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Dissipation-based continuation (DBC) is a form of globalization suitable for inexact-
Newton flow solvers and a robust alternative to pseudo-transient continuation. DBC uses
a sequence of modified equations, each one a perturbation of the previous one. The modified
equations are obtained by adding numerical dissipation to the discrete governing equations,
with a continuation parameter controlling the magnitude of the dissipation. DBC begins
with significant numerical dissipation, which increases the basin of attraction for New-
ton’s method to converge using the free-stream as the initial iterate. The continuation
parameter is then reduced, and the next modified equation in the sequence is inexactly
solved using the previous solution as the initial iterate. The process is repeated until the
dissipation is removed, the original equations are recovered, and the desired solution is ob-
tained. We describe DBC in detail and its implementation in a multi-block finite-difference
discretization. DBC is benchmarked against pseudo-transient continuation on a number
of numerical experiments to quantify its robustness and efficiency, and it is shown to be
generally superior.

I. Introduction

Although many research challenges remain, the field of computational fluid dynamics (CFD) is sufficiently
mature that flow solvers are routinely used by industry for analyses. In this role, a CFD solution is used to
assess a design or process, much like the results from a wind tunnel experiment. Although not yet routine,
simulation-based optimization represents the next significant application of CFD in industry. In this context,
CFD goes beyond informing the designer and helps automate the design process.

If a flow solver experiences convergence difficulties during a single analysis, the user can intervene and
adjust parameters accordingly. Such user intervention is untenable during a simulation-based optimization,
where hundreds or thousands of flow evaluations are necessary. A similar argument holds for probabilistic
uncertainty quantification, where many samples are necessary to estimate the mean and variance in a quantity
of interest. These applications motivate robust and efficient solution strategies for CFD.

Our focus in this paper is on the class of inexact-Newton solution algorithms, which have proven to be
efficient for a wide range of steady1–6 and unsteady7–9 problems in CFD. In simple terms, these algorithms
apply Newton’s method to the nonlinear algebraic system that results from discretizing the flow equations;
however, because they are based on Newton’s method, these schemes are sensitive to the choice of initial
iterate. When applied to unsteady problems, the solution from the previous time step may provide a suitable
initial iterate. No such solution is available in steady-state problems, where a globalization strategy is needed
to find an initial iterate that lies in the basin of attraction of Newton’s method.

The globalization strategy has a significant impact on the efficiency and robustness of an inexact-Newton
solver. The impact on robustness is clear: unless the globalization finds a suitable initial iterate, the flow
solver will fail. Globalization can also represent a substantial percentage (50% or more) of the total solution
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time; thus, the rapid convergence of an inexact-Newton scheme in its terminal phase may be overshadowed
by an inefficient globalization strategy.

Pseudo-transient continuation is a popular form of globalization in CFD applications and is based on a
time-marching analogy; it is essentially an implicit-Euler time-marching method that gradually increases the
time-step until Newton’s method is recovered. Although pseudo-transient continuation has proven effective,
it can fail when the flow is nearly unstable, i.e. the Jacobian has eigenvalues close to the imaginary axis. In
addition, the method can introduce numerous parameters that require tuning for optimal performance.

Line-search and trust-region methods, developed for nonlinear optimization, can also be used to globalize
Newton’s method. These methods attempt to minimize the L2 norm of the residual by selecting appropriate
search directions and step lengths. Because they target the norm of the residual, optimization-based global-
izations may converge to a local minimum that does not correspond to the solution. Nevertheless, Pawlowski
et al.10 compared several optimization-based strategies and demonstrated that they can be effective, at least
for the incompressible flows they investigated.

Grid sequencing can be used as a globalization method when a set of nested grids is available. When two
grid levels are available, for example, the nonlinear problem is first solved on the coarse grid. Subsequently,
the coarse solution is interpolated onto the fine grid where it becomes the initial iterate. In finite-element
methods the coarse solution can come from a lower-order polynomial basis. Grid sequencing can be highly
effective,6 but requires a nested family of grids that may not be available.

