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Abstract
The goal of this paper is to outline the requirements for obtaining accurate solutions and
functionals from high-order tensor-product generalized summation-by-parts discretizations
of the steady two-dimensional linear convection and Euler equations on general curved
domains. Two procedures for constructing high-order grids using either Lagrange or B-
spline mappings are outlined. For the linear convection equation, four discretizations are
derived and characterized—two based on the mortar-element approach and two based on
the global summation-by-parts-operator approach. It is shown numerically that the schemes
are dual consistent, and the requirements for achieving functional superconvergence for
each set of methods are outlined. For the Euler equations, a dual-consistent mortar-element
discretization is proposed and the practical requirements for obtaining accurate solutions and
superconvergent functionals for problems of increasing practical relevance are delineated
through theory and numerical examples.

Keywords Generalized summation-by-parts operators · Functional superconvergence ·
Curvilinear coordinates · Dual consistency · Computational fluid dynamics · High-order
methods

Mathematics Subject Classification 65N06 · 65N12 · 65N50

1 Introduction

This work is concerned with obtaining accurate solutions and, particularly, functionals in the
context of high-order computational fluid dynamics simulations. Practically, in the context
of aerodynamic shape optimization for example, obtaining accurate functionals is especially
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important, as the objective function and constraints driving the overall optimization procedure
typically depend primarily on functionals like lift and drag and only implicitly depend on
the accuracy of the numerical solution through these same functionals (see, for example,
[16]). Furthermore, the time it takes to reach a specified error tolerance can be reduced by
increasing functional accuracy for a given number of degrees of freedom, which translates
to faster flow solution times overall. These factors taken together motivate the present focus
on obtaining accurate functionals.

Several authors have investigated sufficient conditions that result in functional supercon-
vergence for a range of numerical schemes. These include Pierce and Giles [27], Lu [22],
Hartmann [13], and, more recently, Hartmann and Leicht [14] and Cockburn and Wang [4].
Across many of these approaches, a recurring theme, initially understood in the context of
discontinuous Galerkin schemes, is the concept of dual consistency as an enabling property
that a given discretization should satisfy to achieve functional superconvergence. Of partic-
ular importance for the present work, Hicken and Zingg [17] showed that dual-consistent
discretizations of scalar linear hyperbolic and elliptic partial differential equations (PDEs)
constructed with classical diagonal-norm summation-by-parts (SBP) operators and simul-
taneous approximation terms (SATs) achieve functional superconvergence for sufficiently
smooth problems. Subsequently, Hicken and Zingg [18] outlined how to construct a dual-
consistent classical SBP-SAT discretization of the Euler equations and numerically showed
that the dual-consistent scheme outperforms a dual-inconsistent scheme with respect to func-
tional convergence.Around this time,DelReyFernández et al. [8] introduced a generalization
of classical tensor-product SBP operators that extended the SBP approach to a broader class
of operators, hereafter referred to as generalized SBP operators. Details of the development
of the SBP-SAT approach over the last several decades can be found in the review papers by
Del Rey Fernández et al. [9] and Svärd and Nordström [29].

