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Computational results are presented for steady two-dimensional turbulent flows mod-

elled through the Reynolds-averaged Navier-Stokes equations using the parallel Newton-

Krylov-Schur finite-difference flow solver known as Diablo. The focus of this paper is to

present performance results for the flow solver on three families of NACA 0012 grids for

some specified operating conditions as part of a discussion group on turbulent flow compu-

tations. The results are presented in terms of computing time in TauBench work units as

a function of the numerical error as the mesh is refined. Results for two three-dimensional

cases are also presented.

I. Introduction

This paper presents a series of computational fluid dynamics flow solver performance studies which have
been conducted as part of a discussion group session at the 53rd AIAA Aerospace Sciences Meeting. The
purpose of this session is to analyze and compare the performance of various external aerodynamic flow
solvers for solving the Reynolds-averaged Navier-Stokes (RANS) equations on a family of two-dimensional
NACA 0012 grids at very low Mach number.

The flow solver studied in this paper is known as Diablo. It is based on a parallel implicit Newton-Krylov
Schur algorithm. Diablo uses a finite-difference discretization with summation-by-parts operators and si-
multaneous approximation terms,1, 2, 3, 4, 5 referred to as an SBP-SAT discretization, and is used to solve
external aerodynamic flows in two or three spatial dimensions. The equations solved in this paper are the
compressible RANS equations with the Spalart-Allmaras (SA)6 one-equation turbulence model.

Diablo originated as an Euler (inviscid) solver which was developed by Hicken and Zingg.7 It was aug-
mented to the full Navier-Stokes equations by Osusky et al.8 and to the RANS-SA equations by Osusky
and Zingg.9, 10 The Diablo RANS-SA flow solver has been validated at the Fifth AIAA Drag Prediction
Workshop11, 12 where the focus was on the three-dimensional wing-body geometry referred to as the NASA
Common Research Model (CRM). In addition, several supplementary two-dimensional cases were investi-
gated for solver accuracy, all from the TMR website: flow over a flat plate, flow over a bump in channel, and
flow over the NACA 0012 airfoil geometry.12

When the grid spacing of a family of grids is small enough such that the flow solution obtained on the
grids is in the asymptotic region of grid convergence, the accuracy of the lift and drag functionals can be
estimated using a Richardson extrapolation as long as at least three grid levels are used,13 where each suc-
cessively coarser grid in the grid family is constructed by removing every even numbered grid point from
a finer grid level.14, 15 The emphasis of the current study is not solely on the accuracy of the flow solver
but rather on the relationship between accuracy and computational cost. As the grid is refined, the lift and
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drag functionals of interest can be computed with reduced numerical error but at increased computational
cost. The paper will attempt to give some quantification of how the computational cost of a flow solution
using the Diablo flow solver relates to the numerical error of the lift and drag functionals and how the cost
depends on the level of accuracy.

While Osusky and Zingg16 have previously completed some performance analysis for Diablo on the ON-
ERA M6 wing and the NASA CRM wing-body geometry, the current study will be on two-dimensional
flows as specified by the discussion group. Diablo is designed specifically for three-dimensional flows and
suffers some significant coding inefficiencies when used for two-dimensional cases. These must be considered
when comparing Diablo’s efficiency with two-dimensional flow solvers, or even to other three-dimensional
flow solvers which may handle two-dimensional cases more efficiently.

The test case investigated in the current study is the NACA 0012 airfoil at different operating condi-
tions. The grids used for the study are publicly available from the Turbulence modelling Resource (TMR)
website.17 Three grid families are available on this website, the main difference being in the trailing-edge
spacing. While the effect of the trailing-edge spacing on flow solver performance is minimal, results obtained
by previous researchers using the established flow solvers CFL3D18 and FUN3D19 have demonstrated that
the different trailing-edge spacing has a noticeable impact on the accuracy of the lift, drag, and moment
coefficients and also the minimum grid spacing required to be considered in the asymptotic region of grid
convergence. This will affect the relationship between the error and computational cost. Different numerical
dissipation models and the inclusion of quadratic constitutive relations (QCR)20 are also investigated for
their effects on flow solution accuracy at different mesh spacing.