In this paper we continue our investigation of a dissipation-based globalization method.11 In dissipation-
based continuation (DBC), numerical dissipation is introduced into the discrete equations using a parameter
λ that controls the amount of dissipation. For sufficiently large values of λ the modified nonlinear system is
typically much easier to solve than the target system. Once the first modified system is solved, the value of λ
can be decreased (reducing the dissipation), and a new nonlinear system can be initiated using the solution
from the first problem. Repeating this process, a sequence of nonlinear systems results, with the solution of
one being used as the initial iterate for the next.

In Ref. 11 we proposed and compared boundary-condition continuation and DBC for globalization of
steady CFD problems. DBC was found to be especially robust and efficient relative to pseudo-transient
and boundary-condition continuation. Indeed, in a recent investigation of induced-drag minimization,12 we
relied on DBC exclusively during the optimization runs. This study alone constitutes on the order 103

successful flow solutions on distinct geometries, since each iteration in an optimization involves a change in
the aerodynamic shape.

We begin in Section II with a review of inexact-Newton methods and the subclass of Newton-Krylov algo-
rithms. We consider two globalization strategies, which we describe in Section III: the proposed dissipation-
based continuation and the benchmark pseudo-transient continuation. Results from inviscid, laminar, and
turbulent cases are presented in Section IV. Conclusions can be found in Section V.

II. Inexact-Newton-Krylov Methods

In this section we review Newton’s method and introduce our notation. We also discuss inexact-Newton
methods and, in particular, Newton-Krylov algorithms.

A. Newton’s Method

Consider a nonlinear algebraic system of the form R(q) = 0, where R : RN → RN . In CFD applications,
the vector q ∈ RN denotes a discrete representation of the flow variables. For example, it may hold the
variable values at nodal or cell-centered locations, or the coefficients in a polynomial expansion. The function
R is the residual representing the discretized flow equations.

At iteration n of Newton’s method, the estimated root is given by q(n), and we seek a perturbation
∆q(n) = q(n+1) −q(n) such that the first-order Taylor series vanishes at the perturbed state. The perturba-
tion is given by the solution of the linear system

A(n)∆q(n) = −R
(n), (1)

2 of 13

American Institute of Aeronautics and Astronautics



where R
(n) = R

(

q(n)
)
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A(n) =
∂R

∂q

∣

∣

∣

∣

q(n)

(2)

is the Jacobian evaluated at the state q(n).
Newton’s method converges provided A(n) is non-singular and the initial iterate q(0) is sufficiently close to

the solution. Furthermore, the convergence rate will be quadratic in n if A = ∂R/∂q is Lipschitz continuous
near the solution.13 The Jacobian is usually invertible for well-posed CFD discretizations, although it is
often ill-conditioned.

B. Inexact-Newton

For the moment, suppose that a suitable initial iterate is available. Then it is easy to see that the efficiency
of Newton’s method depends on the algorithm used to find ∆q(n). An obvious choice is to solve the linear
system (1). However, during the early iterations, the update q(n+1) = q(n) +∆q(n) will not significantly
reduce the norm of the nonlinear residual, because the linearized model of R(q) = 0 is not sufficiently
accurate. Thus, solving for ∆q(n) exactly is unnecessary.

Inexact-Newton methods14 take advantage of this observation that an approximate solution to (1) is
more efficient than an exact solution during the early iterations. Specifically, the class of inexact-Newton
methods seeks an update that satisfies

‖R(n) +A(n)∆q(n)‖ ≤ η‖R(n)‖, (3)

where η ∈ [0, 1) is the forcing parameter, and ‖ · ‖ denotes the 2-norm. Inexact-Newton methods were
developed to take advantage of iterative linear solvers, which, unlike direct linear solvers, can solve the
Newton update equation to the tolerance defined by η.

