scheme is diagonally-implicit. In addition, since the norm associated with the GSBP operator is diagonal,
the scheme is by definition L-stable, Algebraically-stable and energy-stable.

As a second example, a four-stage fourth-order diagonally-implicit GSBP scheme is constructed. This
goes beyond the order guaranteed by the GSBP theory alone. After restricting to the coefficients of the
GSBP operator to satisfy Defintion 1, the full Runge-Kutta order conditions are applied. It is theoretically
possible to derive a similar method using the simplifying order conditions; however the scheme described
below does not satisfy the fourth-order simplifying conditions. The abscissa to sixteen decimal places is:

t = [ 0.5975501145870646 0.1236947892666459 0.9813648784844768 0.2188347157850838 ] , (38)
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already chosen to be for the domain [0, 1]. The corresponding norm is:

H =

[
0.5263633266867775

0.3002573924935185

0.1447678514141155

0.0286114294055885

]
, (39)

which defines the weights of the associated quadrature rule, and the GSBP derivative operator is:

D =

 0.1993658318073258 −1.654157580888287 1.006020084619771 0.4487716644611903

−1.648792506689303 −1.212963928918776 1.978966716941006 0.8827897186670728

3.217338082860363 −1.615712813301921 −0.4880781006041668 −1.113547168954275

1.271022350640990 −0.6382938457303877 0.6005231745715582 −1.233251679482160

 , (40)

with projection operators:

χ0 = [ 0.8808689243587871 0.9884420520048577 −0.6011474168414327 −0.2681635595222120 ] , (41)

and
χ1 = [ 0.9.928785357819795 −0.4986129934126102 0.4691078563418350 0.03662660128879568 ] . (42)

Applying the Runge-Kutta characterization of these operators yields the Runge-Kutta coefficient matrices:

A =

 0.5975501145870646

−0.3662683378362842 0.4899631271029300

−0.9122346095222909 1.395636663278596 0.4979628247281717

4.870201094711127 −3.007233691002447 −2.425297972138512 0.7811652842149162

 , (43)

and
bT = [ 0.5263633266867775 0.3002573924935185 0.1447678514141155 0.02861142940558849 ] , (44)

with abscissa c = t. Again, since this Runge-Kutta scheme is constructed from a diagonal-norm GSBP
operator, it is L-stable, algebraically-stable and energy-stable. It is also interesting to note that fourth-
order is the highest order possible for diagonally-implicit Runge-Kutta schemes which are algebraically-
stable.30 Therefore, to construct a diagonally-implicit GSBP scheme of order greater than four, it must not
be algebraically stable, and therefore cannot be based on a diagonal-norm GSBP operator.

V. Numerical Simulation

This section examines the efficiency of various fully-implicit time-marching methods based on classical
SBP and GSBP operators. We solve the linear convection equation with unit wave speed and periodic
boundary conditions:

∂U
∂t

= −∂U
∂x

, x ∈ [0, 2],

U(t = 0, x) = sin(2πx),

U(t, x = 0) = U(t, x = 2),

(45)

The spatial derivative is discretized with a 100-block GSBP-SAT discretization, where each block is a 5-node
operator associated with Legendre-Gauss quadrature.6 This leads to an IVP of the form:

dY
dt

= AY, Y0 = sin(2πx), (46)

where A is a 500 × 500 matrix associated with the spatial discretization. The exact solution of this IVP
is Y = eAtY0. Applying a Runge-Kutta time-marching method leads to a linear system equations, which
is stored in Matlab’s sparse format. Reverse Cuthill-McKee reordering is applied to the linear system and
solved using the backslash operator. The solutions were computed using MATLAB 2013a on a 6-core intel
Core i7-3930K processor at 3.2GHz with 32GB of RAM.

A summary of the GSBP and non-GSBP time-marching methods investigated is presented in Table 1
along with their associated properties and abbreviations used hereafter. Note that the Radau IIA schemes
have stage order n, one higher than the associated GSBP operator, which is limited to n− 1. All methods
were implemented as Runge-Kutta schemes.
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Classical SBP Methods