II. Governing Equations and Spatial Discretization

This section presents the continuous version of the Navier-Stokes and Spalart-Allmaras turbulence model,
including any modifications to the model investigated in this study. The spatial discretization is also dis-
cussed.

II.A. Navier-Stokes Equations

The three-dimensional Navier-Stokes equations under the coordinate transformation (x, y, z) → (ξ, η, ζ) are
given by Pulliam and Zingg:21

∂tq̂ + ∂ξÊ + ∂ηF̂ + ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (1)

where
q̂ = J−1q,

Ê = J−1 (ξxE + ξyF + ξzG) , F̂ = J−1 (ηxE + ηyF + ηzG) , Ĝ = J−1 (ζxE + ζyF + ζzG) ,

Êv = J−1 (ξxEv + ξyFv + ξzGv) , F̂v = J−1 (ηxEv + ηyFv + ηzGv) , Ĝv = J−1 (ζxEv + ζyFv + ζzGv) ,

J = (xξyηzζ + yξzηxζ + zξxηyζ − xξzηyζ − yξxηzζ − zξyηxζ)
−1

, (2)
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In the above equations: ρ is the density, a is the speed of sound, e is the energy, p is the pressure, l is the
mean chord length, µ is the viscosity, u = (u, v, w) are the Cartesian velocity components, τ = τ (u, v, w, µ)
are the viscous stresses given by the Newtonian stress tensor, Re is the Reynolds number, and µ = µ (a) is
the viscosity given by Sutherland’s Law as:

µ =
a3 (1 + S∗/T∞)

a2 + S∗/T∞

, (7)

where S∗ = 198.6◦R is Sutherland’s constant. The subscript ∞ indicates the free-stream value of a quantity.
Explicit expressions for Ev, Fv, and Gv are omitted here but are given by Osusky.10

Non-dimensional variables are used: the density is normalized by ρ∞, the velocities by a∞, the viscosity
by µ∞, the temperature by T∞, and the spatial terms appearing in the derivatives by l. Assuming that the
flow behaves as an ideal gas, the pressure variable can be written in terms of energy and velocity:

p = (γ − 1)

(

e− 1

2
ρ
(

u2 + v2 + w2
)

)

, (8)

reducing the effective number of variables to five for the Euler and Navier-Stokes equations.

II.B. Turbulence Model

The effect of turbulence is included through the Spalart-Allmaras turbulence model. The standard form of
the equation is used, given here in Cartesian coordinates:

∂ν̃

∂t
+ u
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]

(

ν̃

d

)2

+Reft1∆U2,

(9)

where ν is the kinematic viscosity and ν̃ will be referred to simply as the turbulence variable. Many of the
terms above are functions of ν̃ or other state variables. More details of the SA model and the discretization
used in this paper, including boundary conditions, are available from Osusky and Zingg.10

The quadratic constitutive relations (QCR)20 can be expressed as a modification to the Boussinesq
approximation:

τij = τ̄ij − cnl1 (Oik τ̄jk +Ojk τ̄ik) , (10)

Oik ≡ ∂kui − ∂iuk√
∂num∂num

,

∂num∂num = (∂xu)
2
+ (∂xv)

2
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2
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2
+ (∂yv)

2
+ (∂yw)

2
+ (∂zu)

2
+ (∂zv)

2
+ (∂zw)

2
,

where ui are the velocity components (u, v, w) and cnl1 = 0.3. Additionally, τ̄ij is the Reynolds stress tensor
obtained from the Boussinesq approximation.
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II.C. Spatial Discretization

The RANS equations are discretized using a finite-difference discretization with summation-by-parts op-
erators and simultaneous approximation terms (SATs) to weakly enforce the boundary conditions on the
domain boundaries and to couple the system across block interfaces.1, 3, 2, 22, 5 All of the results presented
were computed using spatially second-order accurate SBP operators, except for the advection term of the
SA model for which a first-order upwinding scheme is used.

The SAT approach minimizes the amount of information that needs to be communicated between proces-
sors when the algorithm is parallelized. Additionally, the fact that this discretization does not need to form
any derivatives across block interfaces reduces the continuity requirement for meshes at interfaces. In fact,
only C0 continuity is necessary for grid lines at interfaces, allowing for the algorithm to provide accurate
solutions even on grids with slope changes at block interfaces.

