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A general framework is presented for deriving minimum-stencil high-order summation-

by-parts finite-difference operators for the second derivative with variable coefficients, for

orders of accuracy 3rd through 6th. These operators can be used to construct time-stable

numerical schemes with simultaneous approximation terms to weakly impose boundary

conditions. The derivation of these operators leads to various free parameters which can

be used for optimization of the operator about criteria such as spectral radius and trun-

cation error. The operators are 2p accurate on the interior, where the interior stencil has

2p+1 nodes, but p accurate at the boundaries. Nonetheless, for purely parabolic problems,

they can be shown to be p+2 globally accurate. However, for the Navier-Stokes equations,

the continuity equation renders the method p + 1 accurate. We present a novel means of

circumventing this degradation in accuracy by using p + 2 globally accurate operators for

the continuity equation, and we prove that the new discretization remains amenable to

the energy method, a necessary condition to prove time stability. Numerical tests on the

one-dimensional linear convection-diffusion equation and the one- and three-dimensional

Navier-Stokes equations using the method of manufactured solutions are used for verifi-

cation and characterization studies. We show that for the Navier-Stokes equations using

a p+ 2 globally accurate first derivative for the continuity equation substantially increases

the accuracy benefits of the minimum-stencil operator.

I. Introduction

Despite Moore’s law and the advent of massively parallel computers, solution of industrially relevant
PDEs remains a time-intensive effort. As an example, the direct-numerical simulation of turbulent flow over
a commercial aircraft would require approximately 1018 flops of computational power,1 and thus computa-
tional efficiency remains one of the primary concerns of CFD practitioners. In the early 1970s, Kreiss and
Oliger2 and Swartz and Wendroff3 demonstrated that substantial efficiency gains can be made by use of
higher-order (HO) methods. In the asymptotic region, HO methods have a local truncation error of order
O([∆x]p), where p ≥ 3, and ∆x is the mesh spacing. Thus, for a given accuracy, HO methods require coarser
mesh spacing relative to lower-order methods. HO methods have been shown to be more computationally
efficient than lower-order methods; some examples are the linear advection equation4 and the compressible
Navier-Stokes (NS) equations.5,6 In the present paper, we examine discretizations based on HO summation-
by-parts (SBP) finite-difference operators,7–13 with simultaneous approximation terms (SATs) for boundary
and interface treatment,14–23 which have been successfully applied to various problems including the lin-
ear advection diffusion equation,17 electromagnetic wave propagation24 and the compressible Euler and NS
equations.18,20,23,25–27

HO finite-difference methods trade mathematical complexity for computational efficiency, where the main
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difficulty in their implementation arises from the boundary treatment. SBP operators provide a systematic
means of deriving HO finite-difference operators with suitably accurate HO boundary treatments that are
time stable.12 In conjunction with SATs to weakly impose boundary and interface conditions, SBP operators
naturally give rise to multi-block schemes that have constant and, more importantly, low communication
overhead, which is advantageous for parallel computations. This results from the fact that only C0 continu-
ity needs to be maintained between blocks and, regardless of the order of the scheme, the same amount of
information is passed between blocks, i.e. there is no need for halo nodes. In curvilinear coordinates, time
stability can only be proven for diagonal-norm SBP operators;28 thus we limit ourselves to those operators.
The advantages of diagonal-norm SBP operators come at the cost of reduced accuracy; the operators have
interior schemes that are 2p accurate with boundary accuracy that is p accurate and therefore the global
order of accuracy is p+1.29 However, Mattsson and Nordström12 have shown that for parabolic PDEs, uti-
lization of SBP operators for the second derivative garners an additional degree of accuracy, so the method
is formally p + 2 order accurate for minimum-stencil operators (interior scheme with the same number of
nodes as the minimum-stencil first derivative) and p + 1 accurate for wide-stencil operators (application of
the first derivative twice). Furthermore, Hicken and Zingg have shown that if the formulation is dual con-
sistent,30 then functionals converge with the order of accuracy of the interior scheme.31 Our research deals
with aerodynamic optimization; we therefore need a robust and efficient algorithm to solve the compressible
NS equations on complex geometries; the SBP-SAT method has proven to be robust and efficient in both
direct computations of the NS equations and in the context of RANS, see Hicken and Zingg,32 Osusky and
Zingg,33 and Osusky et al.34

Minimum-stencil operators have several numerical advantages over wide-stencil operators,12 wide-stencil
referring to the application of the first derivative twice: they have lower global error and are more dissipative
of high wavenumber modes. Moreover, they have a smaller bandwidth and thus require less computational
resources, particularly if one is interested in adjoint-based optimization for which the Jacobian is constructed.
Finally, although one can use the wide-stencil operators, doing so with SBP operators results in the loss of
one order of accuracy in the context of parabolic PDEs.

Beyond a certain order of accuracy, SBP operators contain free parameters that can be used for optimizing
their behaviour. General solutions to SBP operators for the first derivative have been well studied and have
been optimized by other authors (see Diener et al.10). Less well understood are SBP operators for the second
derivative with constant or variable coefficients. Although particular instances for the constant coefficient
case11,12 and, recently, the variable coefficient case13 have been presented, general solutions have not been
derived. Besides being of academic interest, general solutions to SBP operators for the second derivative pro-
vide the ability to optimize the operators, thereby maximizing their efficiency. Therefore, the primary goal
of this paper is to present a framework for deriving general solutions to SBP operators for the second deriva-
tive. We then show how to optimize these general solutions to produce operators with optimal characteristics.

