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This work presents results from the application of an aerodynamic shape optimiza-
tion code, Jetstream, to a suite of benchmark cases defined by the Aerodynamic Design
Optimization Discussion Group. Geometry parameterization and mesh movement are in-
tegrated by fitting the multi-block structured grids with B-spline volumes and performing
mesh movement based on a linear elastic model applied to the control points. Geometry
control is achieved through two different approaches. Either the B-spline surface control
points are taken as the design variables for optimization, or alternatively, the surface con-
trol points are embedded within free-form deformation (FFD) B-spline volumes, and the
FFD control points are taken as the design variables. Spatial discretization of the Euler
or Reynolds-averaged Navier-Stokes equations is performed using summation-by-parts op-
erators with simultaneous approximation terms at boundaries and block interfaces. The
governing equations are solved iteratively using a parallel Newton-Krylov-Schur algorithm.
The discrete-adjoint method is used to calculate the gradients supplied to a sequential
quadratic programming optimization algorithm. The first optimization problem studied is
the drag minimization of a modified NACA 0012 airfoil at zero angle of attack in inviscid,
transonic flow, with a minimum thickness constraint set to the initial thickness. The shock
is weakened and moved downstream, reducing drag by 91%. The second problem is the lift-
constrained drag minimization of the RAE 2822 airfoil in viscous, transonic flow. The shock
is eliminated and drag is reduced by 48%. Both two-dimensional cases exhibit optimization
convergence difficulties due to the presence of nonunique flow solutions. The third problem
is the twist optimization for minimum induced drag at fixed lift of a rectangular wing in
subsonic, inviscid flow. A span efficiency factor very close to unity and a near elliptical
lift distribution are achieved. The final problem includes single-point and multi-point lift-
constrained drag minimizations of the Common Research Model wing in transonic, viscous
flow. Significant shape changes and performance improvements are achieved in all cases.
Finally, two additional optimization problems are presented that demonstrate the capabil-
ities of Jetstream and could be suitable additions to the Discussion Group problem suite.
The first is a wing-fuselage-tail optimization with a prescribed spanwise load distribution
on the wing. The second is an optimization of a box-wing geometry.

I. Introduction

The dual forces of growing concern over the negative impact of carbon emissions in the environment and
the rise of jet fuel prices pressure aircraft manufacturers to prioritize minimizing fuel burn when designing

new aircraft. In 2012, commercial flights transported close to 3 billion passengers around the world.1 In
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the process, 72 billion gallons of jet fuel were consumed, releasing 682 million tonnes of CO2 emissions into
the atmosphere.2 It is expected that the annual number of passengers will double by 2030,1 increasing the
potential impact on the environment. In efforts to minimize the aircraft industry’s environmental footprint,
the industry has committed to “improving fuel efficiency an average of 1.5% annually to 2020, capping net
emissions through carbon-neutral growth from 2020, [and] cutting net emissions in half by 2050, compared
with 2005.”3 At the same time, fuel costs have more than doubled between 2004 and 2013, and can now
account for 31% of an airline’s operating costs.3 With fuel prices rising, operation of fuel efficient aircraft is
key to ensuring the profitability of airlines. In short, continual improvements in fuel efficiency are required
to ensure both environmental and economic sustainability of air transport.

One key design focus for aircraft manufacturers in meeting this concern is drag minimization in aero-
dynamic design using computational fluid dynamics (CFD). On its own, a CFD solver is a tool capable of
analyzing only a specific design, but in recent years the rapid development of computing power has enabled
the feasible use of computational design tools which have not only sped up, but drastically altered the de-
sign process. By coupling a CFD solver with an optimization algorithm and a geometry parameterization
tool, designers are able to perform aerodynamic shape optimization, robustly exploring a design space at a
fraction of the financial and time cost that would be needed for an experimental cut and try approach, or
to manually alter models for numerical analysis. These tools allow not only for more robust fine tuning of
existing designs, but also the exploration of unconventional configurations which may provide more dramatic
aerodynamic improvements.

Forums for comparison of CFD algorithms that enable different research groups to validate their codes
are already well established, such as the Drag Prediction Workshops.4 In the same spirit, researchers in the
aerodynamic design optimization community have initiated the AIAA Aerodynamic Design Optimization
Discussion Group (ADODG)a. The ADODG has defined a series of benchmark optimization problems,
allowing research groups from industry and academia to test and compare their codes under a variety of
problems. A range of flow conditions and geometric flexibility are considered. The first meeting for the
discussion group was in 2014, and this year, researchers reconvene with updated results for the cases, in light
of lessons learned from last year.

The four benchmark cases are constrained drag minimization problems. The first case is the sectional
optimization of a modified NACA 0012 airfoil at zero angle of attack in inviscid, transonic flow, with a
minimum thickness constraint set to the initial thickness. The second case is the sectional optimization of an
RAE 2822 airfoil in viscous, transonic flow, subject to lift, pitching moment, and area constraints. The third
case is the twist optimization of a rectangular wing in subsonic, inviscid flow, subject to a lift constraint. The
final case is the sectional and twist optimization of the Common Research Model (CRM) wing in transonic,
viscous flow, subject to lift, pitching moment, volume, and thickness constraints. This final case includes a
single-point optimization and multi-point optimizations at varying lift coefficients and Mach numbers. This
paper presents the updated results obtained for these cases since last year’s meeting.5

The remainder of this paper is outlined as follows: Section II summarizes the algorithms employed in
the aerodynamic design optimization framework Jetstream. Section III presents the results obtained for the
four benchmark problems. Section IV proposes two potential new cases to be added to the benchmark suite,
along with results. Section V outlines conclusions and future work.

II. Methodology

A. Integrated Geometry Parameterization, Control, and Mesh Movement

B-Spline Surface Geometry Parameterization and Control

Jetstream uses a cubic B-spline surface parameterization that can accurately capture an initial geometry
while providing good geometric flexibility with a modest number of design variables.6 Each block in the
multi-block mesh is fitted with a cubic B-spline volume with a specified number of control points, and the
control points defining the geometry’s surface are taken as the design variables.

The fitting procedure is described as follows. The parametric values of the grid nodes G = {xq,r,s|q =
1, ...Lq, r = 1, ..., Lr, s = 1, ..., Ls} are located. For example, parameter ξq,r,s is calculated along the grid line

ahttps://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx

2 of 40

American Institute of Aeronautics and Astronautics

https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx


of constant r = r0 and s = s0 as

ξ1,r0,s0 = 0 (1a)

ξq,r0,s0 =
1

Ψ

q−1∑
t=1

||xt+1,r0,s0 − xt,r0,s0 ||, q = 2, ..., Lq, (1b)

where the normalization factor of total arc length is given by

Ψ =

Lq−1∑
t=1

||xt+1,r0,s0 − xt,r0,s0 ||. (2)

Next, the knot vectors are determined. To allow for a more accurate mapping, the knots are generalized to
be spatially varying in parametric space. Bilinear knots have been chosen for simplicity:

Ti(η, ζ) = Ti,(0,0)(1− η)(1− ζ) + Ti,(1,0)η(1− ζ) + Ti,(0,1)(1− η)ζ + Ti,(1,1)ηζ. (3)

For brevity, the edge knot equations are omitted, but are described in Hicken.7 Finally, the control-point
coordinates are determined by solving a least-squares problem to best fit the grid to the initial geometry.

Free-Form Deformation Geometry Control

Free-form deformation (FFD) is the second geometry control method used in this paper. Conceptually,
FFD can be visualized by imagining the geometry as a flexible object, enclosing the geometry in a larger
volume of flexible material, and indirectly deforming the geometry by deforming the enclosing volume. In
traditional aerodynamic design optimization practice, the embedded objects are the surface grid nodes. In
Jetstream, however, the embedded objects are taken as the B-spline surface control points defining the
geometry, and the FFD volume is a cubic B-spline volume.8 This maintains an analytical definition of the
geometry and allows the mesh movement, described later, to be performed in the same way as with B-spline
surface control. The FFD volume is created using a geometry generation tool called GENAIR.9

Numerically, FFD is executed using two functions. The first, F−1(t) = ξ, is an embedding function
evaluated only once and is a mapping from world space t to parametric space ξ. In this case, the surface
control points are mapped to the parametric space of the FFD volume. The second function, F̃ (ξ) = t̃, is
a deformation function which algebraically re-evaluates the coordinates of every embedded surface control
point once the FFD volume lattice points {Bi,j,k} have been adjusted by the optimization.