II.D. Artificial Dissipation Models

Numerical dissipation is added to the discrete flow equations for numerical stability. The two types of dissi-
pation commonly applied in the Diablo algorithm are the scalar dissipation model developed by Jameson et
al.23 and later refined by Pulliam24 and the matrix dissipation model of Swanson and Turkel.25

The advantage of scalar dissipation is that it tends to result in a more stable algorithm but it is also
more dissipative, resulting in higher error. Since the numerical dissipation decreases as the grid spacing
is reduced, both dissipation models will give the same grid converged solution. Hence, scalar and matrix
dissipation give similar results on fine meshes.

III. Solution Methodology

The flow solver employs a parallel Newton-Krylov-Schur algorithm for steady three-dimensional flows on
multi-block meshes. The Schur complement26 parallel preconditioner uses ILU(p)27 internally, and the linear
systems are solved iteratively using the Krylov solver FGMRES.27 The ILU(p) factorization is built from a
smaller-stencil approximation to the Jacobian matrix where the fourth-difference dissipation is approximated
with a smaller-stencil second-difference dissipation operator, and the cross-derivatives in the viscous shear
stresses are neglected.

With the use of the Krylov solver, Newton iterations are taken inexactly, so the method is referred to
as an inexact Newton method. Since Newton’s method will usually not converge unless a suitable starting
guess is given, iterations are commenced using a pseudo-transient iterative method which is used to reduce
the residual between 4 and 6 orders of magnitude before switching to the inexact Newton phase.

III.A. Inexact Newton Methods

Consider a nonlinear system of algebraic equations, represented by

R (q) = 0, (11)

R : RN → R
N , q ∈ R

N .

In the context of CFD, this system of equations represents the discrete residual. Then Newton’s method is
given by:

A(n) ∆q(n) = −R
(

q(n)
)

, (12)

∆q(n) ≡ q(n+1) − q(n), A(n) ≡ ∇R
(

q(n)
)

,

where A(n) : RN → R
N is the Jacobian of R (q). Since the linear system is being solved to some relative

tolerance η(n) ∈ R, the actual Newton step is taken inexactly:

∥

∥

∥
R

(

q(n)
)

+A(n) ∆q(n)
∥

∥

∥
≤ η(n)

∥

∥

∥
R

(

q(n)
)∥

∥

∥
. (13)
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III.B. Pseudo-Transient Continuation

Obtaining an initial iterate for Newton’s method can be accomplished using a globally convergent algorithm,
which will typically have a lower convergence rate than Newton’s method. Such algorithms are known as
continuation methods.

Pseudo-transient continuation is a pseudo-time-marching method, i.e. it is an imitation of physical time-
marching, though time-accuracy is not required. The update formula at the n-th iteration is given by the
implicit Euler method with local time linearization:28

(

T (n) +A(n)
)

∆q(n) = −R
(

q(n)
)

, (14)

where T (n) = 1
∆t

I, and I is the identity matrix. Since time-accuracy is not required in the context of
globalization, ∆t can take large values and vary spatially. In this study, ∆t is evolved according to:

∆t
(n)
i = Tia (b)

m⌊ n

m⌋ , Ti =
1

1 + J
1

D

i

, (15)

where J is the geometric Jacobian resulting from the coordinate transformation on the mesh, i is the grid
point index, D is the number of spatial dimensions (either 2 or 3 in this paper), and ⌊·⌋ is the floor operatora.
The floor operator is present in the formula in the case where we choose to update the preconditioner every
m iterations instead of every iteration. The input variables a and b were set to a = 0.001 and b = 1.35
for most of the NACA 0012 cases presented in this paper, which are fairly aggressive parameter settings
for turbulent flows. The value of b was reduced to 1.25 in a few cases when convergence difficulties were
encountered. The value of m was set to 1 for all NACA 0012 cases.

The pseudo-transient continuation phase is terminated and the inexact-Newton phase initiated when the
relative residual

R(n)
rel ≡

∥

∥R
(

q(n)
)∥

∥

∥

∥R
(

q(0)
)∥

∥

(16)

is reduced below some user-specified tolerance µrel. For the NACA 0012 cases presented in this paper, µrel

was usually set to 10−4, though it was reduced to 10−5 in some cases when convergence difficulties were
encountered.