For parabolic problems, SBP operators for the second derivative have the advantage of gaining an addi-
tional order of accuracy. However, our interest is in the solution of the compressible NS equations and
we lose this additional order since the NS equations are incompletely parabolic by virtue of the continuity
equation. The second goal of this paper is to present a novel means of circumventing this problem by using
a first derivative for the continuity equation that is one order of accuracy higher than used for the remaining
equations. In order to be a feasible solution, we must show two things: first, that we do not lose the SBP
property and second, that we gain in terms of accuracy.

II. Spatial Discretization

Here we introduce SBP finite-difference operators for the first derivative and the second derivative with
constant or variable coefficients. SBP operators for the first derivative were derived by Kreiss and Scherer,7

refined by Strand8 and applied by various authors (see Mattsson et al.,12 Hicken and Zingg,32 Diener et al.10

and, Dias and Zingg25). SBP operators are finite-difference schemes, using centred differences on the interior
of the domain, that do not include boundary conditions; these must be applied by some other means, in
our case using SATs, see Section III. Our interest is in the solution of the compressible NS equations over
complex geometries for the purpose of aerodynamic shape optimization. Structured meshes are used to
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capture these geometries, so the NS equations are transformed to curvilinear coordinates. As a result, the
discussion of SBP operators is limited to those with a diagonal norm, as these are provably time stable in
curvilinear coordinates.28 Given that the solution of the NS equations is the main interest, we require an
SBP approximation to ∂x(β∂xQ) that is conservative, has the SBP property and is compatible with the first
derivative, such that it can be used to prove time stability for the linearized NS equations.12 To make explicit
the means of deriving the proposed operators, we present detailed derivations of the required derivatives that
are 4th-order in the interior of the domain as examples.

A. Notation and definitions

We follow the conventions laid out by Hicken and Zingg.31 SBP difference operators are generically defined
on a uniformly spaced grid of N points on the domain [0, 1] and thus the grid spacing is h = 1/(N − 1).
Typically the domain we are interested in is not [0, 1], but we assume that for the set of problems of interest
a sufficiently differentiable invertible transformation exists from the domain of interest to [0, 1].

Capital letters with a script type are used to denote functions on a specified domain, and so U(x) ∈ Cp[a, b]
denotes that the function, U(x), is a p times differentiable function on [a, b]. Roman letters in bold font de-
note the restriction U(x) onto an N -point grid of corresponding continuous functions, as an example u ∈ RN

means u = [U(x1),U(x2), ..,U(xN )]T . In discussing the imposition of boundary conditions using SATs, we
refer to the unit vectors eL, eR ∈ RN , which are

eL = [1, 0, ..., 0]T , eR = [0, .., 0, 1]T .

The operators for the first and second derivatives have different orders of accuracy on the interior, at the
boundary, and globally. In order to differentiate between operators and the various orders of accuracy we
follow the convention that we append a superscript to operators for the various orders of accuracy and a

subscript to denote which derivative we are approximating. For example, D(a,b,c)
i,e

, denotes the operator for

the ith derivative with interior order of accuracy of a, boundary closure accuracy of b and results in a solution
with global order of accuracy c, while the additional subscript e is to differentiate amongst various versions
of the operator. In some cases we will not be interested in one or several of the orders of accuracy and will

insert colons; as an example; D(2,:,:)
3 denotes an approximation to the third derivative which is second-order

on the interior where we specify neither the accuracy of the operator at the boundary nor the global order
of accuracy. For the second derivative with variable coefficients we will make explicit the dependence on the

variable coefficients, β, by denoting these operators as D(a,b,c)
2 (B), where B is a diagonal matrix with the

variable coefficients along its diagonal.

B. First derivative

The SBP property of the first derivative is mimetic of
�
b

a
Q∂xQdx, which leads to the following definition:

SBP Diagonal Norm First Derivative The matrixD ∈ RN×N is an SBP operator for the first derivative
if it approximates the first derivative and is of the form D = H−1Θ, where H ∈ RN×N , is a positive-definite
diagonal matrix, called the norm, and Θ ∈ RN×N has the property Θ+ΘT = diag(−1, 0, ..., 0, 1) = E.

To understand how the SBP property is a discrete analogue of integration by parts we examine the continu-
ous case. First we define the inner product of two real valued-functions, U ,V ∈ [0, 1] by (U ,V) =

� 1
0 UVdx,

and hence the norm
�
(U ,U) = �U�2 =

�� 1
0 U2dx.

Now consider the linear convection equation,

∂Q
∂t

= −∂Q
∂x

. (1)

The energy method involves multiplying (1) by Q and integrating in space, i.e. taking the inner product of
the PDE with respect to the solution Q. We get

d�Q�22
dt

= − Q2
��1
0
, (2)
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and we can see that stability of the equations depends solely on the boundary values of Q.

Ignoring the boundary conditions, the semi-discrete form of the linear convection equation is

dq

dt
= −Dq = −H−1Θq. (3)

We similarly define a discrete inner product and norm as (u,v)H = uTHv and �u�H =
√
uTHu. Taking

the discrete inner product of (3), i.e. multiplying through by qTH, and adding the transpose, based on the
properties of H and Θ, gives

d�q�2
H

dt
= −

�
[q(N)]2 − [q(1)]2

�
. (4)

As in the continuous case, (4) only depends on boundary values, and we can see that the SBP property is
mimetic, in the discrete case, of integration by parts and thus allows for a discrete energy method.