C. Jacobian-Free Newton-Krylov

Although an inexact-Newton algorithm can use any iterative linear solver, Krylov-subspace methods are par-
ticularly attractive. Krylov methods tend to be more efficient and robust than classical stationary methods
like Gauss-Seidel or SOR. In addition, many Krylov-iterative methods, including GMRES15 and BiCGStab,16

do not require the Jacobian A(n) to be explicitly formed. Instead, these methods only need matrix-vector
products of the form A(n)v, which can be approximated using first-order forward differences:

A(n)v ≈
R(q(n) + εv)−R(q(n))

ε
. (4)

We remark that some Krylov methods also require transposed-matrix-vector products; however, even these
products can be evaluated without explicitly forming A by using reverse-mode automatic differentiation.17

Inexact-Newton-Krylov algorithms that make use of the approximation (4) are called Jacobian-free meth-
ods; see Knoll and Keyes18 for a review. This does not mean that these solvers are matrix-free. For most
practical problems, Krylov solvers must be preconditioned, and the preconditioning operation often requires
an approximate Jacobian; however, this approximate Jacobian is cheaper to form and store than the full
Jacobian.

A naive inexact-Newton-Krylov strategy may fail when solving the Reynolds-averaged Navier-Stokes
(RANS) equations with the Spalart-Allmaras turbulence model, because the Krylov solver can reduce the
residual of the turbulence model while allowing the mean flow residual to increase. This problem arises
because, depending on the details of the implementation, the residual norm of the turbulence equation can
be orders of magnitude larger than that of the mean flow equations; thus, it is possible for the Krylov solver
to reduce the 2-norm of the global residual by targeting the turbulence model residual alone. A solution to
this problem is to introduce equation scaling at the beginning of each nonlinear iteration that ensures the 2-
norm of the residuals are the same order of magnitude. This approach is implemented for both globalization
methods considered in this work. For further details on the scaling, see Ref. 6.
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III. Globalization

This section describes the two globalization strategies that we consider. We begin with the well-
established pseudo-transient continuation, which is used as our benchmark. Subsequently, we review the
dissipation-based continuation proposed in Ref. 11. Globalization strategies address the nonlinearity of the
system, but they also dictate the properties of the Newton update equation for the perturbed nonlinear
problem. Therefore, we conclude this section by analyzing the impact that the globalization strategies have
on the linear subproblems of Newton’s method.

A. Pseudo-transient Continuation

If a solution is steady, then the eigenvalues of the Jacobian should have strictly positive real partsa. In
this case, it may be possible to reach the steady solution by time-marching until the transient terms decay
sufficiently.19 Pseudo-transient continuation (PTC) uses this idea to find an initial iterate for Newton’s
method.

In the context of finding the steady solution (or an initial iterate), only the stability of the time marching
scheme is important, not its time accuracy. In addition, while explicit schemes can be used, implicit schemes
generally permit much larger time steps that quickly eliminate the transient terms. For these reasons, the
implicit Euler method is the basis for PTC.

All formulations of PTC begin by adding a diagonal matrix T (n), with strictly positive entries, to the
Jacobian:

(

T (n) +A(n)
)

∆q(n) = −R
(n). (5)

Two cases are noteworthy. First, as T (n) → 0 we recover Newton’s method (1). Second, if T (n) = 1
∆t

I,
where I is the identity matrix, we obtain the implicit-Euler time marching scheme.

1. Implementation of Pseudo-transient Continuation

The general PTC algorithm described above is often modified and tuned for a specific discretization and
application. We summarize these modifications for our implementation below.

Experience suggests that convergence can be accelerated if the elements of T (n) have a spatial dependence,
i.e. the “pure” implicit-Euler method is rarely used. Typically, a global time step is scaled by a function of
the local mesh spacing:

(

T (n)
)

ii
=

1

∆t(n)i

=
1

Ti∆t(n)ref

, (6)

where ∆t(n)i is the local time step for variable i, ∆t(n)ref is the global reference time step, and Ti is the local
scaling for ∆ti.