III.C. Matrix-Vector Products

When using a Krylov solver such as FGMRES, it is not necessary to calculate and store A(n) since at no
point in the algorithm is an explicit expression for A(n) required, and this matrix can be expensive in terms
of data storage. The Krylov solver does, however, require an approximation to the matrix-vector product
A(n)v, v ∈ R

N . There are several ways in which this matrix-vector product can be approximated without
forming the full Jacobian.

One option is to use finite-difference matrix-vector products:

A(n)v ≈ R
(

q(n) + ǫv
)

−R
(

q(n)
)

ǫ
, (17)

where ǫ ∈ R is the perturbation parameter and is chosen to balance between truncation error and round-off
error. In this work, the following formula is used:

ǫ =

√

Nδ

vTv
,

where δ is a value near to machine precision (δ = 10−13 is used in all cases in this study), and N is the
number of elements in the vector v. A second option is to recycle the smaller-stencil approximate Jacobian
used to form the ILU preconditioner. This approximate Jacobian uses a small-stencil approximation to the
third-order dissipation term, ignores the cross-derivative terms in the discretization of the viscous terms, and
ignores the differentiation of the pressure sensor used for shock-capturing. Matrix-vector products using the

a⌊x⌋ = y, where y is the largest integer less than or equal to x.
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approximate Jacobian will be referred to as approximate matrix-vector products.
Using the approximate Jacobian matrix to compute matrix-vector products is less accurate than using

finite-differencing but comes at reduced computational cost. For deep convergence in the inexact Newton
phase it is beneficial to use the finite-differencing method. However, either type of matrix-vector product
can be used during the globalization phase. We have generally found that using approximate matrix-vector
products in the continuation phase gives faster convergence than the finite-differencing method without sac-
rificing robustness.

IV. Performance Analysis

Performance is analyzed in terms of both the accuracy of the discretization and the efficiency of the flow
solver at obtaining the solution on various mesh levels and flow conditions.

IV.A. The High Performance Computing System

All computations were performed on the SciNet General Purpose Cluster (GPC), hosted in Toronto, Ontario,
Canada. The GPC consists of 3,780 nodes (IBM iDataPlex DX360M2) with a total of 30,240 cores (Intel
Xeon E5540) at 2.53GHz, with 16GB RAM per node (2GB per core).

IV.B. Estimating Grid-Converged Functionals

The grid-converged functionals are the values of the functionals for the theoretical case of infinite mesh
resolution. These values can be obtained by applying Richardson extrapolation to the three finest grid levels
on which the functionals have been calculated. This procedure is described in detail by Roache.29

To apply Richardson extrapolation, the convergence rate p ∈ R must first be calculated from the three
finest converged functional values:

p =
ln (|f3 − f2| / |f2 − f1|)

ln (r)
, (18)

where fi is the functional of interest at grid level i (1 being the finest and 3 the coarsest) and r ∈ R is the
grid ratio, which is equal to 2 for all studies in this paper. The convergence rate is then used to extrapolate
the functional value on an infinite resolution mesh, denoted f0, using the two finest grid levels:

f0 =
rp f1 − f2
rp − 1

. (19)

The three-grid Richardson extrapolation method is not reliable unless it is applied in the asymptotic region
of a method.29 If the final three points are non-monotonic, or if the estimated convergence rate is less
that 1, then the grid converged functional is estimated from a first-order extrapolation by setting p = 1 in
equation (19).

IV.C. Benchmarking Flow Solver Performance

The purpose of this study is to quantify the computational cost associated with specific levels of functional
accuracy. Osusky and Zingg16 have previously performed some performance analysis on the Diablo RANS-
SA flow solver, and a similar approach will be taken here. Osusky and Zingg16 also discuss the pros and
cons of various cost measures for comparing solvers.

Measuring performance from the CPU time required to complete a flow solve can be useful for comparing
the relative performance of a flow solver under different conditions, but since performance will depend on the
computer system, this is not a useful measure for comparing against the performance of other CFD codes
run on a different computer system. One way to eliminate this problem is to use a benchmark such as the
TauBench codes30 to nondimensionalize cost as was done by Wang et al.31 The TauBench code roughly sim-
ulates the CPU cost of running the flow solver Tau for a mesh of a user-specified size, number of processors,
and number of iterative steps.