The SBP property also automatically ensures that the first derivative is conservative. To see this we consider
the continuous case: � 1

0

∂U
∂x

dx = U|10 . (5)

The discrete norm matrix H represents a high-order quadrature of order 2p,35 such that

� 1

0
VUdx ≈ vTHu,

and the discrete analogue of (5) is
1THDu = 1TΘu.

However, the SBP property Θ+ΘT = E gives us that Θ = E −ΘT , and we have that

1TΘu = 1T
�
E −ΘT

�
u.

On the other hand we know that for consistency the discrete derivative of a constant vector must be zero,
therefore we have D1 = 0, which implies that Θ1 = 0, and we conclude that 1TΘT = 0, and we have that

� 1

0

∂U
∂x

dx ≈ 1THDu = 1TEu = u(N)− u(1),

and the first-derivative operator is discretely conservative.

SBP operators for the first derivative have been well studied.8,10,15,17,19,22,36,37 Here we present a brief
account of how to derive them since we construct the SBP operator for the second derivative with variable
coefficients by applying the first derivative twice and adding a corrective term that makes the operator have
an interior stencil that spans 2p+1 nodes. We are interested in operators approximating the first derivative
that on the interior are centred-difference approximations, satisfy the SBP property, and have the minimum
number of nodes for a given order of accuracy, i.e. for interior order of accuracy 2p the stencil has 2p + 1
nodes. The interior stencil is known, so what remains is to derive the stencils for boundary nodes.

To summarize what is known about D = H−1Θ:

1. D is 2p accurate at interior points and p accurate at 2p points at the left and right boundaries;8

2. ΘT + Θ = diag(−1, 0, 0, ..., 0, 0, 1), implying that Θ is nearly skew-symmetric with Θ(1, 1) = − 1
2 ,

Θ(N,N) = 1
2 , and the remaining diagonal entries are 0;

3. H is diagonal, positive definite and H(j, j) = H(N − (j − 1), N − (j − 1)) for j ∈ [1, 2p] with the
remaining diagonal entries equal to h.
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We use D(4,2,3)
1 as an example, i.e. p = 2. As it is 4th order in the interior, it has a 5-point interior stencil,

and 4 boundary stencils need to be derived. The global order of accuracy of the solution is p+ 1 = 3. The
interior stencil is given as ( 1

12 ,−
2
3 , 0,

2
3 ,−

1
12 , ), giving

D = H−1Θ =

1
h





1

H11
1

H22
1

H33
1

H44

1
. . .





×





− 1
2 θ12 θ13 θ14

−θ12 0 θ23 θ24

−θ13 −θ23 0 θ34 − 1
12

−θ14 −θ24 −θ34 0 2
3 − 1

12

0 0 1
12 − 2

3 0 2
3 − 1

12

. . .
. . .

. . .
. . .

. . .





,

where h is the grid spacing. Note that the above form is based upon the minimum boundary stencil width,
as derived by Strand,8 to satisfy order 2p accuracy on the interior and order p accuracy at 2p points. The

D(4,2,3)
1 operator gives the following approximations at the boundary nodes:

Node 1: 1
H11×h

�
− 1

2qj + θ12qj+1 + θ13qj+2 + θ14qj+3

�
,

Node 2: 1
H22×h

(−θ12qj−1 + θ23qj+1 + θ24qj+2)

...

The above equations must satisfy the accuracy criteria, in this case p = 2, i.e. second-order accuracy.
Inserting Taylor series expansions of the qj+k gives a system of equations; as an example the first node gives

− 1
2 + θ12 + θ13 + θ14 = 0, (consistency)

θ12 + 2 θ13 + 3 θ14 = H11, (first-order accuracy)

1
2 θ12 + 2 θ13 +

9
2 θ14 = 0, (second-order accuracy).

There are 2p(2p−1)
2 + 2p = 10 coefficients, but there are 2p(p + 1) = 12 equations, so the system appears

overdetermined. However, this does not turn out to be the case since not all of the equations are linearly

independent. In fact, the following occurs: for D(2,1,2)
1 and D(4,2,3)

1 , the operators are unique, while for

D(6,3,4)
1 and D(8,4,5)

1 , the operators have 1 and 3 free parameters, respectively, that can be used to optimize
their behaviour. For interior orders beyond 8, it is not possible to derive an operator that has a positive
definite H, and hence a discrete norm, with only 2p boundary nodes that are p order accurate (see Strand8).
In order to surpass these limitations one could increase the number of boundary nodes (see Diener et al.10

and Sjogreen and Yee38).
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C. Second derivative with variable coefficients

The discrete SBP operator for the second derivative with variable coefficients results in a large system of
nonlinear equations that must be solved for the boundary closures. As the order of the operator increases
so too does the complexity of the system of nonlinear equations that needs to be solved and the number of
free parameters that need to be specified once a solution is found.