While B-spline surface control couples the design variables with the geometry parameterization, FFD
decouples the two, parameterizing deformations rather than the geometry itself. So while the geometric
design variables in the surface-based parameterization approach are the surface control points, the geometric
design variables in the FFD approach are a set of the FFD volume control points vgeo ∈ {Bi,j,k}. Gagnon
and Zingg8 describe the deformation process as a two-level approach. The first level involves the control
points defining the FFD volume. The second level involves the control points defining the geometry.

Linear-Elasticity Mesh Movement

Aerodynamic design optimization algorithms require some method to update the computational mesh
once the geometry has been modified. Mesh regeneration is often too expensive and difficult to automate, so
mesh movement methods are often preferred. The mesh movement method employed in Jetstream is based
on a linear-elasticity model.10 While such models can be expensive if applied directly to the computational
mesh, Jetstream makes use of the fact that the fitted B-spline mesh acts as a control mesh providing a
coarser approximation to the computational mesh. By applying the linear-elastic model to the control mesh
rather than the computational mesh, the mesh movement becomes much cheaper to compute while still
maintaining high mesh quality.6

The control mesh can be visualized as a solid that is elastically deformed in response to the displaced
surface control points. Hexahedral cells defined by adjacent control points are assigned greater stiffness in
inverse proportion to their volume to maintain the quality of the initial mesh. The system solved is defined
by:

M = K(b− b(0))− f = 0, (4)
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where M are the mesh residuals, K is the stiffness matrix, b and b(0) are the updated and initial control point
coordinate column vectors, respectively, and f is the force vector implicitly determined from the displaced
surface control points. The mesh movement can be performed in increments to improve mesh quality for large
shape changes. Since the original mesh fitting provides the parametric values of the grid nodes, algebraic
recomputation of their coordinates in physical space is quick to perform.

B. Flow Solver

The flow solver in Jetstream is a three-dimensional multi-block structured finite-difference solver. The
parallel implicit solver uses a Newton-Krylov-Schur method and is capable of solving the Euler or Reynolds-
averaged Navier-Stokes (RANS) equations.11,12 Spatial discretization of the governing equations is performed
using second-order summation-by-parts operators. Boundary and block interface conditions are enforced
weakly through simultaneous approximation terms, which allow C1 discontinuities in mesh lines at block
interfaces. Deep convergence is efficiently achieved using an inexact-Newton phase, while globalization is
provided by an approximate-Newton start-up phase. The resulting large, sparse linear system is solved using
the flexible generalized minimal residual method with an approximate-Schur parallel preconditioner. The
RANS equations are closed using the Spalart-Allmaras one-equation turbulence model. A scalar artificial
dissipation scheme13,14 is used for the cases in this paper, but matrix dissipation15 can also be used.

C. Gradient Evaluation and Optimization Algorithm

The general optimization problem can be posed as follows:

min J (v,q,b(m)) (5a)

w.r.t. v (5b)

s.t. M(i)(A(i)(v),b(i),b(i−1)) = R(v,q,b(m)) = 0, i = 1, 2, ...,m (5c)

where J is the objective function, v are the design variables, b(i) are the volume control-point coordinates at
mesh movement increment i, M(i) are the mesh residuals, and A(i) are the displaced surface control-point
coordinates. The design variables v are either a subset of b(m), if using B-spline surface geometry control,
or the FFD control points, if using FFD geometry control, and may also include angle of attack. There can
be additional linear and nonlinear equality and inequality constraints.

Gradient Evaluation

Gradients are calculated using the discrete-adjoint method at a cost virtually independent of the number
of design variables. While it has been shown that gradient-based multistart or hybrid algorithms can be
used for multimodal problems,16 this approach is not taken here. To perform the constrained optimization,
the Lagrangian function is introduced:

L ≡ J + ΛT c (6)

where ΛT = {λ(i), ψ}mi=1 are the Lagrange multipliers, also called the adjoint variables. For optimality, the
Karush-Kuhn-Tucker (KKT) conditions must be satisfied.17 Once the mesh movement and flow solution have
been computed, the resulting flow and mesh adjoint equations must be solved. The flow Jacobian matrix is
formed by linearizing its components, including the viscous and inviscid fluxes, the artificial dissipation, the
turbulence model, and the boundary conditions. The flow adjoint system is solved using a modified, flexible
version of GCROT,18–20 and the mesh adjoint system is solved using a preconditioned conjugate-gradient
method. The final KKT condition gives rise to the objective gradient calculation:

dJ
dv

=
∂J
∂v

+

m∑
i=1

(λ(i)T ∂M(i)

∂A(i)

∂A(i)

∂A(m)

∂A(m)

∂v
) + ψT ∂R

∂v
. (7)
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SNOPT

Once the gradients are computed, they are passed to SNOPT (Sparse Nonlinear OPTimizer),21 a gradient-
based optimization algorithm. It can handle both linear and nonlinear constraints, satisfying linear con-
straints exactly. SNOPT applies a sparse sequential quadratic programming algorithm that approximates
the Hessian using a limited-memory quasi-Newton method.

III. Results

A. Case 1: Symmetric Optimization of NACA 0012 Airfoil in Inviscid Transonic Flow

Optimization Problem

The optimization problem is the drag minimization of a modified NACA 0012 airfoil in inviscid, transonic
flow. The freestream Mach number is 0.85, and the angle of attack is fixed at 0◦, based on Vassberg et al.22

The design variables are the z-coordinates of the B-spline surface control points. The thickness is constrained
to be greater than or equal to the initial airfoil thickness along the entire chord. Since the main challenge of
this problem involves minimizing wave drag while satisfying this minimum thickness constraint, nonlinear
thickness constraints are applied at specified locations along the airfoil surface, as opposed to the usual “fit-
dependent” approach of linearly constraining the surface control points. Consistent with Bisson, Nadarajah,
and Dong,23 the thickness constraints are enforced at 15%, 20%, 22%, 24%, 26%, 29%, and 35% chord,
since the optimizer otherwise tries to reduce the airfoil thickness in this region. Satisfaction of the thickness
constraint along the rest of the airfoil is verified once the final shape is obtained. Linear symmetry constraints
maintain a symmetric airfoil. The problem can be summarized as

minimize Cd

wrt z

subject to z ≥ zbaseline,

where CD is the drag coefficient, z is the z-coordinate of a node on the optimized airfoil, and zbaseline is the
z-coordinate of the corresponding node on the initial geometry.

Initial Geometry

The initial airfoil is a NACA 0012 modified to have a zero-thickness trailing edge. The airfoil is defined
by

zbaseline = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), x ∈ [0, 1]. (8)

The modification is to the x4 term coefficient, to allow for a zero-thickness trailing edge.

Grid

A structured H-topology grid around a flat plate of unit chord is inflated using the mesh movement
methodology to fit the NACA 0012 section. Two surface patches define the geometry, one on the top and
one on the bottom. To establish mesh convergence, four grid levels are considered. Starting with the fine
grid, the medium and coarse grids are obtained by removing every second node in the chordwise and normal
directions. A superfine grid is obtained by parametric refinement, which doubles the number of nodes in
each direction according to a hyperbolic mesh spacing law. The coarse grid is displayed in Figure 1. Since
Jetstream was developed for 3D optimization, the airfoil grids are extruded in the spanwise direction. Ten
nodes are located along the unit span. Key grid spacing parameters are recorded in Table 1. Flow analysis
was performed for the initial geometry fitted with 48 streamwise control points per surface, and the drag
coefficient values are recorded in Table 2. Between the fine and superfine grids, the required resolution of
0.1 drag counts is achieved. The coarse, medium, and fine grids are used for optimization.
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Z

Figure 1: Case 1 - Coarse grid for modified NACA 0012 airfoil

Table 1: Case 1 - Grid parameters for NACA 0012 airfoil grid study

Grid Nodes (2D)
Off-wall
Spacing

Leading-Edge
Spacing

Trailing-Edge
Spacing

Coarse 12,760 0.008 0.008 0.008

Medium 49,020 0.004 0.004 0.004

Fine 192,100 0.002 0.002 0.002

Superfine 768,400 0.001 0.001 0.001

Table 2: Case 1 - Results of grid study for initial NACA 0012 airfoil

Grid Level Nodes (2D) CD (Counts)

Coarse 12,760 461.299

Medium 49,020 457.598

Fine 192,100 457.327

Superfine 768,400 457.327
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(a) Initial (b) Final

Figure 2: Case 1 - Comparison of Mach contours for initial NACA 0012 airfoil and final optimized shape with
9 design variables

(a) Initial (b) Final

Figure 3: Case 1 - Comparison of entropy contours for initial NACA 0012 airfoil and final optimized shape
with 9 design variables

Optimization Results

B-spline surface geometry control was used for this case. Mach and entropy contours are displayed in
Figures 2 and 3, respectively, for the initial and optimized geometries using 9 design variables per surface
on the fine mesh. Strong shocks extending far into the flow field are evident on the initial geometry. Due
to the thickness constraint, the optimizer thickens the airfoil, creating a relatively flat surface that delays
the pressure recovery. Weaker shocks, which do not extend as far into the flow field, occur near the trailing
edge of the optimized airfoil. The optimized geometry is quite blunt, since the optimizer is exploiting the
fact that the Euler equations cannot correctly model the physics of flow separation, but it is worth noting
that RANS analysis would likely show significant separation. The design problem is meant to be more of a
challenging academic problem than a practical one.