The benchmark that was used for all cases in this paper is 2.50 × 106 nodes on 1 processor with 10
iterative steps. The average CPU time after running the TauBench code four times on the SciNet general
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Table 1. Grid details for the NACA 0012 geometry. OW=Off-Wall, TE=Trailing Edge. Spacings measured in chords
(c).

Family I Family II Family III

Level Grid Size OW Spacing TE Spacing OW Spacing TE Spacing OW Spacing TE Spacing

1 7169× 2049 1.000× 10−7 1.25× 10−4 1.000× 10−7 1.25× 10−5 1.000× 10−7 3.75× 10−5

2 3585× 1025 2.009× 10−7 2.50× 10−4 2.009× 10−7 2.50× 10−5 2.009× 10−7 7.50× 10−5

3 1793× 513 4.057× 10−7 5.00× 10−4 4.056× 10−7 5.00× 10−5 4.056× 10−7 1.50× 10−4

4 897× 257 8.270× 10−7 1.00× 10−3 8.265× 10−7 1.00× 10−4 8.267× 10−7 3.00× 10−4

5 449× 129 1.719× 10−6 2.00× 10−3 1.716× 10−6 2.00× 10−4 1.717× 10−6 6.00× 10−4

6 225× 65 3.716× 10−6 4.00× 10−3 3.706× 10−6 4.00× 10−4 3.711× 10−6 1.20× 10−4

7 113× 33 8.736× 10−6 8.00× 10−3 8.685× 10−6 8.00× 10−4 8.708× 10−6 2.40× 10−4

purpose cluster was 9.571s, which will be referred to as one work unit. When CPU time is measured across
np processors, the wall time is multiplied by np to get the total CPU time. Wall time is measured from the
beginning to the end of the flow solve, excluding pre- and post-processing steps.

V. NACA 0012 Results

Three nested families of grids are provided by the TMR website for the modified NACA 0012 geometry.
All grids are structured, C-topology, two-dimensional grids with the farfield boundary located 500 chords
from the airfoil. The main difference between the three grid families is the trailing-edge spacing.

Since all grid families are structured grids consisting of the same number nodes, refining the grid in the
trailing-edge region has the effect of coarsening the grid elsewhere. Aside from these differences, the three
grid families are very similar. The finest (level 1) mesh for all three families consists of 7196× 2049 nodes
with 4097 points along the airfoil surface. Coarser meshes are generated from the finer ones by removing
every node with an even index number in each direction. Grid details can be found in Table 1.

All flow solutions are computed at a Reynolds number of 6 million based on the chord length with
freestream Mach number and temperature of 0.15 and 540R respectively. The angles of attack of interest
are 0, 10◦, and 15◦. The effects of QCR are considered for Family I. The additional error incurred by using
scalar dissipation instead of matrix dissipation can also be assessed by comparing the functionals calculated
at various levels of grid convergence. However, the choice of dissipation should not affect the grid converged
solution.

V.A. Grid Convergence

Tables A.1 through A.3 show the predicted grid-converged values for all three grid families and all three
sets of operating conditions calculated from mesh levels 2 through 4. As explained previously, Richardson
extrapolation was used by applying equation (19) with the predicted convergence rate calculated from equa-
tion (18) in all cases where the functional values on these grid levels were monotonic and the convergence
rate calculation gave p > 1. Otherwise, a first-order extrapolation was used to predict the grid-converged
values by applying equation (19) with convergence rate p = 1.

The grid convergence data is plotted in Figures A.1 through A.3. The extrapolated functional values
from Diablo, FUN3D, and CFL3D are in fairly good agreement where the data is available for all three flow
solvers. However, Diablo generally seems to lose more accuracy on the coarser meshes, particularly with
scalar dissipation. An additional observation is that many functional values, especially Cl and Cm, do not
appear fully grid converged, even on the finest mesh. This effect was observed for all three flow solvers and
was least pronounced on the Family II mesh, which had the finest trailing-edge spacing.
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V.B. Performance

When the mesh is refined by a factor of two in each direction, the computational cost will clearly increase
since there are four times more nodes in the computational domain (in 2D) and therefore four times more
floating point operations for each residual evaluation. However, the total cost of the flow solve will increase
by more than a factor of four because the linear system conditioning will worsen and the nonlinear problem
can also become more difficult to converge. It is of practical interest to quantify how much extra cost is
incurred by the flow solver to attain a certain level of accuracy.