First we define the SBP operators for the second derivative with constant or variable coefficients and give
a generic structure to construct them. We define the discrete SBP operator for the second derivative with
constant coefficients, B = diag(1, . . . , 1), or variable coefficients as follows:

SBP Second Derivative The matrix D(2p,p,p̂)
2 (B) ∈ RN×N is an SBP operator for the second derivative,

with global order of accuracy p̂, if it approximates the second derivative and is of the form, D(2p,p,p̂)
2 (B) =

H−1 {−M + EBDb}, whereH is a diagonal positive-definite matrix called the norm, E = diag(−1, 0, ..., 0, 1),

B = diag(β0, . . . ,βN ), D(:,≥p+1,:)
b

is an approximation to the first derivative at the boundaries,
M =

�
D

(2p,p,p+1)
1

�
T

HBD
(2p,p,p+1)
1 +R, M and R are positive-semi-definite (PSD) and symmetric, and B is PSD.

In order to show that the proposed SBP-SAT discretization is time-stable for the linearized NS equations, the
first derivative used for the inviscid portion of the equations must be the same as that used in the construction
of the second derivative (the formulation is said to be consistent, see Mattsson and Nordström11). Before
proceeding let us make clear how the given definition leads to an SBP operator and show the relationship
between the minimum-stencil operator and the application of the first derivative twice, wide-stencil operator.
As before we start with the continuous case. Consider the variable-coefficient diffusion equation on the
interval [0, 1]:

∂Q
∂t

=
∂

∂x

�
β
∂Q
∂x

�
. (6)

Applying the energy method to (6) gives

d||Q||2

dt
= 2

�
βQ

∂Q
∂x

�����
1

0

− 2

� 1

0
β

�
∂Q
∂x

�2

dx. (7)

Ignoring boundary conditions, the semi-discrete equations are

dq

dt
= H−1 {−M + EBDb}q.

Multiplying by qTH and adding the transpose of the product gives

d||q||2
H

dt = 2qTEBDbq− 2qTMq

= 2qTEBDbq− 2(Dq)THBDq− 2qTRq.

(8)

Let us first consider the application of the first derivative twice, in this case R = 0 and Db = D, and
we have

d||q||2
H

dt
= 2qTEBDq− 2(Dq)THBDq.

Since the discrete norm represents a 2p-order quadrature we see that (Dq)THBDq ≈
� 1
0

∂U
∂x

b∂U
∂x

dx and

qTEBDq ≈ b∂U
∂x

��1
0
. The difference in the minimum-stencil operator is the addition of the term qTRq. From

(8) we see that for time-stability R must be PSD, and from an accuracy standpoint it must add an error that
is no larger than the global order of accuracy. In order to show that the proposed SBP-SAT discretization is
time-stable for the linearized NS equations, H in the above definition must be the same norm as used with
the first derivative. Thus the formulation is said to be compatible with the first derivative.12
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To construct these operators, we need R. For the operator with 2p accuracy on the interior, we posit
the general form:

Rp =
1

h

2p�

i=p+1

αi(D̃
(2,1,:)
i,p

)TCp

i
BD̃(2,1,:)

i,p
,

where h is the mesh spacing. The D̃(2,1,:)
i,p

operators have an interior stencil with 2p + 1 nodes, while the
boundary stencils have 3p nodes. The interior stencil is a second-order centred-difference approximation
to the ith derivative while the boundary stencils are first-order accurate. The tilde notation denotes an
undivided difference approximation. Constructed thus, the operator is guaranteed to be PSD, as long as
the Cp

i
, which are diagonal matrices of the form Cp

i
= diag

�
cp11, . . . , c

p

2p2p, 1, . . . , 1, c
p

2p2p, . . . , c
p

11

�
, where the

superscript p is to differentiate amongst the various Ci, are PSD.

The interior stencil that is compatible with the proposed construction of the second derivative is given
as

D(2p,:,:)
2,int = −

�
(D(2p,:,:))TBD(2p,:,:) +

1

h2

2p�

p+1

αi(D̃
(2,:,:)
i,p

)TBD̃(2,:,:)
i,p

�
.

The global order of accuracy, p̂, will depend on the particular problem being solved and can be in the range
p̂ ∈ [p+ 1, p+ 2]. We explicitly give the general form of the SBP operators for p ∈ [2, 3, 4] as

D(2,1,:)
2 (B) = H−1

�
−
�
D(2,1,2)

1

�T

HBD(2,1,2)
1 − 1

4h

�
D̃(2,1,:)

2

�T

C1
2BD̃(2,1,:)

2,1 + 1
h
EBD̃(:,2,:)

1,1

�
,

D(4,2,:)
2 (B) = H−1

�
−
�
D(4,2,3)

1

�T

HBD(4,2,3)
1 − 1

18h

�
D̃(2,1,:)

3,2

�T

C2
3BD̃(2,1,:)

3,2

− 1
48h

�
D̃(2,1,:)

4,2

�T

C2
4BD̃(2,1,:)

4,2 + 1
h
EBD̃(:,3,:)

1

�
,

D(6,3,:)
2 (B) = H−1

�
−
�
D(6,3,4)

1

�T

HBD(6,3,4)
1 − 1

80h

�
D̃(2,1,:)

4,3

�T

C3
4BD̃(2,1,:)

4,3

− 1
100h

�
D̃(2,1,:)

5,3

�T

C3
5BD̃(2,1,:)

5,3 − 1
720h

�
D̃(2,1,:)

6,3

�T

C3
6BD̃(2,1,:)

6,3 + 1
h
EBD̃(:,≥4,:)

1

�
,

D(8,4,:)
2 (B) = H−1

�
−
�
D(8,4,5)

1

�T

HBD(8,4,5)
1 − 1

350h

�
D̃(2,1,:)

5,4

�T

C4
5BD̃(2,1,:)

5,4

− 1
252h

�
D̃(2,1,:)

6,4

�T

C4
6BD̃(2,1,:)

6,4 − 1
980h

�
D̃(2,1,:)

7,4

�T

C4
7BD̃(2,1,:)

7,4

− 1
11200h

�
D̃(2,1,:)

8,4

�T

C4
8BD̃(2,1,:)

8,4 + 1
h
EBD̃(:,≥5,:)

1

�
.