Optimizations were conducted to investigate the effect of design space dimensionality. The number of
B-spline control points used to parameterize each surface ranged from 5 to 13, but since the leading and
trailing edge control points were fixed, the corresponding number of design variables for each surface ranged
from 3 to 11. Figure 4 plots airfoil surfaces and corresponding pressure coefficients for the initial and final
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Figure 4: Case 1 - Comparison of initial and final airfoil shapes and corresponding pressure distributions,
optimized and analyzed on fine mesh level
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Figure 5: Case 1 - Drag comparison of final geometries from optimizations on coarse, medium, and fine grid
levels, evaluated on the fine mesh

geometries from optimizations conducted on the fine mesh, with 3, 6, 9, and 11 design variables on each
surface. With more design variables, the optimizer has more freedom to create blunter leading and trailing
edges. The suction peak becomes more abrupt; the shock is weakened and pushed further downstream.

To investigate the effect of grid density, optimizations were conducted using the coarse, medium, and fine
grids. The drag coefficient of the final geometries evaluated on the fine mesh is plotted against the number
of design variables in Figure 5. The drag from the medium- and fine-mesh optimizations is nearly identical.
The drag from the fine-mesh optimizations is consistently lower than that obtained from the coarse-mesh
optimizations. The difference is below 2 counts for 3 to 5 design variables, but is approximately 60 counts
for 8 design variables. The lowest drag obtained is from the fine-mesh optimization using 9 design variables
per surface: 42.24 drag counts, a 91% reduction from the initial geometry.

Figure 6 shows the convergence history for 3, 6, 9, and 11 design variables. Optimality, which is a
measure of convergence of the optimization to a local minimum, has a convergence tolerance set at 1×10−7.
Feasibility, which is a measure of how well the nonlinear constraints are satisfied, has a convergence tolerance
set at 1×10−6. The optimizer has no difficulty satisfying the nonlinear thickness constraints and therefore
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Figure 6: Case 1 - Typical convergence histories for NACA 0012 airfoil optimization

Table 3: Case 1 - Grid study for NACA 0012 airfoil optimizations on coarse grid

Drag Coefficient, Cd (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 221.34 224.99 228.61

4 217.31 218.72 220.83

5 145.93 124.05 123.8

6 138.87 96.53 93.61

7 143.23 82.48 74.93

8 151.87 108.21 102.03

9 149.98 116.74 failed

10 143.64 113.41 111.96

11 136.17 97.46 94.88

feasibility is not plotted. As the number of design variables increases, the optimizer has a more difficult time
reducing optimality. Drag, however, is still reduced over the course of the optimizations, as shown by the
merit function plots. The higher drag for cases with more design variables, such as the 11 design variable
case shown, is likely associated with poor optimizer convergence.

Tables 3 to 5 display the final drag values for optimizations conducted on the coarse, medium, and fine
grid levels, respectively. Each final geometry was analyzed on all three grid levels. While the grid study
on the initial geometry gave a drag difference of less than a count between the medium and fine grids, the
differences for the final geometries are considerably larger. Several failed flow solves occur during fine-mesh
analysis, suggesting that the fine grid is resolving difficult flow features not observed with the coarser spacing,
making the problem more difficult to converge.

More concerning, however, is the presence of converged solutions with finite lift, indicative of the presence
of non-unique solutions. Note that all of the geometries are symmetric. The presence of non-unique solutions
may be due to the fact that the Euler equations are ill-suited for such bluff bodies. As previously stated,
RANS analysis would likely give considerable flow separation, and unsteady analysis would perhaps give
unsteady flow features.24 Hence, forcing the flow to remain tangent to the highly “blunt” trailing edge is
unphysical, and this may be contributing to the ill-posedness of the problem.

To examine the lifting solutions further, the pressure distribution from the fine-mesh analysis of the final
geometry from the 10 design variable case on the medium mesh is displayed in Figure 7. A double shock
is observed on the lower surface and a single shock on the upper surface, consistent with the double shocks
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Table 4: Case 1 - Grid study for NACA 0012 airfoil optimizations on medium grid

Drag Coefficient, Cd (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 221.09 224.72 228.33

4 216.61 217.28 219.3

5 146.88 122 121.71

6 152.55 91.71 87.82

7 168.94 68.36 nonzero lift

8 nonzero lift 60.67 nonzero lift

9 200.39 68.25 failed

10 nonzero lift 69.64 nonzero lift

11 nonzero lift 67.56 failed

Table 5: Case 1 - Grid study for NACA 0012 airfoil optimizations on fine grid

Drag Coefficient, Cd (Counts)

Design Variables Coarse Flowsolve Medium Flowsolve Fine Flowsolve

3 220.96 224.58 228.2

4 216.68 217.23 219.22

5 146.42 121.96 121.62

6 143.77 91.86 87.63

7 169.32 68.86 57.74

8 nonzero lift 58.99 42.39

9 229.38 nonzero lift 42.24

10 219.25 77.93 52.18

11 244.86 87.14 56.1

observed by Jameson et al.,25 who analyzed similar bluff airfoils under similar flow conditions. Mach contours
and streamlines are displayed in Figure 8, with a zoomed view of the trailing edge region. Recirculation is
observed. Examination of other lifting solutions shows similar flow features.

Flow analysis was conducted on the fine mesh for the geometry obtained from fine-mesh optimization
with 9 design variables, sweeping down from an initial Mach number of 0.8524 to 0.8493, and then back
up again. Each flow solution was initialized using the previous converged solution. Figure 9 shows that
hysteresis behaviour is observed; non-unique solutions occur near the operating condition of Mach 0.85.

A closer look at the optimization histories shows that non-unique, lifting solutions of the same nature
were produced during the optimizations. For example, Cl and Cd are plotted during the 10 design variable
optimization on the medium mesh in Figure 10. Lifting solutions give high drag values that the optimizer does
not expect from the gradient information. Such instances are detrimental to the optimization convergence. In
addition, more design variables means more geometric flexibility, but with this comes an increased ability to
find non-unique solutions as the airfoil becomes increasingly bluff. So while general intuition and experience
says that more design variables means increased ability to reduce drag, this does not necessarily hold true
for this ill-posed problem.

Finally, the convergence histories of converged and failed flow solutions are examined. Samples of lift
coefficient and residual histories for a zero-lift converged solve, a non-zero-lift converged solve, and a failed
solve are shown in Figure 11. These examples are typical of other examined cases. Throughout the converged
zero-lift case, the lift remains close to zero. It seems that the problem is more difficult to fully converge
if a lifting solution appears. The number of converged lifting and failed flow solves during an optimization
generally increases as the number of design variables is increased, resulting in poor optimization convergence.

To sum up the results for this case, the airfoil with lowest drag is obtained by optimizing on the fine
mesh with 9 design variables on each surface. A Cd of 42.2 drag counts is computed on the fine mesh.
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Figure 7: Case 1 - Pressure coefficient for final geometry from 10 design variable optimization on medium
mesh, analyzed on fine mesh
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Figure 8: Case 1 - Mach contours and streamlines for final geometry from 10 design variable optimization on
medium mesh, analyzed on fine mesh
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Figure 9: Case 1 - Drag coefficient hysteresis over Mach number
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Figure 11: Case 1 - Cl and residual histories for fine-mesh flow solves on geometries from optimizations on
medium mesh using 6, 8, and 9 design variables per surface

B. Case 2: Optimization of RAE 2822 Airfoil in Viscous Transonic Flow

Optimization Problem

The optimization problem is the drag minimization of the RAE 2822 airfoil in viscous, transonic flow.
The freestream Mach number is 0.734, and the Reynolds number is 6.5 million. The design variables are
the z-coordinates of the B-spline surface or FFD control points, as well as the angle of attack. The lift
coefficient is constrained to 0.824 and the moment coefficient about the quarter-chord must be no less than
-0.092. The minimum airfoil area is the initial airfoil area. Though not required by the test description, a
minimum thickness constraint of 25% of the initial thickness is enforced to maintain a realistic design and
prevent control point cross-over. The problem can be summarized as

minimize Cd

wrt z, α

subject to Cl = 0.824

Cm ≥ −0.092

A ≥ Abaseline
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Figure 12: Case 2 - Coarse grid of RAE 2822 used for optimizations

Table 6: Case 2 - Grid parameters for RAE 2822 airfoil grid study

Grid Nodes (2D)
Off-wall
Spacing

Leading-Edge
Spacing

Trailing-Edge
Spacing

Coarse 47,824 3.7×10−6 1×10−3 1×10−3

Medium 187,792 1.8×10−6 5×10−4 5×10−4

Fine 748,064 8.7×10−7 2.5×10−4 2.5×10−4

Superfine 3,016,832 4.3×10−7 1.25×10−4 1.25×10−4

Finest 12,067,328 2.1×10−7 6.25×10−5 6.25×10−5

where Cd, Cl, and Cm are the drag, lift, and moment coefficients, respectively, and A and Abaseline are the
optimized and initial airfoil areas, respectively.