During PTC, the exact Jacobian A is replaced with a first-order Jacobian. The first-order Jacobian is
obtained by neglecting the high-order dissipation and increasing the second-difference dissipation. Forming
this approximate Jacobian does not introduce additional work, since the same matrix is factored using
ILU(k)20 to build the preconditioner. Factoring the matrix is one of the most expensive tasks, so the
approximate Jacobian may not be updated and factored every iteration, but rather every m iterations. We
use m = 3 for inviscid flows and m = 1 otherwise.

The reference time step appearing in (6) is given by

∆t(n)ref = a(b)m! n

m
",

where '·( is the floor operatorb. This definition ensures that updates to ∆t(n)ref are consistent with the
Jacobian-update period m. Typical ranges for a and b are a ∈ [10−4, 10−1] and b ∈ [1.2, 1.7]. The default
values of a = 0.1 and b = 1.5 are used unless otherwise noted. The local scaling for variable i is defined by

Ti =
[

J(1 +
3
√
J)

]−1
,

where J is the metric Jacobian of the coordinate mapping at the node where variable i is located.

aThe eigenvalues might also have strictly negative parts, depending on the definition of the residual
b"x# gives the largest integer less than or equal to x
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PTC is terminated, and the inexact-Newton phase begins, when the relative residual is reduced by a
user-specified tolerance:

R(n)
rel ≡

‖R(n)‖
‖R(0)‖

≤ µ, (7)

where µ ∈ [10−4, 10−1]. The default value for this tolerance is µ = 0.1. Recall that during the inexact-Newton
phase, the Jacobian-vector products are obtained using equation (4).

B. Dissipation-based Continuation

Numerical dissipation is often added to the discrete equations to maintain stability and capture shocks. It
appears either explicitly through the addition of artificial dissipation or implicitly through the use of an
upwind scheme. The contribution of numerical dissipation to the flux balance should be minimized to obtain
an accurate solution; however, practitioners sometimes increase the dissipation to assist the solution algo-
rithm at the expense of accuracy (see, e.g., Ref. 21). This practice motivates dissipation-based continuation
(DBC).

DBC is a form of parameter continuation and is closely related to probability-one homotopyc meth-
ods.22,23 The idea behind homotopy methods is simple. Suppose we wish to solve R(q) = 0. We intro-
duce a parameter λ ∈ [0,λmax] and a modified residual F(q,λ), called the homotopy mapping, such that
F(q, 0) = R(q). To be useful, the homotopy map should be chosen such that F(q,λmax) = 0 is signifi-
cantly easier to solve than the target problem R(q) = 0. The algorithm begins with λmax and decreases this
parameter incrementally, solving a sequence of modified problems until λ = 0. The solution path defined by
g(λ) = {(q,λ) ∈ RN+1 : F(q,λ) = 0} is followed approximately, using the previous solution as the initial
guess for the next.

In the case of DBC, we adopt a modified residual (homotopy map) of the form

F(q,λ) = R(q) + λD(q),

where D(q) is an appropriate numerical dissipation. We use a second-difference (first-order) scalar dissipa-
tion, because it is symmetric positive-definite for fixed q and uses only nearest-neighbours in the stencil.
No pressure switch or limiter is required, or even desired, in the construction of D, since this would intro-
duce additional nonlinearities into the modified residual. In practice, the residual R is computed first to
track convergence before adding the dissipation λD. Although we consider finite-difference discretizations,
it should be straightforward to implement DBC in most forms of discretization.

DBC is similar to continuation in the Reynolds number,18 i.e. beginning with a small Reynolds number
and increasing it gradually to the desired value. However, in the proposed method dissipation is added to
all flow equations, while Reynolds-number continuation affects only the momentum and energy equations.
Moreover, the influence of the Reynolds number is different in the momentum and energy equations. These
distinctions may be important, since folds — points where the Jacobian is singular — can be introduced
when using Reynolds-number continuation, see, for example, Ref. 24. In addition, DBC is well suited to
hyperbolic equations like the Euler equations, where Reynolds-number continuation will cause instabilities
as the limiting case of infinite Reynolds number is approached.