Quadrature Norm Label q̂ p L/B-stable

Gregory type Diag.1,2, 5 FD n
4

n
2 Y / Y

Block1,5, 31 FDB n
2 − 1 n

2 Y / N

GSBP Methods

Quadrature Norm Label q̂ p L/B-stable

Newton-Cotes Diag.6,7 NC dn2 e 2dn2 e Y / Y

Dense7,27 NCD n− 1 2dn2 e Y / N

Lobatto Diag.∗†7,21,23–25 LGL n− 1 2n− 2 Y / Y

Dense7,27 LGLD n− 1 2n− 2 Y / N

Radau IA Diag.∗†6,7, 24,25 LGRI n− 1 2n− 1 Y / Y

Radau IIA Diag.∗†9,24,25 LGRII n 2n− 1 Y / Y

Gauss Diag.†6,7 LG n− 1 2n− 1 Y / Y

non-SBP Methods

Quadrature Norm Label q̂ p L/B-stable

Gauss ∗16,28 GRK n 2n N / Y

ESDIRK5 ∗9 ESDIRK5 2 5 Y / N

Table 1. Summary of SBP operators, their associated abbreviations and general properties. Notes: 1) the general
properties of diagonal-norm NC operators only hold for the case of positive quadrature weights; 2) FD and FDB
methods were implemented with their minimum number of stages; 3) the value for q given for FD applies only to q ≥ 2.

The ∗ denotes existing methods in the Runge-Kutta literature, and the † denotes a method discussed in Section IV

V.A. Efficiency Comparisons

For the study of efficiency, the temporal domain is chosen to be t ∈ [0, 2] and the SAT penalty values are
chosen such that both the temporal and spatial discretizations are dual-consistent. Two error measures are
used. The first is the stage error:

estage =
∣∣∣∣e∣∣∣∣

B
, (47)

where B is a block diagonal matrix. For SBP and GSBP time-marching methods, the blocks are formed
by the norm associated with method. For non-SBP Runge-Kutta methods, the diagonal of each block is
populated with the entries of the b coefficient matrix. The vector e contains the error in the numerical
solution at the abscissa locations, integrated in space using the norm of the spatial discretization Hs:

e(j−1)n+k = ||yd,(j−1)n+k − Y((j + ck)h)||Hs
, (48)

where the subscripts j = 1, . . . , N and k = 1, . . . , n are the step and stage indices, respectively. By comparing
with the exact solution of the IVP, we isolate the temporal error from the spatial error. The second error
measure used is the solution error at the end of the final time step, integrated in space:

esolution =
∣∣∣∣ỹd,N − Y(T )

∣∣∣∣
Hs
. (49)

Figure 1 shows the convergence of the stage and solution error with respect to CPU time in seconds for
constant stage order, q̂ = 3. The stage error, estage, converges at the same rate for the various methods, as
expected. Furthermore, the hierarchy in efficiency with respect to stage error negatively correlates with the
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a) estage (q̂ = 3) b) esolution (q̂ = 3)
Figure 1. Linear Convection Equation: Convergence of the stage and solution error, estage and esolution respectively,
with respect to CPU time (s) for constant stage order. The numerical suffix in the legend indicates the number of
stages in each time step n and the order p.

number of stages in each method. Thus, the classical SBP time-marching methods, FD and FDB, are the
least efficient due the their relatively large number of stages. Of those with four stages, the novel GSBP
time-marching method LG is the most efficient method with respect to stage error. This scheme is more
efficient than the well-known LGRI scheme, which has the same properties; however, it is not as efficient as
the three-stage GRK or LGRII methods.

Considering the solution error, esolution, the hierarchy of efficiency remains negatively correlated with the
number of stages in each method of a given order p. The higher than expected convergence rate for the
dense-norm LGL time-marching method (p = ρ + 1) is only seen for linear problems (compare with Ref.
7). As expected, the GSBP time-marching methods are more efficient than those based on classical SBP
operators. This is especially true for those with a nonuniform abscissa or an abscissa which does not include
0 or 1. The most efficient method overall is GRK. It is one order lower than the GSBP time-marching
methods LG and LGRI, but also has one fewer stages. This method is not L-stable. Eventually, the LG and
LGRI become more efficient than the GRK method below an error of about 10−7.

Another perspective can be obtained by comparing methods of constant order p. Figure 2 shows the
convergence of the solution error with respect to step size hN = tf − t0 and CPU time in seconds for
constant order, p = 6. This also includes the exclusively odd order GSBP time-marching methods based on
Gauss quadrature of orders p = 5 and p = 7, as well as the fifth-order ESDIRK5 reference scheme. The error
of classical SBP time-marching methods relative to time step size hN is significantly smaller than the GSBP
time-marching methods. This however does not account for the higher number of stages. Therefore, the
GSBP time-marching methods are nevertheless more efficient, as shown in Figure 2 b). Apart from LGLD,
which achieves higher than expected convergence, the well-known GRK scheme is the most efficient sixth-
order scheme. As discussed above, the LG scheme of one order higher eventually becomes more efficient. It
is also L-stable, which the GRK scheme is not.
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Figure 2. Linear Convection Equation: Convergence of the solution error, esolution, with respect to step size hN and
CPU time (s). The numerical suffix in the legend indicates the number of stages in each time step n and the order p.