Initial Geometry

The initial geometry is the RAE 2822 airfoil. The coordinates are obtained from the UIUC Airfoil Coor-
dinates Database.b

Grid

A C-topology grid is used for this case, and the optimization grid is displayed in Figure 12. To establish
grid convergence, the optimization grid was repeatedly refined by a factor of two in each direction, giving
the grid family with parameters shown in Table 6. The locations of the new nodes added during refinement
were determined according to a consistent hyperbolic mesh spacing law, giving a consistent grid family.

On the optimization grid, an angle of attack of 3.119◦ satisfies the desired Cl of 0.824. Coefficients of
drag, lift, and moment, as well as average y+, are reported in Table 7. The desired drag resolution of 0.1
counts is achieved between the two finest grid levels, but lift is not within 0.1×10−4.

To evaluate the accuracy of the finest grid level, numerical results were obtained to compare to the com-
monly referenced experimental results for the RAE 2822 - Case 9.26 The flow conditions for the analysis
were set to match the experimental flow conditions: a Mach number of 0.73, Reynolds number of 6.5 million,
and corrected wind tunnel angle of attack of 2.79◦. The experimental results give a normal force coefficient
Cn of 0.803, a Cd of 0.0168, and a Cm of -0.099. The analysis on the finest grid level gives a Cn of 0.802, a
Cd of 0.0167, a Cm of -0.091. In addition, pressure coefficients are compared in Figure 13. The computed
results agree well with experiment.

bhttp://m-selig.ae.illinois.edu/ads/coord_database.html
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Table 7: Case 2 - Results of grid study for initial RAE 2822 airfoil

Grid Level y+ Cl
Cd

(Counts)
Cm

Coarse 0.71 0.8240 234.44 -0.0908

Medium 0.32 0.8439 228.41 -0.0932

Fine 0.15 0.8501 229.14 -0.0944

Superfine 0.076 0.8519 229.61 -0.0947

Finest 0.038 0.8524 229.69 -0.0948
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Figure 13: Case 2 - Comparison of experimental and computed pressure coefficient on finest grid level

Y X

Z

(a) Initial B-spline optimization setup
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(b) Initial FFD optimization setup

Figure 14: Case 2 - Initial 27 chordwise geometric design variables per surface for B-spline surface (red points)
and FFD (blue points) control

Optimization Results

To examine the effect of design space dimensionality, optimizations with B-spline surface control were
conducted with from 7 to 37 chordwise design variables on the top and bottom surfaces, and optimizations
with FFD control were conducted with from 5 to 37 design variables on the top and bottom of the FFD
volume. For the FFD cases, 53 chordwise surface control points parameterize the top and bottom surfaces
of the airfoil. The initial design variables for both 27 design variable cases are displayed in Figure 14. Angle
of attack is also a design variable.

Lift, drag, and moment coefficient values, along with angle of attack, for the final geometries evaluated
on the optimization grid are plotted in Figure 15. Although monotonic drag reduction is observed when the
number of design variables is increased for a relatively low number of design variables, the drag reduction
performance degrades for higher numbers of design variables. Noticeable differences in the final geometries are
also evident, as shown in Figure 16. The 17 B-spline surface design variable case gave the lowest drag among
the B-spline control optimizations, and the 11 FFD design variable case gave the lowest drag among the FFD
control optimizations. The 27 design variable cases did not perform well. The superior geometries exhibit
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Figure 15: Case 2 - Coarse-mesh optimization functionals and angle of attack
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Figure 16: Case 2 - Airfoil shapes and pressure coefficients
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Figure 17: Case 2 - Convergence histories

small leading-edge radii and highly cambered trailing edges. Due to the uniform chordwise distribution of
FFD control points used, less control is offered at the leading and trailing edges, and the geometric features
are not as pronounced.

Figure 17 compares the optimization convergence histories of the B-spline surface control cases with 17
and 27 design variables and FFD control cases with 11 and 27 design variables. Figures 17a and 17b plot
feasibilility and optimality as a function of design iterations. The optimality and feasibility tolerances are set
at 1×10−7 and 1×10−6, respectively. The 17 B-spline and 11 FFD design variable cases show far superior
optimization covergence. The 27 design variable cases ran very few iterations and do not satisfy the Cl

constraint. Figures 17c and 17d display lift and drag coefficient histories versus function evaluations. While
the 17 B-spline and 11 FFD design variable cases exhibit drag spikes early on in the optimization, these
spikes disappear and monotonic drag reduction is observed. In contrast, the 27 design variable cases continue
to periodically produce designs with dramatic drag increases and lift decreases.

The geometry at iteration 36 from the 27 surface design variable case was re-analyzed using three different
convergence paths to steady state. Two distinct fully converged solutions were obtained, giving (Cl, Cd)
pairs of (0.7830, 0.01632) and (0.8133, 0.01411). Unsteady RANS analysis demonstrated that the two
steady solutions are physically stable. The pressure distributions are displayed in Figure 18. Note that the
single-block solution shown will be discussed later. Interestingly, the discrepancies in the solutions are quite
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Figure 18: Case 2 - Pressure distributions for non-unique solutions

localized. The double pressure recovery features are consistent with curves observed for this case by LeDoux
et al.27

The presence of non-unique solutions in the design space explains the poor convergence of some of the
optimizations. Analyses of other geometries using the different convergence paths were conducted, and
while non-unique solutions were not always observed, they were found to be common. Gradient-based
optimization does not work well with design spaces that are not smooth, since search directions provided by
gradient calculations can lead to unexpected spikes in the design space. For reasons not fully understood, the
combination of geometries produced by the optimizations with these flow conditions yield ill-posed problems.
It also appears that the occurence of non-unique solutions is a greater problem with more design variables,
since the increased geometric flexibility gives more freedom to fall into these undesired regions in the design
space. While one would expect that the cases with more design variables should have the geometric flexibility
to produce the geometries resembling the fewer design variable geometries, it seems that with more design
variables and occurences of non-unique solutions, the optimizer is more prone to get stuck.

The grid for geometry number 36 from the 27 surface design variable case was converted from a multi-
block grid to single-block grid. Analysis of the single-block grid in Jetstream with different convergence
paths all gave a single solution, with lift and drag coefficient values of 0.7570 and 0.01711, respectively. In
addition, this single solution is distinct from both multi-block solutions, as shown in the pressure coefficient
plots of Figure 18. A double pressure recovery is observed. Several other geometries that gave non-unique
solutions with multi-block meshes were analyzed with a single-block mesh, and all gave unique solutions.
This suggests that the non-uniqueness may be triggered by the treatment of block interfaces; however, further
investigation of this hypothesis has yet to be conducted.

While the occurence of non-unique solutions possibly arising from the multi-block treatment of the flow
solver is a concern, it is worth mentioning that Jetstream and its 2D predecessor Optima2D28 have been
been used to solve many transonic optimization problems in the past, without observing non-uniqueness or
the associated convergence difficulties.12,29–33 The phenomenon only seems to arise under very specific flow
conditions that produce a sufficiently ill-posed problem. When the flow conditions are adjusted to a Mach
number of 0.75 and lift coefficient constraint of 0.6, non-unique solutions are no longer observed.