The slower convergence rate of both the linear solver and nonlinear iterations can be observed by plotting
the residual history against the number of linear iterations taken by FGMRES as shown in Figure 1. This
is a way to investigate the effect of grid refinement on the linear system and nonlinear iterative methods
without considering CPU time. A plot of the CPU cost of reducing the L2-norm of the residual by eleven
orders of magnitude versus the number of nodes is shown in Figure 2. It can be observed from the plots that
performance is similar for the three grid families. It is also noteworthy that the zero angle of attack case
converges the slowest.

Figure 3 shows the number of equivalent residual evaluations required to reduce the L2-norm of the
residual by eleven orders of magnitude plotted against the number of nodes, where an equivalent residual
evaluation is the total CPU time divided by the CPU time required to calculate the residual vector once.
This can attempt to alleviate some of the timing inconsistency incurred by running different flow solves on
different processors which may have slightly different operating speeds. Also, since the cost of the residual
vector is expected to be roughly proportional to the number of grid nodes,b any increase in the number
of equivalent residual evaluations is mainly due to an increased number of linear and nonlinear iterations.
Similarly, Figure 4 shows the work units per grid point required to reduce the norm of the residual by eleven
orders of magnitude on each mesh level, which, as expected, appears quite similar to Figure 3.

The next study is an accuracy study. This is presented in Figure 5, which shows how the error in Cd and
Cl decreases with mesh spacing.

The final study performed relates the accuracy obtained at each grid level to the cost of performing the
flow solve. The error in the calculated Cd and Cl values was estimated based on the extrapolated value
obtained from the grid convergence study. The plot can be found in Figure 6, where the most accurate and
most expensive points correspond to the finer grid levels.

VI. Three-Dimensional Results

The CPU expense is also studied as a function of the level of accuracy needed for the three-dimensional
cases of Osusky and Zingg.16 The two cases selected are as follows:

1. Flow over the ONERA M6 wing at Reynolds number 1.1 × 107, Mach number 0.8395, and angle of
attack 3.06◦. The case was run on the SciNet general purpose cluster using 128 processors.

2. Flow over the NASA Common Research Model (denoted CRM-t2 in Osusky and Zingg16) at Reynolds
number 5×106, Mach number 0.85, and angle of attack 2.229◦. The case was run on the SciNet general
purpose cluster using 832 processors.

The grid details are given in Table 2.
Figure 7 shows how the CPU time depends on the level of accuracy for these two cases. The total CPU

time is calculated by multiplying the wall time taken to converge the flow solver by the total number of
processors used for that case.

bFor these NACA 0012 cases the cost of the residual seems to increase by a factor of between 4.0 and 4.4 at each grid
refinement.
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Table 2. Grid details for the ONERA M6 and NASA CRM grids

Grid Blocks Processors Nodes, N Average off-wall spacing (c)