V.B. Diagonally-implicit methods

While diagonally-implicit methods typically require a greater number of stages to achieve the same order
of accuracy, each stage can be solved sequentially. Thus, each time step requires the solution to multiple
smaller systems of equations in place of one larger system. The higher efficiency is realized from the nonlinear
scaling of computational work required in solving a system of equations.

For lower orders this effect is minimized as fully-implicit time-marching methods only require one or two
coupled stages. For example, the three-stage third-order diagonally-implicit GSBP time-marching method
developed in Section IV requires approximately the same computational effort as the two-stage third-order
LG, LGRI, and LGRII schemes. Furthermore, the fully-implicit schemes have a much lower truncation error
coefficient and are therefore more efficient.

As the order increases, so does the number of stages required by fully-implicit schemes. Thus, diagonally-
implicit scheme have the potential to be more efficient. As an example, consider the ESDIRK5 scheme
presented in Figure 2. It has the largest error as a function of step size hN , but is the most efficient scheme
considered above an error of about 10−7. This highlights the potential advantage of considering higher-order
diagonally-implicit GSBP time-marching methods in the future.

V.C. Stability

A method is said to be AN-stable if Y ′ = λ(t)Y with λ(t) ≤ 0 for t ∈ [0, T ] implies that ||ỹd,T || ≤ ||Y0||.
This is a simple extension of classical linear A-stability; however it has been shown to be more closely
related to nonlinear stability definitions like B-stability.15,18,19 Furthermore, the criteria for AN, B, BN, and
algebraic stability are equivalent for non-confluent Runge-Kutta schemes.15 Therefore in this paper, following
Nordström and Lundquist,5 a nonlinear transformation of the temporal domain is used to investigate AN-
stability and demonstrate the value of nonlinear stability.
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The transformation used in the present paper is:

τ = btc+ sin2

(
π(t− btc)

2

)
, (50)

where bc is the floor operator. With this transformation, the PDE becomes:

∂Y
∂τ

= − ∂t
∂τ

∂Y
∂x

, x ∈ [0, 2], (51)

Y(τ = 0, x) = sin(2πx), (52)

Y(τ, x = 0) = Y(τ, x = 2). (53)

This is equivalent to introducing a time-dependent convection velocity. Applying the same spatial discretiza-
tion as before, the resulting IVP has the form:

dY
dτ

= λ(τ)AY, Y0 = sin(2πx), (54)

where λ(τ) = ∂t
∂τ . The stability function, or iteration matrix, of a Runge-Kutta method applied to this IVP

is:
MAN = IM + hNb

TΛ(τ)⊗A(IMn − hNAΛ(τ)⊗A)1n ⊗ IM . (55)

where Λ(τ) is a diagonal matrix which contains the projection of λ(τ) onto the abscissa of the time-marching
method. The method is stable if eigenvalues remain within the unit disk and any eigenvalue of the unit disk
is simple. In addition, consider the following measure of the solution:

E =
∣∣∣∣ỹd,j∣∣∣∣Hs

, (56)

at time step j. This serves to highlight the instability, though it is not as rigorous an approach as studying
the eigenvalues of the stability matrix.

For this comparison consider the five-stage sixth-order diagonal and dense-norm GSBP time-marching
methods based on Newton-Cotes quadrature. The former is by definition algebraically stable, and hence
AN-stable, while the latter method is not. Both methods are L-stable. For these simulations, the temporal
domain is τ ∈ [0, 100], and the time step size chosen is hN = 0.390625. Three cases are chosen for this
comparison:

1. The dense-norm Newton-Cotes GSBP time-marching method applied to the IVP with the transformed
temporal coordinate;

2. The diagonal-norm Newton-Cotes GSBP time-marching method applied to the IVP with the trans-
formed temporal coordinate; and

3. The dense-norm Newton-Cotes GSBP time-marching method applied to the IVP without the trans-
formed temporal coordinate. This case only requires A-stability.