1. Implementation of Dissipation-based Continuation

Like the linear problems in Newton’s method, solving the modified nonlinear problems F(q,λ) = 0 exactly
is inefficient. Instead, the modified subproblems are solved to a relative tolerance of τλ = 0.1 with an upper
bound of nmax = 30 iterations for each value of λ. Note that, unlike PTC, the exact Jacobian is used
throughout convergence.

The efficiency and robustness of DBC depends on the initial value of the continuation parameter and the
schedule used to decrease λ to zero. Here, we vary the continuation parameter according to the formula

λi = min

(

λi−1

2
,λ0R

β
rel

)

,

where the relative residual, Rrel, is defined in equation (7). The initial value of the continuation parameter
depends on the type of flow. For inviscid flows we typically use λ0 = 2, while for laminar and turbulent

cContinuation, path-following, and homotopy are often used interchangeably in the literature.
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flows a larger value of λ0 = 20 is required. The parameter β controls the rate at which λ is decreased in the
later stages of the globalization. For the results presented below, the value β = 2 has been adopted unless
otherwise indicated.

When using DBC to solve the RANS equations with the Spalart-Allmaras turbulence model, second-
difference dissipation is also added to the equation for the working variable ν̃. No other modifications are
considered in this work, although subsequent work may investigate more complex homotopy maps for the
turbulence model.

C. Impact of Continuation Strategies on Linear Subproblems

Adding the dissipation operator λD to the governing equations has a regularizing effect on the nonlinear
solution. Increasing the parameter λ has the qualitative effect of “smearing” the solution, which tends to
make the free-stream more suitable as an initial iterate for Newton’s method. This achieves our objective
of globalizing the nonlinear iterations; however, the addition of dissipation also has an impact on the linear
subproblems. Is this impact detrimental or beneficial? In this section, we investigate how DBC affects the
linear subproblems, and compare its impact with that of PTC.

We will use a simple one-dimensional advection equation to model the impact of PTC and DBC on the
linear Newton subproblems. In particular, consider the boundary-value problem

∂

∂x
(U) = F , ∀ x ∈ Ω = [0, 1],

U(0) = UL,
. (8)

Note that the actual choice for F and UL will not be important in our study of the discrete system matrix.
Consider a uniform grid on the domain [0, 1] with node locations xi = hi, where i = 0, 1, 2, . . . , n and

h = 1/n. For this grid, a second-order accurate discretization of (8) is given by

Q (uh) = Hf − e0λ0

(

eT0 uh − UL

)

, (9)

where e0 = [1 0 0 · · · 0]T and

f =
[

F(x0) F(x1) · · · F(xn)
]T

,

H = h diag

(

1

2
, 1, 1, . . . , 1,

1

2

)

,

Q =
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− 1
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− 1
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1
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.

The matrix operators Q and H define the standard second-order accurate summation-by-parts (SBP) oper-
ator D = H−1Q; see Ref. 25. The discretization (9) imposes the boundary conditions weakly using penalty
terms.26,27

For the present model problem, the dissipation operator can be defined by λD ≡ λ∆T∆, where ∆ is
the undivided forward difference operator.d Including the dissipation operator in the discretization and
rearranging, we arrive at

Auh = Hf + e0UL

where

A = Q+ e0 e
T
0 + λ∆T∆.

dThe forward difference operator is defined by a rectangular matrix with n+ 1 columns and n rows.
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(b) pseudo-transient continuation

Figure 1. Condition number for the model advection problem as a function of λ in DBC (left) or inverse
Courant number in PTC (right) for h ∈ {0.0625, 0.03125, 0.015625}.