(9)

The above formulation leads to multiple solutions with many free parameters for which values must be
chosen. In this paper we explore two alternatives:

• Wide-boundary-node operator: use all of the free parameters to optimize the operators about some
criteria, and thus there are 3p boundary nodes that are p accurate, with the widest boundary stencil
containing 4p nodes;

• Narrow-boundary-node operator: set free parameters such that the operator has 2p boundary nodes
that are p accurate, with the widest boundary stencil containing 3p nodes, as in the case of the first
derivative, and use the remaining free parameters to optimize the operator about some criteria.

D. Navier-Stokes equations with p+ 2 treatment of the continuity equation

In contrast to parabolic PDEs, such as the linear convection-diffusion (LCD) equation – see Section V.A, the
minimum- and wide-stencil approximations to the second derivative result in nearly identical convergence
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plots for the NS equations, see Section V.B, suggesting that the error from the continuity equation dominates.
We propose using a p+ 2 globally accurate first-derivative SBP operator to discretize the first derivative in
the continuity equation to mitigate this reduced accuracy. However, in order that the resultant discretization
can be provably time stable for linear PDEs, we must show that the discretization is still amenable to the
energy method. To prove that the energy method can still be applied, it is sufficient to examine a hyperbolic
system of equations such as:

∂Q
∂t

= −A
∂Q
∂x

, for x ∈ [0, 1], (10)

where A is a constant symmetric matrix, i.e. AT = A (note that this condition is not a restriction since the
energy method is only applicable to PDEs that can be symmetrized). Applying the energy method gives

d||Q||2

dt
= −QTAQ

��1
0
.

Let us examine what happens when we treat all the equations with the same first derivative operator.
The semi-discrete form is given as

dq

dt
= −ÂDq,

where D = D(2p,p,p+1)
1 ⊗ I5, Â = IN ⊗ A, In are n × n identity matrices unless otherwise noted, ⊗ is the

Kronecker product, and N is the number of nodes in the one-dimensional grid under consideration. Applying
the energy method, i.e. multiplying (10) by qTH and adding the transpose of this product, gives

dqT

dt
Hq+ qTH

dq

dt
= qT

�
HÂD +DT ÂTHT

�
q, (11)

where H = H(2p,p,:) ⊗ I5, H = HT , and D = H−1Θ ⊗ I5. We will make use of the following rules for
Kronecker products:

mixed-product rule: (A⊗B)(C ⊗D) = AC ⊗BD,

bilinearity rule: A⊗ (B + C) = A⊗B +A⊗ C.,

transpose rule: (A⊗B)T = AT ⊗BT

For the LHS of (11) we note that the terms dqT

dt Hq, and qTH dq
dt are scalars and the transpose of a scalar is

equal to the scalar thus
dqT

dt
Hq+ qTH

dq

dt
=

d||q||2
H

dt
,

where ||q||2
H

= qTHq is the discrete inner product. Now by the mixed-product rule

HÂD = (H ⊗ I5)(IN ⊗A)(H−1Θ⊗ I5) = HINH−1Θ⊗ I5AI5 = Θ⊗A,

and similarly

DT ÂTHT = (ΘTHT ⊗ I5)(IN ⊗AT )(HT ⊗ I5) = ΘTHINH ⊗ I5AT I5 = ΘT ⊗A.

Therefore, (11) reduces to

d||q||2
H

dt = qT
�
Θ⊗A+ΘT ⊗A

�
q, which by the bilinearity rule becomes =

�
Θ+ΘT

�
⊗ A, and by the

properties of Θ reduces to diag(−1, 0, . . . , 0, 1)⊗A

d||q||2
H

dt
= −

�
qT (N)Aq(N)− qT (1)Aq(1)

�
,

and the above is the discrete analogue of the continuous case. The question is what happens when we treat
one of the equations with a higher-order derivative.
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We define

D = D(2(p+1),p+1,p+2)
1 ⊗ diag(1, 0, 0, 0, 0) +D(2p,p,p+1)

1 ⊗ diag(0, 1, 1, 1, 1) = D(p+2)
1 ⊗ Ĩ1 +D(p+1)

1 ⊗ Ĩ4

and

H = H(2(p+1),p+1,p+2) ⊗ diag(1, 0, 0, 0, 0) +H(2p,p,p+1) ⊗ diag(0, 1, 1, 1, 1, 1) = H(p+2) ⊗ Ĩ1 +H(p+1) ⊗ Ĩ4.

Multiplying the new semi-discrete equation by qTH and adding the transpose of that product gives

d
dt

�
qTHq

�
= d||q||2

H

dt = −qT

�
HÂD +DT ÂH

�
q.