Figure 3 shows the evolution of the magnitude of the largest eigenvalue of the stability matrix. Plots
a) and b) of this Figure show large variation due to the temporal transformation. However, only for the
dense-norm GSBP time-marching method, which is not AN-stable, do the eigenvalues leave the unit disk.
Interestingly, in this case the eigenvalues lie within the unit disk for the majority of the time steps; however,
the time steps which are unstable are sufficient to increase the measure of the solution (Figure 4 a)). For the
diagonal-norm GSBP time-marching method, the eigenvalues all remain within the unit disk as predicted.
The measure of the solution (Figure 4 b)) decrease rapidly towards zero. Finally, in the third case the
temporal transformation is removed and λ(τ) becomes constant. The requirement for stability is reduced
to A-stability. Given that all GSBP time-marching methods are L-stable, even the dense-norm GSBP time-
marching method is stable for this case.
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Figure 3. Linear Convection Equation: The time evolution of the maximum magnitude of the eigenvalues of the stability
matrix (55).
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Figure 4. Linear Convection Equation: The time evolution of the solution measure (56).

VI. Conclusions

This paper presents a summary of recent developments in the theory of GSBP time-marching methods
and their characterization as Runge-Kutta schemes. This theory is then applied to the construction of some
known and novel time-marching methods. This includes the well-known Lobatto IIIC and Radau IA/IIA
discontinuous collocation Runge-Kutta schemes, a novel GSBP-RK scheme based on Gauss quadrature
points, and some novel diagonally-implicit and algebraically stable GSBP-RK schemes. Numerical simulation
of the linear convection equation with time-independent and time-dependent convection velocities is presented
to demonstrate the theory and to evaluate the stability and relative efficiency of GSBP time-marching
methods. In comparison with classical SBP time-marching methods, the GSBP based schemes are more
efficient. The novel Gauss based GSBP time-marching method retains the same properties as the Radau IA
scheme, and is slightly more efficient with respect to stage error. The global error however is comparable.
Comparison with the non-SBP Gauss collocation methods is difficult as their orders do not match. For
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the same number of stages, the non-SBP method is one order higher and more efficient; however, it is not
L-stable. When the SBP method is one order higher, the efficiency is comparable. Inclusion of a fifth-order
ESDIRK scheme highlights the potential benefit of constructing higher-order GSBP time-marching methods
in the future which are diagonally-implicit.

Acknowledgments

The authors gratefully acknowledge the financial assistance of the Ontario Graduate Scholarship program
and the University of Toronto.

References

1Nordström, J. and Lundquist, T., “Summation-by-parts in Time,” Journal of Computational Physics, Vol. 251, Oct.
2013, pp. 487–499.

2Kreiss, H.-O. and Scherer, G., “Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equa-
tions,” Mathematical Aspects of Finite Elements in Partial Differential Equations, chap. Finite element and finite difference
methods for hyperbolic partial differential equations, Academic Press, New York/London, 1974, pp. 195–212.

3Hicken, J. E. and Zingg, D. W., “Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference
Discretizations,” SIAM J. Sci. Comput., Vol. 33, No. 2, April 2011, pp. 893–922.

4Hicken, J. E. and Zingg, D. W., “Dual Consistency and Functional Accuracy: A Finite-difference Perspective,” J. Comput.
Phys., Vol. 256, Jan. 2014, pp. 161–182.

5Lundquist, T. and Nordström, J., “The SBP-SAT Technique for Initial Value Problems,” Journal of Computational
Physics, Vol. 270, No. 0, 2014, pp. 86–104.

6Del Rey Fernández, D. C., Boom, P. D., and Zingg, D. W., “A Generalized Framework for Nodal First Derivative
Summation-By-Parts Operators,” Journal of Computational Physics, Vol. 266, No. 0, 2014, pp. 214–239.

7Boom, P. D. and Zingg, D. W., “High-Order Implicit Time-Marching Methods Based on Generalized Summation-By-Parts
Operators,” Submitted to SIAM Journal on Scientific Computing, 2015, arXiv:1410.0201 [Math.NA].

8Boom, P. D. and Zingg, D. W., “Runge-Kutta Characterization of the Generalized Summation-by-Parts Approach in
Time,” Submitted to SIAM Journal on Scientific Computing, 2015, arXiv:1410.0202 [Math.NA].

9Boom, P. D., High-order Implicit Numerical Methods for Unsteady Fluid Simulation, Ph.D. thesis, University of Toronto
Institute for Aerospace Studies, 2015.

10Ditkowski, A., Bounded-Error Finite Difference Schemes for Initial Boundary Value Problems on Complex Dominas,
Ph.D. thesis, Tel-Aviv University, 1997.

11Abarbanel, S. S. and Ditkowski, A., “Multi-Dimensional Asymptotically Stable 4th-Order Accurate Schemes for the
Diffusion Equation,” Tech. rep., feb 1996.