The matrix A models the system matrix of the modified residual in DBC. To model PTC, we simply include
a diagonal matrix on the left hand side of (9):

Buh = Hf + e0UL

where

B =
1

hcfl
H +Q+ e0 e

T
0 , w

where (hcfl)−1H plays the role of T , and cfl denotes the Courant number.
Figure 1 plots the 2-norm condition numbere of A and B as a function of λ and (cfl)−1, respectively.

Results are plotted for grid sizes corresponding to n = 17, 33, and 65 (i.e. h = 0.0625, 0.03125, and 0.015625).
For sufficiently large λ, there is a linear relationship between the condition number of A and λ. Increasing
the magnitude of the dissipation leads to ill-conditioning, because the operator D is singular — all constant
vectors are in the null space of ∆. In contrast, decreasing cfl in PTC improves the conditioning of the
matrix B; as cfl → 0, B tends toward a diagonal matrix.

The relationship between λ and the conditioning of A suggests that DBC may lead to stiff linear sub-
problems in Newton’s method. However, our experience has been that the subproblems in DBC are well
behaved. To understand why the condition number provides an incomplete picture here, we plot the eigen-
value spectrum of the matrices A and B in Figure 2 for several values of λ and cfl. The spectra correspond
to a fixed grid size of h = 0.03125, although the results are similar for other mesh spacings. Note that Figure
2(b) plots the natural logarithm of the real part.

As λ increases, the spectrum of A is transformed from one that is clustered along the imaginary axis, to
one that is real and positive. Essentially, the hyperbolic problem is transformed into an elliptic one. This
is not surprising, since λ∆T∆ is a symmetric positive-definite matrix. In the case of PTC, the spectrum of
B is shifted to the right as cfl decreases ((cfl)−1 increases), but, unlike the spectrum of A, the vertical
extent of the spectrum is unchanged.

The change in the spectrum of A hints at why the linear subproblems in DBC are well behaved. First,
for λ ≥ 1

2 , one can easily show that the matrix A is irreducibly diagonally dominant. Besides guaranteeing
invertibility,28 this diagonal dominance helps improve the robustness of preconditioners based on incom-
plete lower-upper factorizations, because of increased pivot sizes. Second, the eigenvalues of A become
strictly real and positive as λ increases past some critical value λ∗: the matrix A becomes positive definite.

eThe 2-norm condition number of an arbitrary matrix A is defined by κ2(A) ≡ ‖A‖2‖A−1‖2
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Figure 2. Discrete spectrum for various values of λ and cfl for a uniform grid with h = 0.03125. The x-axis
in Figure (b) is the natural logarithm of the real part of the spectrum. The black-filled circles in both figures
can be regarded as the spectrum of the system matrix for the unmodified problem (9).

Krylov-subspace methods generally solve systems involving positive-definite matrices much more readily
than systems with indefinite matrices. For example, restarted GMRES(m) is guaranteed to converge for any
m ≥ 1 if A is positive definite.28

In summary, although the condition number of the system matrix A in DBC grows as λ increases, this
growth is countered by improved diagonal dominance and definiteness.

IV. Results

In the results presented below, we apply PTC and DBC to a summation-by-parts25 finite-difference dis-
cretization. Boundary conditions are imposed weakly using penalty terms called simultaneous approximation
terms (SATs)26,27 analogous to those found in the model problem discretization (9). The SAT methodology
is also used at block interfaces to couple the solution across blocks. See Refs. 29 and 30 for further details
on the discretization.

A. Inviscid Test Case

We begin with a comparison of PTC and DBC over a range of inviscid operating conditions around the
NACA 0012 airfoilf. Additional results for inviscid flows can be found in Ref. 11.

The Mach number is varied in increments of 0.1 over the range [0.4, 0.8], and the angle of attack is varied
in increments of 2◦ over the range [0◦, 10◦]. A 3-block C-grid is used, with 18 395 nodes and an off-wall
spacing of approximately 10−4.

The two globalizations are applied with their default parameters. We emphasize that if a globalization fails
at a particular operating condition, then it may be possible to converge the solver if the default parameters
are changed; however, to illustrate the robustness of DBC, we avoid such tuning of the parameters here.