ONERA M6 - 1 128 128 35, 152, 000 9.01× 10−7

ONERA M6 - 2 128 128 4, 599, 936 1.92× 10−6

ONERA M6 - 3 128 128 628, 824 4.35× 10−6

CRM - 1 6656 832 7, 008, 768 5.13× 10−6

CRM - 2 6656 832 3, 261, 440 6.84× 10−6

CRM - 3 6656 832 1, 164, 800 1.03× 10−5

VII. Concluding Remarks

The Diablo RANS flow solver capabilities have been characterized using three families of 2D NACA
0012 grids for fully turbulent flow at a low Mach number, as well as a 3D ONERA M6 wing grid family
at transonic Mach number, and a 3D CRM wing-body case, also at a transonic Mach number. The study
focused on characterizing the relationship between the computational cost of completing a flow solve, the
grid refinement, and the accuracy of the lift and drag coefficients.
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Figure 1. Residual history plotted against the number of linear iterations that were required to reduce the L2-norm
of the residual by eleven orders of magnitude for the NACA 0012 cases. Results are shown for all three grid families
using matrix dissipation. Angles of attack from top to bottom are 0◦, 10◦, and 15◦. The legend entries describe the
family (F.I=Family I, for example) and grid level (L3=level 3, L4=level 4, etc.).
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Figure 2. Work units taken to reduce the L2-norm of the residual by eleven orders
of magnitude for different levels of mesh refinement for the NACA 0012 cases.
Results are shown for all three grid families using matrix dissipation. Angles of
attack from top to bottom are 0◦, 10◦, and 15◦.
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Figure 3. Equivalent residual evaluations required to reduce the L2-norm of the
residual by eleven orders of magnitude for grid levels 3 to 6 for the NACA 0012
cases. Results are shown for all three grid families using matrix dissipation.
Angles of attack from top to bottom are 0◦, 10◦, and 15◦.
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Figure 4. Work units per grid point required to reduce the L2-norm of the residual
by eleven orders of magnitude for grid levels 3 to 6 for the NACA 0012 cases.
Results are shown for all three grid families using matrix dissipation. Angles of
attack from top to bottom are 0◦, 10◦, and 15◦.
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A. Additional Data and Figures

Table A.1. Richardson extrapolated functional values for the NACA 0012 case at α = 0◦, calculated from grid levels 2
to 4

Cd Cdp Cdv

F
a
m

il
y

I scalar 8.1201 × 10
−3

1.3050 × 10
−3* 6.8164 × 10

−3

scalar, QCR 8.1203 × 10
−3

1.3030 × 10
−3* 6.8173 × 10

−3

matrix 8.1284 × 10
−3

1.3038 × 10
−3

6.8260 × 10
−3*

matrix, QCR 8.1316 × 10
−3

1.3033 × 10
−3

6.8281 × 10
−3

F
.
II scalar 8.1191 × 10

−3
1.3036 × 10

−3
6.8168 × 10

−3

matrix 8.1276 × 10
−3

1.3020 × 10
−3

6.8260 × 10
−3*

F
.
II

I

scalar 8.1195 × 10
−3

1.3040 × 10
−3

6.8169 × 10
−3

matrix 8.1280 × 10
−3

1.3023 × 10
−3

6.8270 × 10
−3*

Table A.2. Richardson extrapolated functional values for the NACA 0012 case at α = 10◦. This table also includes
extrapolated grid converged functional values calculated from data obtained from the TMR website for the flow solvers
FUN3D and CFL3D. The data was obtained without the use of farfield point vortex correction. The functional values
for the Diablo flow solver were calculated from grid levels 2 to 4 whereas the FUN3D and CFL3D flow solvers used
grid levels 1 to 3.