12Abarbanel, S. S. and Ditkowski, A., “Asymptotically Stable Fourth-order Accurate Schemes for the Diffusion Equation
on Complex Shapes,” J. Comput. Phys., Vol. 133, No. 2, May 1997, pp. 279–288.

13Reichert, A., Heath, M. T., and Bodony, D. J., “Energy Stable Numerical Method for Hyperbolic Partial Differential
Equations Using Overlapping Domain Decomposition,” Journal of Computational Physics, Vol. 231, 2012, pp. 5243–5265.

14Prothero, A. and Robinson, A., “On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary
Differential Equations,” Mathematics of Computation, Vol. 28, No. 125, January 1974, pp. 145–162.

15Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II , Springer, Berlin, 1991.
16Butcher, J. C., “Implicit Runge-Kutta Processes,” Mathematics of Computation, Vol. 18, No. 85, Jan. 1964, pp. 50–64.
17Hairer, E., Nørsett, S., and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff problems, Springer, Berlin,

2nd ed., 2000.
18Butcher, J. C., Numerical Methods for Ordinary Differential Equations, Wiley, Chichester, 2003.
19Jackiewicz, Z., General Linear Methods for Ordinary Differential Equations, Wiley, 2009.
20Burrage, K. and Butcher, J. C., “Non-linear Stability of a General Class of Differential Equation Methods,” BIT Nu-

merische Mathematik , Vol. 20, No. 2, 1980, pp. 185–203.
21Gassner, G. J., “A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and its Relation to SBP-SAT

Finite Difference Methods,” SIAM Journal on Scientific Computing, Vol. 35, No. 3, 2013.
22Hairer, E., Wanner, G., and Lubich, C., Geometric Numerical Integration - Structure-Preserving Algorithms for Ordinary

Differential Equations, Vol. 31 of Springer Series in Computational Mathematics, Springer Berlin Heidelberg, 2006.
23Chipman, F., “A-stable Runge-Kutta processes,” BIT Numerical Mathematics, Vol. 11, No. 4, 1971, pp. 384–388.
24Ehle, B. L., On Padé Approximations to the Exponential Function and A-stable Methods for the Numerical Solution of

Initial Value Problems, Ph.D. thesis, University of Waterloo, 1969.
25Axelsson, O., “A Note on a Class of Strongly A-stable Methods,” BIT Numerical Mathematics, Vol. 12, No. 1, 1972,

pp. 1–4.
26Butcher, J. C., “Integration Processes Based on Radau Quadrature Formulas,” Mathematics of Computation, Vol. 18,

No. 86, April 1964, pp. 233–244.
27Carpenter, M. H. and Gottlieb, D., “Spectral Methods on Arbitrary Grids,” Journal of Computational Physics, Vol. 129,

1996, pp. 74–86.

14 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ju

ly
 7

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

27
57

 



28Kuntzmann, J., “Neuere Entwicklungen der Methode von Runge und Kutta,” ZAMM - Journal of Applied Mathematics
and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik , Vol. 41, No. S1, 1961, pp. T28–T31.

29Prince, P. and Dormand, J., “High Order Embedded Runge-Kutta Formulae,” Journal of Computational and Applied
Mathematics, Vol. 7, No. 1, 1981, pp. 67–75.

30Hairer, E., “Highest Possible Order of Algebraically Stable Diagonally Implicit Runge-Kutta Methods,” BIT Numerical
Mathematics, Vol. 20, No. 2, 1980, pp. 254–256.

31Strand, B., “Summation by Parts for Finite Difference Approximations for d/dx,” Journal of Computational Physics,
Vol. 110, No. 1, 1994, pp. 47–67.

15 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ju

ly
 7

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

27
57

 


	Introduction
	Implicit Runge-Kutta Methods Based on Generalized Summation-by-Parts Operators
	Generalized summation-by-parts operators and simultaneous approximation terms
	Runge-Kutta Characterization

	Properties of Implicit Runge-Kutta Methods Based on Generalized Summation-by-Parts Operators
	Stage-order conditions
	Order conditions
	Stability

	Examples of Implicit Runge-Kutta Methods Based on Generalized Summation-by-Parts Operators
	Lobatto IIIC Runge-Kutta methods
	Gauss GSBP-RK time-marching methods
	Diagonally-implicit GSBP-RK methods

	Numerical Simulation
	Efficiency Comparisons
	Diagonally-implicit methods
	Stability

	Conclusions