The success rate of DBC on the 30 operating conditions is 83%, while the success rate of PTC is 66.7%.
Note, there is no case for which DBC failed and PTC succeeded. Although the failure rate for even DBC
seems high (17%), some of the operating conditions do not produce steady flow; this is discussed further
below.

Figure 3 depicts the qualitative performance of the two globalization strategies. Each contour plot shows
the inverse time required by the respective methods to reduce the relative residual (7) by 10 orders of
magnitude. Because the metric plotted is 1/T , failure to converge is indicated by the zero contour, and

fWith the usual sharp trailing edge modification
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Figure 3. Contour plots of 1/T , where T is the time required to reduce the relative residual ten orders.

faster convergence is indicated by larger values.
From the two plots in Figure 3, we can see that both globalizations have difficulty at high angles of

attack, where the flow is potentially unsteady and convergence should not be expected (the Jacobian has
eigenvalues with positive or very small negative real parts). Nevertheless, DBC has a significantly smaller
region of failure. The figures also show that, on average, DBC converges in less time than PTC. For cases
in which both methods converged, DBC converged in 48% of the time required by PTC.

B. Laminar-flow Test Cases

1. RAE 2822 Angle of Attack Sweep

The first laminar-flow test case is an angle of attack sweep of the RAE 2822 airfoil geometry. The sweep
is performed at Reynolds numbers of Re = 200 and Re = 1000. This case is intended to compare the
globalization strategies as the laminar flow changes from low-lift conditions to high-lift conditions.

The geometry is surrounded by a single block C-grid composed of 18785 nodes. There are 65 nodes in
the off-wall direction, and 193 nodes along the airfoil. The grid is suitable for turbulent flows modelled with
the Reynolds-average Navier-Stokes equations, and the off-wall normal spacing is approximately 2.29× 10−6

chord units.
The default solver parameters are adopted, with the following exceptions. PTC is continued until the

2-norm of the relative residual has been decreased by µ = 5 × 10−5. For DBC, the formula that controls λ
uses β = 1.5, and the modified subproblems are solved to τλ = 0.01.

Figure 4 compares the run-time performance of PTC and DBC over the range of angles α = [0◦, 40◦].
CPU time is normalized by the time required to evaluate the nonlinear residualR; we refer to this normalized
CPU time as equivalent residual evaluations. Results for Re = 200 and Re = 1000 are plotted in the upper
and lower figures, respectively. The two methods are considered converged when the 2-norm of the residual
has been reduced 10 orders from its initial value.

The figures clearly show that DBC outperforms PTC on this test case. For Re = 200, DBC is on average
26% faster than PTC, which is faster for only one case out of 41. For Re = 1000, DBC performs even better,
with run-times 45% faster on average; this average excludes the case at α = 24◦, for which PTC did not
converge. Again, the PTC method is faster in only one case.

2. ONERA M6 Wing at High-Lift Conditions

The second laminar-flow test case involves the ONERAM6 wing geometry at several high-lift conditions. The
Mach and Reynolds numbers are fixed at 0.25 and 1000, respectively. The seven high-lift cases correspond
to particular angles of attack, which are listed in Table 1. The grid used for the ONERA M6 wing has 16
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Figure 4. Number of equivalent residual evaluations required by the two globalization strategies to reduce the
L2-norm of the residual 10 orders for the RAE 2822 angle of attack sweeps.
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Table 1. High-lift cases and defining angles of attack for the ONERA M6 Wing

Case 1 2 3 4 5 6 7

A.O.A 12◦ 15◦ 17◦ 18◦ 20◦ 22◦ 24◦
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Figure 5. Number of equivalent residual evaluations required by the two globalization strategies to solve the
ONERA M6 angle of attack cases listed in Table 1.

blocks with 49×49×49 nodes per block, for a total of 1.88×106 nodes. Mesh spacing in the normal direction
at the surface of the wing is approximately 7× 10−5.