Now

HÂD =
�
H(p+2) ⊗ Ĩ1 +H(p+1) ⊗ Ĩ4

�
[IN ⊗A]×

��
H(p+2)

�−1 ⊗ Ĩ1 +
�
H(p+1)

�−1 ⊗ Ĩ4
�
×
�
Θ(p+2) ⊗ Ĩ1 +Θ(p+1) ⊗ Ĩ4

�
.

We are concerned with the products
�
H(p+2) ⊗ Ĩ1

�
[IN ⊗A]

��
H(p+1)

�−1 ⊗ Ĩ4
�
and

�
H(p+1) ⊗ Ĩ4

�
[IN ⊗A]

��
H(p+2)

�−1 ⊗ Ĩ1
�
.

Using the Kronecker product rule we have

�
H(p+2) ⊗ I1

�
[IN ⊗A]

��
H(p+1)

�−1 ⊗ I4
�
= Hp+2IN

�
Hp+1

�−1 ⊗ I1AI4 = H(p+2)
�
H(p+1)

�−1 ⊗ 0 = 0

and

�
H(p+1) ⊗ I4

�
[IN ⊗A]

��
H(p+2)

�−1 ⊗ I1
�
= Hp+1IN

�
Hp+2

�−1 ⊗ I4AI1 = H(p+1)
�
H(p+2)

�−1 ⊗ 0 = 0.

Therefore we have

HÂD = Θp+2 ⊗ Ĩ1A+Θp+1 ⊗ Ĩ4A,

and similarly, using the transpose rule

DT ÂH = (HÂD)T =
�
Θp+2

�T ⊗ I1A+
�
Θp+1

�T ⊗ I4A.

Finally, using the bilinearity rule, we find that

d||q||2
H

dt = −qT

��
Θp+2 +

�
Θp+2

�T�⊗ Ĩ1A+
�
Θp+1 +

�
Θp+1

�T�⊗ Ĩ4A
�
q =

−qTdiag(−1, 0, . . . , 0, 1)⊗Aq =

−
�
qT (N)Aq(N)− qT (1)Aq(1)

�
,

as desired. Therefore, we have shown that we can use a p + 2 globally accurate first derivative for the
continuity equations while retaining the ability to apply the energy method.
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III. Boundary conditions

With SBP operators it is typical to use SATs to enforce boundary conditions weakly. To explain the
SAT concept, consider the LCD equation with variable coefficients (see Mattsson22 for the case with b = 1):

∂Q
∂t

= −a∂Q
∂x

+ � ∂

∂x

�
b∂Q
∂x

�
, 0 ≤ x ≤ 1, t ≥ 0

Q(0, t) + αb∂Q(0,t)
∂x

= 0, ∂Q(1,t)
∂x

= 0,

Q(x, 0) = f(x),

−2�
a

≤ α ≤ 0,

and its semi-discrete analogue with SATs applied,

dq

dt
= −aDq+ �D2(b)q+ SAT.

SATs impose the boundary conditions as penalty terms; rather than imposing the boundary term exactly,
they do so within the discretization error. This method has been found to be preferable to strong enforce-
ment of the boundary conditions. In their comparison of weakly and strongly enforced Dirichlet boundary
conditions for the solution of the advection-diffusion equation and the incompressible NS equations, Bazilevs
and Hughes39 found that weakly imposed boundary conditions resulted in faster convergence to steady state.
Similarly, Eliasson et al.40 found that weakly enforced boundary conditions for the NS equations resulted
in faster convergence to steady state, suggesting that the reason for this was an improved eigenspectrum for
the semi-discrete equations.

The SAT term has the following form:22

SATL/R = −H
−1

2

�
τLeTL

�
q −Q(0)eL + αbDbq − b∂Q(0)

∂x
eL

��
,

−H
−1

2

�
τReTR

�
bDbq − b∂Q(1)

∂x
eR

��
.

where τL = −2�
α

, and τR = 2� and L/R refers to the left and right boundaries respectively.

For the compressible NS equations we rely on the work in Svärd and Nordström,20 and Nordström et
al.23 In the current work we deal with two boundary types, characteristic boundaries, and block interface
boundaries. For the inviscid portion of the NS equations both types of boundary conditions are treated
identically and the SATs take the form:23

SAT I
(ξi,L)

= −H
−1

J
A+

ξi
(q(ξi, L)computed − q(ξi,L)prescribed) ,

SAT I
(ξi,R) =

H
−1

J
A−

ξi
(q(ξi, R)computed − q(ξi,R)prescribed) ,

where

A±
ξi

=
Aξi

± |A|ξi
2

, Aξi
∈
�
∂Ê

∂Q̂
,
∂F̂

∂Q̂
,
∂Ĝ

∂Q̂

�
, and ξi ∈ [ξ, η, ζ].

The subscripts (ξi,L/R) refer to the SAT boundary term for the left and right boundaries in direction
ξi, the superscript I indicates that the SAT term is for the inviscid portion of the NS equations, and
qcomputed is the computed solution and qprescribed is the known boundary condition. In addition, the matrix
|A|ξi = XT

ξi
Λξi

Xξi
, where Xξi

is the right eigenmatrix of Aξi
in the ξi direction, and Λξi

contains the eigen-
values along its diagonal. The matrix Aξi

is constructed using Roe averaging.