To sum up the results for this case, the airfoil with lowest drag is obtained with 17 design variables on
each surface. To establish grid convergence for this final geometry, a grid refinement study is performed at
the final angle of attack of 2.708◦, and the results are recorded in Table 8. A Cd of 119.22 drag counts is
computed on the finest mesh.
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Table 8: Case 2 - Results of grid study for optimized RAE 2822 airfoil

Grid Level y+ Cl
Cd

(Counts)
Cm

Coarse 0.75 0.8240 131.81 -0.0920

Medium 0.34 0.8415 121.88 -0.0945

Fine 0.17 0.8436 120.11 -0.0948

Superfine 0.081 0.8433 119.54 -0.0946

Finest 0.041 0.8423 119.22 -0.0944

C. Case 3: Twist Optimization of a Rectangular Wing in Inviscid Subsonic Flow

Optimization Problem

The optimization problem is the drag minimization of a rectangular wing with zero-thickness trailing edge
NACA 0012 sections in inviscid, subsonic flow. The freestream Mach number is 0.5. The design variables are
the twist of sections along the span about the trailing edge. Twist is performed by allowing the z-coordinates
of the B-spline surface or FFD control points to vary under linear constraints, thus linearly shearing the
sections. The twist at the root section is allowed to vary, while the angle of attack is fixed. The target
lift coefficient is 0.375. The twist distribution should produce a lift distribution close to elliptical and an
efficiency factor close to unity. The problem can be summarized as

minimize CD

wrt γ(y)

subject to CL = 0.375

where CD and CL are the drag and lift coefficients, respectively, and γ(y) is the twist distribution along the
span.

Initial Geometry

The initial geometry is a rectangular, planar wing with NACA 0012 sections. The trailing edge is sharp.
The semi-span is 3.06c, with the last 0.06 leading to a pinched tip. Although the tip geometry is not quite
consistent with the case description, which specifies a rounded tip, the main purpose of optimizing the twist
distribution is still maintained.

Grid

An H-topology grid was used for this case. It is a flat plate grid that is inflated to the NACA 0012 section
using the mesh movement algorithm. The optimization level mesh on the aerodynamic surface and symmetry
plane is displayed in Figure 19. To establish grid convergence, the optimization level grid is refined by a
factor of 2, 3, and 4 in each direction, giving the grid family with parameters shown in Table 9. The locations
of the new nodes added during refinement were determined according to the hyperbolic mesh spacing law.

On the optimization grid, an angle of attack of 4.2040◦ gives the desired CL of 0.375 and is used for
the grid study. Coefficients of drag and lift, as well as span efficiency factor, are plotted in Figure 20 for
the different grid levels. The medium and superfine grids, which differ in grid size by a factor of 2 in each
direction, give CD values within 1 drag count of each other. The three finest grid levels appear to be in the
asymptotic region, as the behaviour of both functionals is linear with respect to N−2/3, where N is the total
number of grid nodes, and the spatial discretization is second-order. The span efficiency factor of the initial
geometry is very close to unity on the coarse mesh, but the refinement study shows there is in fact room for
improvement. The superfine mesh is chosen for refined analysis of the optimized geometries.
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Figure 19: Case 3 - Mesh for aerodynamic surface and symmetry plane

Table 9: Case 3 - Grid parameters for the rectangular planar wing grid study

Grid Nodes
Off-wall
Spacing

Leading-Edge
Spacing

Trailing-Edge
Spacing

Coarse 1,361,976 3×10−3 3×10−3 3×10−3

Medium 10,895,808 1.5×10−3 1.5×10−3 1.5×10−3

Fine 36,773,352 1×10−3 1×10−3 1×10−3

Superfine 87,166,464 7.5×10−4 7.5×10−4 7.5×10−4
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Figure 20: Case 3 - Lift coefficient, drag coefficient, and span efficiency factor evaluated on the different grid
levels for the initial geometry

Optimization Results

The optimizations were conducted on the coarse mesh with different numbers of B-spline surface and
FFD design variables. For the B-spline surface optimizations, the twist for the spanwise stations on the tip
patches was constrained to be a linear extrapolation of the twist between the two adjacent stations on the
inboard patches. This was to prevent the optimizer from exploiting the surface control point clustering at
the tip to create a non-planar feature. This was not necessary for the FFD optimizations since the FFD
spanwise stations were sufficiently (uniformly) spaced out along the span. All of the optimizations were
successful, reaching feasibility and optimality tolerances of 1×10−6 and 1×10−7, respectively. For example,
the feasibility, optimality, and merit function histories for the optimization with 10 B-spline surface design
variables are displayed in Figure 21. The final geometries are re-analyzed on the superfine mesh, with the
angle of attack adjusted in each case to satisfy the CL constraint of 0.375. The drag coefficients and span
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Figure 21: Case 3 - SNOPT convergence history for the optimization with 10 B-spline surface design variables

Number of Design Variables

C
D

2 4 6 8 10
7.30E-03

7.31E-03

7.32E-03

7.33E-03

7.34E-03

7.35E-03

7.36E-03

B-spline
FFD

(a) Drag coefficient

Number of Design Variables

S
pa

n 
E

ffi
ci

en
cy

2 4 6 8 10
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

1.001

1.002

B-spline
FFD

(b) Span efficiency

Figure 22: Case 3 - Optimized drag coefficient and span efficiency evaluated on the superfine mesh for different
numbers of design variables

efficiency factors are plotted in Figure 22. All of the optimized span efficiencies are very close to unity, and
the two efficiencies that exceed unity are a reflection of the fact that linear aerodynamic theory does not
consider all the effects of the nonlinear Euler equations. As expected, the spanwise lift distributions are close
to elliptical. For example, the lift distributions obtained with 10 design variables are compared to the initial
and elliptical distributions in Figure 23. The only noticeable deviation from elliptical occurs at the tip and
is attributed to mesh effects at the tip.

D. Case 4: Twist and Section Optimization of CRM Wing in Turbulent Transonic Flow

Optimization Problem

The problem is the drag minimization of the wing geometry extracted from the Common Research Model
(CRM) wing-body configuration from the Fifth Drag Prediction Workshop.4 The goal is to optimize the
sectional shape and twist to minimize drag at a lift coefficient of CL = 0.5 at a Mach number of 0.85 and
a Reynolds number of 5 million. The design variables are the z-coordinates of either the B-spline surface
control points or the FFD volume control points, in addition to the angle of attack. The B-spline points on
the trailing edge of the wing are fixed to permit arbitrary twist, except for the root where the leading edge
control point is also fixed. The optimization problem is specified as

20 of 40

American Institute of Aeronautics and Astronautics



Y
S

ec
tio

na
l L

ift
0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Initial
10 B-spline DVs
10 FFD DVs
Elliptical

Figure 23: Case 3 - Lift distributions from the 10 design variable optimizations, analyzed on the superfine
mesh, compared to initial and elliptical distributions

minimize CD

wrt z, α

subject to CL = 0.500

CM ≥ −0.17

V ≥ Vbaseline
z ≥ 0.25× zbaseline.

Initial Geometry

The wing geometry is scaled by the mean aerodynamic chord of 275.8 inches and translated such that
the origin is at the root leading edge. Moments are calculated about the point (1.2077, 0, 0.007669). All
aerodynamic force coefficients are calculated using a reference area of Sref = 3.407 squared reference units.
The initial volume, Vbaseline, is 0.2617 cubed reference units. The wing surface is divided into three spanwise
sections, with each section consisting of two chordwise patches. An additional two patches are used for the
leading edge and blunt trailing edge. Finally, the wing tip cap is modelled by two patches, giving a total
of 20 surface patches. For B-spline surface geometry control, the leading-edge patches are parameterized by
5 points in the streamwise and spanwise directions, while all other patches have 9 points in the streamwise
direction and 5 points in the spanwise direction. This gives a total of 15 spanwise design sections, each
controlled by 35 points. For FFD geometry control, all patches are parameterized by 17 by 17 control points
and are embedded inside two FFD volumes joined at the wing crank. The FFD volumes give 15 spanwise
design sections, each controlled by 17 chordwise FFD control points on the top and bottom, giving a similar
number of design variables to the B-spline surface control setup. The FFD points are clustered towards the
leading and trailing edges according to a cosine distribution.