Cd Cdp Cdv Cl Cm

F
a
m

il
y

I

scalar 1.2262 × 10
−2

6.0692 × 10
−3

6.1901 × 10
−3

1.0916* 6.8418 × 10
−3*

scalar, QCR 1.2253 × 10
−2

6.0514 × 10
−3

6.1901 × 10
−3

1.0916* 6.7099 × 10
−3

matrix 1.2259 × 10
−2

6.0674 × 10
−3

6.2060 × 10
−3* 1.0908* 6.8396 × 10

−3*

matrix, QCR 1.2250 × 10
−2

6.0444 × 10
−3

6.2150 × 10
−3* 1.0913* 6.7731 × 10

−3

FUN3D 1.2223 × 10
−2

6.0184 × 10
−3

6.2043 × 10
−3* 1.0905* 6.9422 × 10

−3*

CFL3D 1.2212 × 10
−2

6.0079 × 10
−3

6.2060 × 10
−3* 1.0888* 7.3407 × 10

−3*

F
.
II

scalar 1.2254 × 10
−2

6.0605 × 10
−3

6.1930 × 10
−3

1.0910 6.7517 × 10
−3*

matrix 1.2249 × 10
−2

6.0602 × 10
−3

6.2050 × 10
−3* 1.0911* 6.7696 × 10

−3*

FUN3D 1.2225 × 10
−2

6.0208 × 10
−3

6.2038 × 10
−3* 1.0913* 6.7725 × 10

−3*

CFL3D 1.2216 × 10
−2* 6.0121 × 10

−3
6.2041 × 10

−3* 1.0911 6.8067 × 10
−3

F
.
II

I

scalar 1.2253 × 10
−2

6.0609 × 10
−3

6.1920 × 10
−3

1.0904* 6.9299 × 10
−3*

matrix 1.2250 × 10
−2

6.0599 × 10
−3

6.2013 × 10
−3

1.0903* 6.9102 × 10
−3

FUN3D 1.2225 × 10
−2

6.0205 × 10
−3

6.2040 × 10
−3* 1.0912 6.7856 × 10

−3

CFL3D 1.2217 × 10
−2* 6.0126 × 10

−3* 6.2049 × 10
−3* 1.0905* 6.9561 × 10

−3*

Table A.3. Richardson extrapolated functional values for the NACA 0012 case at α = 15◦, calculated from grid levels
2 to 4

Cd Cdp Cdv Cl Cm

F
a
m

il
y

I scalar 2.1025 × 10
−2

1.5824 × 10
−2

5.1972 × 10
−3

1.5519* 1.6298 × 10
−2*

scalar, QCR 2.0773 × 10
−2

1.5450 × 10
−2* 5.2130 × 10

−3* 1.5560* 1.6013 × 10
−2*

matrix 2.1018 × 10
−2

1.5825 × 10
−2

5.2150 × 10
−3* 1.5513* 1.6370 × 10

−2*

matrix, QCR 2.0746 × 10
−2* 1.5500 × 10

−2* 5.2420 × 10
−3* 1.5553* 1.6055 × 10

−2

F
.
II scalar 2.0998 × 10

−2
1.5794 × 10

−2
5.2016 × 10

−3
1.5505 1.6401 × 10

−2*

matrix 2.0996 × 10
−2

1.5805 × 10
−2

5.2160 × 10
−3* 1.5510* 1.6431 × 10

−2

F
.
II

I

scalar 2.1000 × 10
−2

1.5793 × 10
−2

5.2013 × 10
−3

1.5501 1.6543 × 10
−2*

matrix 2.0997 × 10
−2

1.5791 × 10
−2

5.2170 × 10
−3* 1.5502 1.6526 × 10

−2

* Values marked with an asterisk were calculated using a first-order extrapolation because either the convergence rate
calculated using equation (18) was less than 1 or the functional estimates on the three finest grid levels were non-monotonic.
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Figure A.1. Grid convergence data for Family I of the NACA 0012 case. Grid levels 2 through 5 are shown for Diablo,
levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data shown for Diablo include both scalar and
matrix dissipation, with and without QCR.
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Figure A.2. Grid convergence data for Family II of the NACA 0012 case. Grid levels 2 through 5 are shown for Diablo,
levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data shown for Diablo include both scalar and
matrix dissipation.

17 of 18

American Institute of Aeronautics and Astronautics



7

8

9

10

11
x 10

−3
C
d

α = 0◦

0.012

0.014

0.016

0.018
α = 10◦

0.02

0.025

0.03

0.035

0.04
α = 15◦

1.1

1.2

1.3

x 10
−3

C
d
p

6

7

8

9

10
x 10

−3

0.015

0.02

0.025

0.03

0 0.002 0.004 0.006
6

7

8

9
x 10

−3

√

1/N

C
d
v

5

6

7

8
x 10

−3

4.5

5

5.5

6

6.5
x 10

−3

1.06

1.07

1.08

1.09

1.1

C
l

1.45

1.5

1.55

1.6

0 0.002 0.004 0.006
4

5

6

7

8
x 10

−3

√

1/N

C
m

 

 

Diablo, scalar diss.

Diablo, matrix diss.

FUN3D

CFL3D

0 0.002 0.004 0.006
0.012

0.014

0.016

√

1/N

Figure A.3. Grid convergence data for Family III of the NACA 0012 case. Grid levels 2 through 5 are shown for Diablo,
levels 1 through 5 for CFL3D, and levels 1 through 4 for FUN3D. The data shown for Diablo include both scalar and
matrix dissipation.
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