10 of 18

American Institute of Aeronautics and Astronautics Paper 2013-2570



The SAT terms for the viscous portion of the NS equations take the following form:

SAT v
ξi

=
σv
L/R

Re






B
�
Db,ξi

q̂(ξi,L/R)computed − ∂

∂ξi
q̂(ξi,L/R)prescribed

�

+Ψλ

J
(q(ξi,L/R)computed − q(ξi,L/R)prescribed)






where the superscript v denotes the SAT for the viscous portion of the NS equations , σv
L
= 1 and σv

R
= −1,

while λ depends on the eigenvalues of a matrix which is constructed from the linearized and symmetrized
NS equations and the order of the discretization,23 while J is the Jacobian of the curvilinear transformation.
Ψ is 0 for characteristic boundaries and 1 for block interfaces.

IV. Optimization of Operators

The free-parameters in the SBP operators for the second derivative with variable coefficients offer the
opportunity to optimize the operators in some way. For optimization we must choose some metrics(s) and
a context. For example we can choose the metrics of truncation error or spectral radius and the context
could be the LCD equation, which is what we will do in this paper. What is unclear is whether or not the
optimum found for a particular metric/context scenario translates into equivalent behaviour for the same
metric but a different context, say for example the NS equations.

We use the steady LCD equation with the method of manufactured solutions (MMS) to optimize the oper-
ators. The PDE we solve is

−∂U
∂x

+
∂

∂x

�
B∂U
∂x

�
+ g = 0,

where g is a source term we add so that the assumed solution satisfies the PDE, and U and B are defined as:

U = sin(x), and B = 1 + � cos(x), where � = 0.9 and x ∈ [π/3, 2π/3].

We will examine 4 operators for each order of accuracy, which will be referred to using the following:

• D: application of the first derivative twice

• L: Wide boundary node stencil operator from Mattsson,13 available up to 6th order accuracy, used as
a benchmark for comparison

• W: Optimized wide boundary node stencil operator,

• M: Optimized minimum boundary node stencil operator.

For orders of accuracy beyond 2, all operators have free parameters and we optimize the operators to
construct specific instances. All free parameters reside in the boundary stencil and we therefore use as an
objective function the mean square boundary truncation error (TB):

TB =

���� 1

NB

NB�

i=1

= T 2
B,i

,

where NB is the number of boundary nodes and T 2
B,i

is the sum of the squares of the coefficients of the
leading truncation error term associated with node i. We numerically minimize the objective function using
Maple’s Minimize optimization subroutine. We note that increasing orders of accuracy result in increasing
numbers of solutions and free parameters for the various operators.

Given that we are using MMS we have access to the analytical solution and can therefore examine the
error of the computed solution directly. We define the solution error as

�e�H =
√
eTHe,

where, e = (u− ua), and ua is the restriction of the analytical solution onto the grid.
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Table 1. Convergence rates of D2(B)(4,:,:) operators

Operator Order

D 2.997

W 4.163

M 4.19

L 4.177

0.0021 0.0095 0.0349
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O (D2 , M ) =4.19
O (D2 , L) =4.177

(b) Percent difference of �e�H relative to the L operator

Figure 1. Performance of D2(B)(4,:,:) operator for the LCD equation

Table 2. Convergence rates of D2(B)(6,:,:) operators

Operator Order

D 4.513

W 5.495

M 5.555

L 5.564

V. Results

A. Linear convection-diffusion equation

In this section we solve the LCD equation subject to MMS (see Section IV). Table 1 gives the convergence
rates of the various operators, while Figure 1 shows �e�H and the percentage difference of �e�H relative to
Mattsson’s operator (L). As expected, the minimum-stencil operators have a higher rate of convergence and
a lower global error than the first-derivative twice operator (D). Moreover, we can see that the proposed
optimized wide-boundary-stencil operator (W) is slightly more accurate than Mattsson’s (L) operator, while
the optimized minimum-boundary-stencil operator (M) is slightly less accurate.

For the D(6,3,:)(B)
2 operator the results are similar to that of the D2(B)(4,:,:) operator with the W oper-

ator outperforming both the M and L operators; see Table 2 and Figure 2. However, the behaviour of the
M operator is a fair bit worse in this case, which is in contrast to what we observe for the three-dimensional
NS equations, see Section V.B.
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Figure 2. Performance of D2(B)(6,:,:) operator for the LCD equation

B. Navier-Stokes equations

In this section we compare and contrast the various operators in the context of the three-dimensional NS
equations using MMS, where we specify ρ, u, v, and p and add an appropriate source term such that the
assumed solution satisfies the modified PDE. The assumed solution is constructed using sine and cosine
functions; as an example ρ has form

ρ = r0 + rx sin(arxx) + ry cos(aryy) + rz cos(arzz) + rxy cos(arxyxy) + rxz sin(arxzxz) + ryz cos(aryzyz)

where the terms rj , and arj are specified coefficients. For this case we need to use artificial dissipation
compatible with the SBP scheme such that we retain an energy estimate.9,10

Table 3 gives the convergence rates for the D2(B)(4,:,:) operators and we can see that the convergence
rates are very similar. However, examining Figure 3 we can see a significant difference between the var-
ious operators, with the wide-boundary-stencil operator (W) outperforming the other operators and the
minimum-boundary-node stencil operator (M) performing better than Mattson’s operator (L), in contrast
to the LCD case, and the application of the first derivative twice (D).