Grid

The grid is generated in ICEM CFD and uses an O-O mesh topology. Table 10 shows the information on
the different grid levels. The grid is refined in all directions by factors of 2 and 4 to give three levels in total.
Figure 24 shows the surface and symmetry planes for the the computational mesh as well as the optimization
B-spline surface. Figure 25 shows the results of the grid convergence study on the initial and B-spline surface
optimized geometries, with angle of attack adjusted to give CL = 0.5. The difference between the fine and
superfine grid levels is about 2 drag counts for the initial geometry, and less than a count for the optimized
geometry. Optimization is performed on the coarsest grid level.
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Table 10: Case 4 - Grid parameters for CRM wing grid study

Grid Nodes
Off-wall
Spacing

y+

Coarse 925,888 1.5×10−6 0.33

Fine 7,407,104 8.1×10−7 0.17

Superfine 58,456,064 3.9×10−7 0.081

(a) CFD Mesh (b) B-spline Surface

Figure 24: Case 4 - The computational mesh and B-spline surface for the CRM wing geometry
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Figure 25: Case 4 - Grid convergence for the CRM wing grid study

Single-Point Optimization Results (Case 4.1)

At each design iteration, the flow solution residual is reduced by 8 orders of magnitude. Figure 26 shows
the pressure contours of the baseline and optimized wings using B-splines surface control, and Figure 27
shows the corresponding sectional pressure distributions using both control methodologies, computed on the
fine grid level. The wing sections all become thinner except in the root region, which thickens to maintain
the initial volume. The leading edge becomes progressively sharper towards the wing tip. The sharp leading
edge is likely due to the absence of a low-speed lift constraint for the wing, and could be removed through
a geometric constraint if desired. The geometries and pressure distributions obtained using B-spline surface
and FFD geometry control are similar, and it is expected that they will become increasingly similar if the
optimizations are run longer. The spanwise lift distributions of the initial, FFD, and B-spline optimized
geometries evaluated on the fine mesh are compared to the elliptical distribution in Figure 28. While the
differences between the geometries optimized using the B-spline and FFD methods are reflected in noticeable
differences in drag, as displayed in Table 11, the drag discrepancy gets smaller with refinement. The FFD
optimization was also conducted using a “medium” mesh refined by a factor of 1.587 in each direction, giving
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Figure 26: Case 4.1 - Pressure contours for baseline and optimized CRM wing using B-spline surface control
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Figure 27: Case 4.1 - Sectional pressure plots and sections for baseline and optimized CRM wings computed
on fine mesh
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Figure 28: Case 4.1 - Initial, B-spline surface optimized, and elliptical lift distributions

Table 11: Case 4.1 - Results for CRM wing single-point optimization

Optimization Mesh Fine Mesh Superfine Mesh

CD (counts) CM CD (counts) CM CD (counts) CM

Baseline 218.3 -0.1712 201.5 -0.1747 199.1 -0.1754

B-spline surface control 194.5 -0.1700 185.2 -0.1702 185.6 -0.1704

FFD control 199.0 -0.1700 186.8 -0.1707 185.4 -0.1706

FFD control (medium mesh) 187.1 -0.1700 184.7 -0.1700 183.4 -0.1699
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Figure 29: Case 4.1 - Optimization convergence for single-point optimizations of the CRM wing

four times the number of nodes as the coarse mesh, and the results are also included in Table 11. Fine-mesh
analysis shows that, as expected, there is some benefit to optimizing on a finer mesh. Due to time limitations,
however, the subsequent multi-point optimizations are conducted using the coarse mesh.

Figure 29 shows the SNOPT convergence history for the two optimizations on the coarse mesh. In addi-
tion, the convergence of the force and moment coefficients is displayed for the B-spline control case in Figure
30. The feasibility and optimality tolerances are both set at 1×10−6. The optimality measure is reduced by
roughly two orders of magnitude relative to its highest value. The difference in convergence rate between
B-spline surface and FFD control may be due to design variable scaling. While greater reduction in opti-
mality is possible with further optimization, the merit function plot shows that most of the drag reduction
has already been achieved.
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Figure 30: Case 4.1 - Lift, drag, and moment coefficient convergence using B-spline surface control

Multi-point Optimization Results (Cases 4.2 - 4.6)

The degrees of freedom and geometry for the CRM wing multi-point optimization are the same as the
single-point problem, with the exception that the angle of attack at each design point is its own design
variable. Only B-spline surface control is used. In each design iteration of the multi-point optimization, a
flow solution is computed at each of the operating points in parallel. The objective function and gradient
are computed as a weighted sum of the results from each of the converged flows. The pitching moment
constraint is only satisfied at the nominal design point, which is given the greatest weight Ti. There are four
three-point cases: one with variable CL and constant Mach number, two with variable Mach number and
constant CL, and one with variable Mach number and constant lift. In addition, there is a nine-point case
over a range of Mach numbers and lift coefficients. The operating points for each case are summarized in
Table 12. The optimization problem is posed as

minimize

n∑
i=1

TiCDi

wrt z, αi

subject to CL = CLi

CM ≥ −0.17 (at nominal design point)

V ≥ Vbaseline
z ≥ 0.25× zbaseline.

All of the multi-point optimizations are carried out on the coarse mesh, while all the drag polars and
analyses are performed with the optimized geometry on the fine level mesh. The optimization histories of
cases 4.2 and 4.6 are compared in Figure 31. The three-point optimizations converged more successfully
than the nine-point case, as the nine-point case suffered from more flow solver convergence difficulties at the
more demanding flow conditions. The drag and moment coefficients of the optimized geometries computed
on the fine mesh at the nominal condition are displayed in Table 13. The sections and sectional pressure
plots computed on the fine mesh at the nominal condition are displayed in the Appendix, in Figures A.1 and
A.2. Figure 32 shows the lift curve and moment curve for the initial, single-point, and multi-point optimized
geometries. Figure 33 shows the drag coefficient vs. angle of attack and the drag polar at Mach 0.85. The
drag polar shows that all the optimized geometries produce a noticeable improvement in L/D compared
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Table 12: Case 4 - Multi-point problem operating points

Case Point i Weight Ti M CL Re

4.2 1 1 0.85 0.450 5.00×106

2 2 0.85 0.500 5.00×106

3 1 0.85 0.550 5.00×106

4.3 1 1 0.84 0.500 5.00×106

2 2 0.85 0.500 5.00×106

3 1 0.86 0.500 5.00×106

4.4 1 1 0.82 0.500 5.18×106

2 2 0.85 0.500 5.00×106

3 1 0.88 0.500 4.83×106

4.5 1 1 0.82 0.537 4.82×106

2 2 0.85 0.500 5.00×106

3 1 0.88 0.466 5.18×106

4.6 1 1 0.82 0.483 4.82×106

2 2 0.82 0.537 4.82×106

3 1 0.82 0.591 4.82×106

4 2 0.85 0.450 5.00×106

5 4 0.85 0.550 5.00×106

6 2 0.85 0.550 5.00×106

7 1 0.88 0.442 5.18×106

8 2 0.88 0.466 5.18×106

9 1 0.88 0.513 5.18×106
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Figure 31: Case 4 - Optimization convergence for multi-point optimizations of the CRM wing

Table 13: Case 4 - Drag counts at nominal operating point CL = 0.5 and Mach 0.85 computed on fine mesh

CD (counts) CM

Baseline 201.5 -0.1746

Case 4.1 185.2 -0.1702

Case 4.2 185.8 -0.1704

Case 4.3 185.8 -0.1705

Case 4.4 187.8 -0.1711

Case 4.5 187.0 -0.1709

Case 4.6 189.7 -0.1717

the baseline geometry. Compared to the multi-point optimizations, the single-point result shows poorer
performance at lower lift coefficients and a slight improvement at the nominal flight condition CL = 0.5.
Cases 4.2 and 4.3 perform the best over the range of lift coefficients at M = 0.85, which is not surprising
as these cases have a narrower range of Mach numbers around the nominal condition. Figure 34a better
illustrates the advantage of multi-point optimization over single-point. The single-point geometry shows a
higher drag over most Mach numbers, with a slight benefit at the nominal Mach number 0.85. Once again,
cases 4.3 and 4.2 perform the best around the operating condition, with the case 4.3 geometry showing
slightly better drag. Case 4.4, which was optimized at Mach 0.82 and 0.88 in addition to the nominal Mach
number, shows significantly better drag at higher Mach numbers. Figure 34b shows case 4.5 outperforming
4.6, which is expected since case 4.6 was optimized with consideration of additional operating conditions to
those of case 4.5.