The default PTC and DBC parameters are used with the following modifications. The transition from
PTC to full inexact-Newton occurs when the relative residual has been reduced below µ = 5 × 10−2. In
DBC, the initial value λ0 = 15 is used and β = 1 in the λ update formula.

For each case in Table 1, Figure 5 plots the number of equivalent residual evaluations required by PTC and
DBC to reduce the relative residual 10 orders of magnitude. We see that there is no significant difference in
run-time between the two globalization strategies. Thus, for this test case, DBC is a competitive alternative
to PTC.

C. Preliminary Results for Turbulent Test Case

In this section, we present preliminary results using DBC to globalize the solution of the RANS equations
with the one-equation Spalart-Allmaras turbulence model. The RAE 2822 airfoil geometry is adopted for
the test, and a range of Mach numbers and flow angles are considered. For each Mach number, a Reynolds
number is calculated based on the mean-aerodynamic chord of a B737 flying at 41,000 ft. For reference,
Table 2 lists the set of Mach numbers and corresponding Reynolds numbers used for the tests. The grid is
the same one used for the laminar RAE 2822 angle of attack sweeps and is described in Section IV.B.1.

In PTC, a significantly smaller initial time step must used relative to the inviscid and laminar cases: we
use a = 10−4. Moreover, PTC is continued until the relative residual has been reduced below µ = 10−4. For
DBC globalization, λ0 = 20, β = 1, and τλ = 0.01. All other parameters for PTC and DBC are assigned
their default values.

As with the inviscid NACA0012 results, we use the inverse time metric to compare the two globalization
schemes. Figure 6 plots the inverse of the CPU time for the set of operating conditions considered. Blue
contours correspond to runs that failed to converge, either because of time constraints or non-physical
densities or pressures. Larger contour values (e.g. red) correspond to faster run-times.

Comparing Figures 6(a) and 6(b), we see that there are conditions for which PTC converges and DBC
does not, and vice versa. In particular, DBC is more robust for low Mach numbers and high angles of attack.
PTC appears to be more robust for high Mach numbers and α ∈ [0, 10]. The high Mach number, high angle
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Table 2. Operating conditions for the turbulent angle-of-attack sweep.

Mach 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Re ×107 1.85 0.748 0.997 1.25 1.50 1.74 1.99 2.12 2.24
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(a) pseudo-transient continuation
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(b) dissipation-based continuation

Figure 6. Contour plots of 1/T , where T is the time required to reduce the relative residual ten orders.

of attack cases correspond to flows with shock-induced boundary-layer separation; it is this characteristic of
the flow that we believe is leading to convergence difficulties for DBC.

We emphasize that these results are preliminary. For the Spalart-Allmaras turbulence model, the per-
formance of DBC is respectable compared with PTC; however, there remains significant scope to improve
its speed and robustness. The Spalart-Allmaras model is highly nonlinear, and several terms in the turbu-
lence model may benefit from some form of parameter continuation. We have only begun to explore these
possibilities.

V. Conclusions

Future industrial applications of CFD, including simulation-based optimization and uncertainty quan-
tification, will require robust and efficient solution algorithms that can handle a variety of geometries and
operating conditions without user intervention. Dissipation-based continuation has been developed with
such applications in mind.

We have investigated the impact of dissipation-based continuation on the linear subproblems that arise
in Newton’s method. Although the continuation strategy leads to modest increases in the condition number,
this is offset by the increased diagonal dominance and positive-definiteness of the system matrix.

For inviscid and laminar flows, the results indicate that dissipation-based continuation is a robust and
efficient alternative to the popular pseudo-transient continuation. In the context of the Reynolds-averaged
Navier-Stokes equations with the one-equation Spalart-Allmaras turbulence model, preliminary results sug-
gest that dissipation-based continuation is competitive with pseudo-transient continuation. Future work will
consider parameter continuation within the Spalart-Allmaras model itself.
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