Table 4 gives the convergence rates for the D2(B)(6,:,:) and again the operators have similar convergence
rates. Examining Figure 4 we can see a significant difference between the various operators, with the M
operator outperforming the L, and D operators. In this case we were unable to get converged solutions with
the W operator for the same solver inputs, our hypothesis is that the additional degrees of freedom in Db

used to optimize the operator, which lead to large coefficients in the stencil at the first and last node, may
have lead to some type of degradation, such as a large spectral radius, which did not manifest itself in the
context of the LCD equation. Finally, Figure 5 compares the convergence of the D2(B)(4,:,:) and D2(B)(6,:,:)

operators, and we see that not only do the proposed operators, M and W, have smaller error than the L
operator but that the p = 3 operators have much smaller error than the p = 2 operators.
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Table 3. Convergence rates of D2(B)(4,:,:) operators for the three-dimensional NS equations using MMS with
a Reynolds number of unity

Operator O (e)

D 3.064

W 2.829

M 3.084

L 3.063

Table 4. Convergence rates of D2(B)(6,:,:) operators for the three-dimensional NS equations using MMS with
a Reynolds number of unity

Operator O (e)

D 3.777

M 3.86

L 3.777
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Figure 3. Performance of D2(B)(4,:,:) operator for the 3D NS equations using MMS with a Reynolds number
of unity
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Figure 4. Performance of D2(B)(6,:,:) operator for the 3D NS equations using MMS with a Reynolds number
of unity
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Figure 5. Performance of minimum-stencil operators D2(B)(4,:,:) and D2(B)(6,:,:) for the 3D NS equations using
MMS with a Reynolds number of unity
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VI. Higher-order (p+ 2) treatment of the continuity equation

In the previous section we saw that although the various operators differ in their global error their rates
of convergence were identical (for p+1 treatment of the continuity equation). In this section we examine the
effects of increasing, by one order, the accuracy of the operator used to compute the first derivative in the
continuity equation. In Section D we proved that we can do so while retaining an energy estimate: To keep

things simple we focus our attention on the D(4,:,:)
2 operators and solve the one-dimensional NS equations

subject to an MMS solution of the form:

ρ = 2 + cos(x), u = 2 + cos(x), p = 2 + cos(x)

The tests cases are run without adding numerical dissipation in order to examine the derivative operators
in isolation.

Table 5 gives the convergence rates for the various D2(B)(4,:,:) operators. The operator MHO refers to
the optimized minimum-boundary-stencil operator with the continuity equation treated with a first deriva-
tive that is p+ 2 globally accurate. All operators except the MHO operator have practically identical rates
of convergence, as we saw for the three-dimensional NS equations. The MHO operator does not show the ex-
pected p+2 convergence rate. However, as shown in Figure 6, the MHO operator does produce a significantly
smaller error than the other operators, almost an order of magnitude smaller.

Table 5. Convergence rates of D2(B)(4,:,:) operators one-dimensional NS equations using MMS with a Reynolds
number of unity

Operator O (e)

D 3.011

W 3.010

M 3.010

L 3.010
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Figure 6. Performance of D2(B)(4,:,:) operator for the 1D NS equations using MMS, no dissipation, and a
Reynolds number of unity
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VII. Conclusions and Future Work

The focus of this paper has been the derivation of HO minimum-stencil SBP operators for the second
derivative with variable coefficients. In combination with SATs to weakly enforce boundary conditions, HO
SBP operators provide an efficient means of solving PDEs discretized on structured grids. We have given a
complete picture as to how to derive the various relevant operators necessary for PDEs containing first and
second derivatives with variable coefficients.

The second derivative can be constructed by application of the first derivative twice or by derivation of
a minimum-stencil SBP operator. The benefits of the minimum-stencil form are smaller bandwidth and
better accuracy and damping characteristics. We presented our derivation for the minimum-stencil SBP
approximation to the second derivative with variable coefficients. We have been able to derive the general

solution to the D(2p,p,:)
2 (B) for p ∈ [1, 2, 3] operators, and specific instances of the D(8,4,:)

2 (B) operator (not
presented here) and propose a systematic means of optimizing the various SBP operators for the free vari-
ables that the operators possess.

We optimized the operators in terms of a metric on the coefficients of the leading truncation terms of
the boundary stencils. We examined the behaviour of the resultant operators, using MMS, in the context
of the LCD equation and the three-dimensional NS equations. We observed that the error characteristics of
the operators in the context of the LCD equation did not transfer exactly to the NS equations. In particular,
using our D2(B)(6,:,:) wide-boundary-stencil operator, we where unable to get converged solutions for the
NS equations while the operator performed well for the LCD equation. This leads us to two conclusions,
first, we must look at other metrics besides the coefficients of the leading truncation term, and second, that
we must examine and accordingly adjust these operators within the context of interest.

For parabolic problems, using SBP operators for the second derivative results in a global order of accu-
racy of p + 2, for the minimum-stencil operator, and p + 1, for the application of the first derivative twice,
and we show that the minimum-stencil operator not only has better convergence but smaller error. However,
the compressible NS equations are incompletely parabolic and we find that the minimum-stencil operator has
the same error characteristics as the application of the first derivative twice. In order to retain the desirable
accuracy characteristics of the minimum-stencil operator, we propose using a p+ 2 accurate first derivative
for the continuity equation, while proving that the discretization is still amenable to the energy method, a
prerequisite for proving time stability. Our initial results show significant improvements in accuracy.

Future work will concentrate on application of these operators to practical aerodynamic problems in or-
der to ascertain their efficiency in that context.
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