Figure 35 shows the lift curve and moment curve for the initial and nine-point optimized geometries,
at varying Mach numbers. Figure 36 shows the drag coefficient vs. angle of attack and the drag polar at
varying Mach numbers. The drag polar shows that for a given Mach number, the drag reduction relative
to the baseline curve improves at increased CL. The drag reduction is marginal for Mach 0.82, but much
more significant at Mach 0.85 and 0.88. Figure 37 plots drag coefficient against Mach number for three fixed
lifts given by CL = 0.45, 0.50, and 0.55 at Mach 0.85. Again, the drag reduction relative to the baseline
geometry increases at higher Mach numbers. The drag and moment coefficients computed on the fine mesh
for optimized geometries at their design conditions are summarized in the Appendix in Table A.1.
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Figure 32: Case 4 - CL and CM vs. α for single-point, three-point, and nine-point optimizations at M = 0.85
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Figure 33: Case 4 - CD vs. alpha and vs. CL for single-point, three-point, and nine-point optimizations at
M = 0.85
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based on CL = 0.5 and M = 0.85 for Cases 4.5 and 4.6
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Figure 35: Case 4.6 - CL and CM vs. α for nine-point optimization at various Mach numbers
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Figure 36: Case 4.6 - CD vs. α and vs. CL for nine-point optimization at various Mach numbers
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Figure 38: Case A1 - T-tail aircraft geometry and CFD grid blocking topology

IV. Additional Cases

A. Additional Case 1: Wing-Fuselage-Tail Aircraft Optimization

Optimization Problem

The goal of this optimization problem is to determine the optimal trimmed aircraft configuration for
minimum drag at a given operating condition where the aircraft configuration includes the wing, fuselage,
and a horizontal tail. The operating condition is at Mach number 0.82, CL = 0.513, and Reynolds number
19.1 × 106 based on the wing mean aerodynamic chord. Aerodynamic and geometric constraints imposed
on the optimization are as follows. The optimized aircraft geometry must achieve a total lift corresponding
to the aircraft weight. In addition, a prescribed spanwise lift distribution is enforced on the wing. The idea
behind this approach is that the spanwise lift distribution comes from a medium-fidelity multi-disciplinary
optimization, for example based on a panel method for aerodynamic forces and moments. The high-fidelity
aerodynamic shape optimization can then be used to eliminate shocks, but should maintain the spanwise lift
distribution such that the wing weight from the medium-fidelity optimization remains accurate. A detailed
description of the prescribed spanwise lift distribution constraint formulation is given in Osusky et al.34 To
satisfy the trim constraint, pitching moments summed about the aircraft center of gravity, which is at 48.7
feet from the nose of the fuselage, must equal zero. Geometric constraints are imposed on wing volume,
sectional areas, and sectional thicknesses to ensure the wing outer mold line is sufficient to accommodate the
internal wing structure and fuel volume. Sectional areas and wing volume must be greater than or equal to
their initial values. Sectional t/c values must not decrease by more that 25% of their initial values. The opti-
mizer can only vary the wing geometry while keeping the fuselage and tail geometry unchanged. Specifically,
the optimizer can only vary wing sectional shapes and twist while maintaining a fixed planform. In addition
to the above geometric flexibility, wing and tail angle of incidence with respect to aircraft longitudinal axis,
and aircraft angle of attack are allowed to vary. Wing and tail angles of incidence may vary by ±5◦ and
±10◦ respectively. The aircraft angle of attack may vary by ±2◦. The total number of design variables is 508.

Initial Geometry

The initial geometry is a T-tail aircraft configuration shown in Figure 38. RAE 2822 airfoil sections are
used for the wing. NASA SC(2)-0012 airfoil sections are used for the horizontal tail, and the vertical fin is
not included. The tail geometry is fixed, other than its angle of attack.

Grid

The grid used for the optimization has an average off-wall spacing of 2.5 × 10−6 reference lengths. The
reference length is the wing mean aerodynamic chord, which has a value of 12.8 feet. The mesh consists of
7.5×106 nodes partitioned over 620 blocks, each of size 23×23×23 nodes. Figure 38 illustrates the blocking
topology.

30 of 40

American Institute of Aeronautics and Astronautics



function evaluations

fe
a

s
ib

il
it

y

50 100 150

10
8

10
7

10
6

10
5

10
4

10
3

(a) Feasibility

function evaluations

o
p

ti
m

a
li
ty

50 100 150

10
5

10
4

10
3

10
2

(b) Optimality

function evaluations

m
e

r
it

 f
u

n
c

ti
o

n

0 50 100 150
0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

(c) Merit function

Figure 39: Case A1 - Convergence history for the wing-body-tail optimization case
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Figure 40: Case A1 - Spanwise lift distribution of optimized wing compared to prescribed lift distribution

Optimization Results

After 164 design iterations, a converged optimization result has been achieved. The optimization conver-
gence history shown in Figure 39 indicates that optimality has been reduced by two orders of magnitude and
all aerodynamic and geometric constraints have been satisfied. It can be seen that the optimizer struggles to
reduce feasibility until the 83rd design iteration. At this iteration, the constraints on total aircraft lift and
wing lift distribution are not satisfied. The aircraft angle of attack has been stuck at its upper bound of 2◦

since the 4th function evaluation. At the 84th design iteration the optimizer performs an internal reset of
its Hessian approximation, which has the desired effect of breaking the feasibility stagnation. The optimizer
achieves satisfaction of the total aircraft lift and the wing lift distribution constraints at design iteration 95
by increasing outboard wing twist and reducing aircraft angle of attack to 1.8◦. Satisfaction of the spanwise
lift distribution constraint is shown in Figure 40, where it can be seen that the optimized lift distribution
closely matches the prescribed lift distribution. Performance for the optimized aircraft configuration is sum-
marized in Table 14. The optimized aircraft geometry is evaluated on a 24-million-node fine grid to obtain
a more accurate prediction of performance. A comparison of the baseline and optimized aircraft geometries
evaluated on the optimization mesh level at the target lift shows an improvement in CD of 27%. Sections and
pressure distributions at several spanwise locations on the initial and optimized wings are shown in Figure
41. The pressure distributions between 42% and 58% span show a shock on the initial wing geometry that
has been eliminated on the optimized wing geometry. These results demonstrate the capability of the aero-
dynamic shape optimization algorithm to design a wing for minimum drag at turbulent, transonic operating
conditions for a trimmed T-tail aircraft configuration by eliminating shocks on the wing while maintaining a
prescribed spanwise lift distribution. This is one way in which aerodynamic shape optimization can be used
to refine a design from a low- or medium-fidelity multidisciplinary optimization.
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Table 14: Case A1 - Performance for initial and optimized T-tail aircraft geometries

Optimized

Baseline Optimized (Fine Grid Analysis)

CL 0.513 0.513 0.513

CD 0.0507 0.0369 0.0309
CL

CD
10.12 13.89 16.60

CM 0.000 0.000 0.000

α (◦) 3.04 1.86 1.87
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Figure 41: Case A1 - T-tail aircraft wing sections and pressure distributions for initial and optimized geometries

B. Additional Case 2: Box Wing Optimization

Rationale

According to lifting-line theory, the box wing is the lifting system that produces the least amount of
induced drag for a given lift, span, and vertical extent.35 Moreover, the span efficiency of the box wing
increases as the height-to-span (h/b) ratio increases; in Prandtl,35 an equation relating the two quantities is
provided:

1

e
≈ 1 + 0.45(h/b)

1.04 + 2.81(h/b)
. (9)

However, it is unclear how nonlinear aerodynamics impact the span efficiency of the box wing.
The optimal lift distribution of the box wing is generally depicted as the sum of a constant and an elliptical

lift distribution that is equally carried by the top and bottom wings, joined at their tips by butterfly-shaped
side-force distributions.36 However, as remarked in Kroo,37 according to lifting-line theory a vortex loop of
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constant circulation can be superimposed to such a closed system without changing its total lift and drag.
Thus, at least from the perspective of linear theory, for a given h/b ratio there is an infinite number of
optimally-loaded box wings.

The intent of this proposed additional case is twofold. First, it is desired to compare the span efficiencies
estimated by Eq. (9) with those obtained through numerical optimization when nonlinear aerodynamics are
included. The problem is more challenging than in Case 3, since here the flow solver must correctly resolve
the flow field induced by the neighboring wings in order for the optimizer to exploit the nonlinearity of
the wake. Further, unlike Case 3, the proposed case is not affected by side-edge tip separation, although
care must be taken where the wings connect with the tip fins (as discussed below). The second intent of
the proposed case is to determine, again through nonlinear aerodynamics, whether the optimal lift distri-
bution of the box wing is unimodal or, as implied in Kroo,37 multimodal with an infinite number of solutions.

Optimization Problem

Specifically, the objective of this case is to maximize the span efficiency,

e =
(L/q∞)2

πb2(D/q∞)
, (10)

of the box wing over a range of h/b ratios by varying twist while constraining lift. The flow is modeled with
the Euler equations, and the freestream Mach number is fixed at 0.3. Both the height and span, and thus
h/b, are fixed during the course of an optimization. Hence, for a given h/b ratio the optimization problem is

minimize D/q∞

wrt γ

subject to L/q∞ = (L/q∞)target,

where γ is the twist distribution of the entire system, including the corner transitions as described below.
Twist is achieved by true rotation (as opposed to shear) about the leading edge; hence, the planform is not
fixed, which is why there is no reference area in the problem formulation. However, the lift target is chosen
such that CL = 0.5 at the beginning of the optimization, based on the total planform area. The initial
planform area of the top and bottom wing is S1/2 = 12c2; thus, (L/q∞)target = CL × S = 0.5× 24c2 = 12c2.
In practice, only half geometries are considered, so (L/q∞)target = 6c2.

Initial Geometry

A generic box-wing geometry is shown in Figure 42. The positive x, y, and z axes correspond to the
chordwise, spanwise, and vertical directions, respectively. The two wings and the tip fin are generated from
a sharp NACA 0012 airfoil, which is rotated 90◦ at the wing extremities to close the system. The purpose
of the corner fillets is to reduce compressibility effects. For a given h/b ratio, compressibility effects can
be reduced further by increasing the size of h and b relative to c. Here, R (see Figure 42) and b are fixed
to 0.15c and 12c, respectively, and h is varied from 1.2c to 3.6c by increments of 0.6c. Thus, the five h/b
ratios considered in this paper are 0.10, 0.15, 0.20, 0.25, and 0.30. Note that the reference area used in the
computation of the initial lift coefficient is S = 2bc. As explained above, this leads to (L/q∞)target = 6c2 for
all five half geometries. Also note that the arc length of the corner fillets are excluded from the definition of
the normalized semi-span (η) and vertical (ηV) axes.

Grid

The optimization grids are composed of 42 blocks and 2,569,427 nodes with off-wall spacings of about
10−3c. All five grids have the same hyperbolic mesh law parameters along the same respective block edges.
The angles of attack necessary to achieve the target lift of 6c2 at the beginning of the optimizations are
6.1041◦, 5.6455◦, 5.4058◦, 5.2592◦, and 5.1586◦ for h/b = 0.10, 0.15, 0.20, 0.25, and 0.30, respectively. As
in the previous cases, grid-converged lift and drag values are obtained by performing post-optimization flow
solves on superfine grids, here composed of 2154 blocks and 89,560,035 nodes.
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Figure 42: Case A2 - Generic box-wing geometry

Optimization Results

A total of 22 FFD design variables are used to achieve a continuous, piecewise-cubic twist distribution.
Twist is applied about the leading edge; thus, the rotation planes are normal to it. For example, the rotation
planes for the tip fin are normal to the global xy plane. For the corner fillets, the rotation planes are derived
from a linear combination of xz and xy planes.

The top and bottom wings are each assigned 7 design variables that are evenly distributed along η ∈ [0, 1];
similarly, the tip fin is assigned 4 design variables that are evenly distributed along ηV ∈ [0, 1]. Each corner
fillet has 2 additional design variables that are evenly spaced between its 2 tip design variables. However,
in order to prevent the development of overly wavy surfaces at the corner fillets, these additional design
variables are constrained to linearly interpolate the tip design variables; hence, the optimization problems
have effectively 18 design variables each.

All five optimizations converged to optimality and feasibility tolerances of 1×10−6 and 1×10−7, respec-
tively, in 28 major SNOPT iterations or less. The convergence histories are very similar to those shown in
Figure 21.

As seen from Figure 43, the (inverse of the) span efficiencies obtained through the Euler-based optimiza-
tions are in good agreement with those estimated by linear theory, i.e. Eq. (9). The discrepancies can be
attributed to the definition of h and b in Figure 42. If the true bounding boxes of the overall systems are used
instead, i.e. when airfoil thickness is accounted for, the h/b ratios are in fact slightly larger. Consequently,
with the corrected h/b ratios the red curve shifts to the right and falls almost exactly on the black curve.

It is worth pointing out that airfoils designed for biplanes should have substantially different camber
than those designed for monoplanes.38 Thus, in the future it would be interesting to include sectional design
variables in the optimization problems. Preliminary results suggest that, at least for the h/b = 0.20 case,
a 5 to 10% higher span efficiency than predicted by Eq. (9) is possible,39 even with the more conservative
bounding box definition of h/b.

The sectional force coefficients along the spanwise (vertical) axis of the wings (tip fin) are plotted in
Figure 44. Note that the force vectors used to compute these coefficients are not oriented according to the
angle of attack, but rather according to the Cartesian axis normal to each surface, i.e. the global z axis for
the wings and the global y axis for the tip fin. Unlike the span efficiencies, the vertical force distributions
differ significantly compared to those typically depicted.36 Here the bottom wing carries significantly more
lift than the top wing, although as the h/b ratio increases, the load is progressively shifted to the top wing.
The side-force distribution adapts to this shift while remaining relatively similar in shape. Finally, the force
distribution of the top wing appears to be more elliptical than that of the bottom wing; in general, it is also
smoother.

As a check for multimodality, the h/b = 0.20 case was repeated five times, each time with a different
starting twist distribution. Specifically, each case was started from a separate set of randomly-generated
design variables ranging from −10◦ to 10◦. All cases converged to the same solution (plus or minus numerical
tolerances), suggesting that for a given h/b ratio the optimal force distribution of the box wing, based on
the Euler equations, is unimodal.
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V. Conclusions

The Jetstream aerodynamic shape optimization algorithm is applied to four benchmark optimization
problems as part of the Aerodynamic Design Optimization Discussion Group. For the NACA 0012 optimiza-
tion, the shock is weakened and pushed downstream by thickening the airfoil at the leading and trailing edges,
reducing Cd to 42.2 counts in the best case. For the RAE 2822 case, successful optimizations eliminate the
shock, reducing Cd to 119.2 counts in the best case. Both two-dimensional cases yield non-unique solutions
that hinder optimization convergence. The twist optimizations converged successfully, giving nearly elliptical
lift distributions and span efficiency factors very close to unity. The single-point CRM wing optimization on
the medium mesh with FFD control reduces CD to 183.4 counts. The multi-point optimizations give higher
drag at the nominal condition, but lower drag at other Mach number and lift conditions, especially at higher
Mach numbers. In all of the CRM wing cases, significant shape changes and performance improvements are
achieved.

In addition, two additional cases are proposed as candidates to be added to the benchmark problem
suite. The first is a lift-constrained drag minimization with a prescribed spanwise lift distribution for a wing-
fuselage-tail geometry. The second is a box-wing, which allows for the optimization of an unconventional
shape, while still providing a basis for comparison to lifting-line theory.

Appendix: Additional Figures and Table for CRM Wing
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Figure A.1: Case 4 - Sectional pressure plots and sections for optimized CRM wings, computed on the fine
mesh at the nominal condition
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Figure A.2: Case 4 - Sectional pressure plots and sections for optimized CRM wings, computed on the fine
mesh at the nominal condition
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Table A.1: Case 4 - Summary of multi-point force coefficients for baseline and optimized geometries computed
on the fine mesh

Baseline Optimized

Case Point M CL CD CM CD CM

4.2 1 0.85 0.450 176.2 -0.1582 168.5 -0.1564

2 0.85 0.500 201.5 -0.1747 185.8 -0.1704

3 0.85 0.550 233.4 -0.1923 209.7 -0.1861

4.3 1 0.84 0.500 195.6 -0.1713 186.8 -0.1697

2 0.85 0.500 201.5 -0.1747 185.7 -0.1705

3 0.86 0.500 212.1 -0.1801 188.0 -0.1737

4.4 1 0.82 0.500 191.2 -0.1680 187.8 -0.1681

2 0.85 0.500 201.5 -0.1747 187.8 -0.1711

3 0.88 0.500 260.3 -0.1902 196.4 -0.1831

4.5 1 0.82 0.537 210.7 -0.1777 204.3 -0.1779

2 0.85 0.500 201.5 -0.1747 187.0 -0.1708

3 0.88 0.466 229.7 -0.1794 179.5 -0.1709

4.6 1 0.82 0.483 184.1 -0.1632 183.7 -0.1637

2 0.82 0.537 210.7 -0.1777 207.7 -0.1783

3 0.82 0.591 243.6 -0.1925 239.4 -0.1917

4 0.85 0.450 176.3 -0.1584 170.4 -0.1579

5 0.85 0.500 201.5 -0.1747 189.8 -0.1718

6 0.85 0.550 233.2 -0.1923 213.7 -0.1865

7 0.88 0.442 196.5 -0.1623 163.2 -0.1564

8 0.88 0.466 229.7 -0.1794 186.0 -0.1742

9 0.88 0.513 273.6 -0.1947 217.7 -0.1924
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