Compared to discretizations based on classical SBP (CSBP) operators, sufficient condi-
tions for realizing functional superconvergence with generalized SBP discretizations are not
as well understood. In their initial generalization, Del Rey Fernández et al. [8] considered
a steady one-dimensional linear problem and showed, numerically, that the integral of the
solution over the domain superconverged at a rate of approximately τ + 1, where τ is the
degree of the quadrature rule associated with a given SBP operator. Subsequently, Boom
and Zingg [3] and Boom [2] extended some of the linear results of Hicken and Zingg [17]
to time-marching methods constructed with generalized SBP operators. For discretizations
based on multidimensional SBP operators, Del Rey Fernández et al. [10] found that the
energy error for a two-dimensional discretization of the linear convection equation super-
converged at rates of 2p and 2p + 1 for the SBP-Γ and SBP-Ω schemes, respectively. Yan
et al. [34] investigated multidimensional SATs for linear diffusion-type PDEs and found
that the volume functional considered converged at a rate of 2p for both the SBP-Γ and
SBP-Ω schemes. More recently, Worku and Zingg [33] extended the framework of Yan
et al. [34] to encompass additional types of SATs and demonstrated that degree p dual
consistent multidimensional SBP discretizations of linear diffusion-type PDEs exhibit 2p
functional superconvergence. For discretizations constructed using tensor-product general-
ized SBP operators, it was previously shown in Craig Penner and Zingg [5] that for some
linear hyperbolic PDEs, Legendre–Gauss–Lobatto (LGL) operators outperform Legendre-
Gauss (LG) operators with respect to functional accuracy when the degree of the geometry is
greater than the degree of the underlying discretization, the volume metric terms are approx-
imated using the same generalized SBP operator used to discretize the flux terms, and the
surface metric terms are constructed by extrapolating the volume metric terms (hereafter
referred to as the baseline approach for the metrics).
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In the present work, two procedures for constructing high-order grids using Lagrange
polynomials and B-splines are outlined. Next, the investigation of functional accuracy in [5]
is extended in the following two directions, focusing on element-type tensor-product gener-
alized SBPmethods. First, building upon the discretizations developed in Del Rey Fernández
et al. [7], four tensor-product generalized SBP discretizations of the two-dimensional linear
convection equation are considered (two based on themortar-element approach and two based
on the global SBP-operator approach). It is demonstrated numerically that the schemes are
dual consistent, and the requirements for achieving functional superconvergence are outlined
for each set of schemes. Here, the term functional superconvergence is used to refer to the
phenomenon whereby integral functionals based on a degree p discretization converge at a
rate of at least 2p under uniform refinement, despite the numerical solution only converging
at a nominal rate of about p+1 for sufficiently smooth problems. Second, using information
gained from the analysis of the linear convection equation, a representative mortar-element
discretization approximating the divergence form of the two-dimensional Euler equations is
presented and sufficient conditions for achieving accurate solutions and functional supercon-
vergence are delineated.

2 Notation

The notation in this paper is similar to that used in [6, 7]. Upper-case letters in sans-serif
font (e.g., H) and lower-case bold font (e.g., u) are used to denote matrices and vectors,
respectively, while upper-case letters in script font (e.g., U) and upper-case letters in bold
script font (e.g., U) are used to denote scalar- and vector-valued functions, respectively.
Let Ω ⊂ R

2 denote a two-dimensional domain in Cartesian coordinates [x1, x2] ∈ R
2

having the boundary ∂Ω . For each discretization, the physical domain is decomposed into
several nonoverlapping elements, and element-local time-invariant invertible transformations
(satisfying, for example, Assumption 1 in [7, 25]) are used to express each physical element in
terms of the computational domain Ω̂ = [αξ1 , βξ1 ]×[αξ2 , βξ2 ] in computational coordinates
[ξ1, ξ2] ∈ R

2 having the boundary Γ̂ . The face numbering convention used in this work is
identical to that summarized in Table 1 in [7]. Furthermore, occasionally big O notation is
used where the term P(h), for example, is order p + 1, i.e., P(h) = O(h p+1), if and only if
there exist constants C > 0 and h	 > 0 such that

|P(h)| ≤ Chp+1 ∀h < h	,

where C and h	 are constants with respect to h. The definition of a one-dimensional gen-
eralized SBP operator in the ξl direction, D

(1D)
ξl

∈ R
Nl×Nl , can be found, for example, in

Definition 5 in [9] and Definition 2 in [7]. To extend the various one-dimensional SBP oper-
ators (and their constituent matrices) to multiple dimensions, Kronecker tensor products are
used (see, for example, Definition 1 in [7] for the definition of a Kronecker tensor product).
Interpretations of the constituent matrices (e.g., H, Qξ1 ) that form the various multidimen-
sional SBP operators in terms of the different bilinear forms they approximate can be found,
for example, in [5–7].

The focus of this paper is on element-type SBP operators, specifically, those based on
LGL and LG quadratures. Table 1 in [5] lists the element-type generalized SBP operators
used throughout this paper, summarizing their respective nodal distributions and accuracy
properties. Finally, for the LGL and LG schemes, the numerical results are presented with
respect to “Element size” by default, which is defined as follows:
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Element size :=
{

Ntotal

(p + 1)d

}− 1
d = {Nelements}− 1

d ,

where Ntotal is the total number of grid nodes and d is the number of dimensions. For the LGL
and LG schemes, Ntotal = (p+1)d Nelements, where Nelements is the total number of elements.
When comparing the LGL and LG schemes to CSBP schemes refined by increasing the
number of interior nodes for a fixed number of elements, the numerical results are presented

with respect to “Grid size” to keep the comparison consistent, where Grid size := {Ntotal}− 1
d .

3 High-Order Grid Generation

In the present work, high-order element-type grids are constructed via element mappings.
In general, on a given element, to map a point (ξ1, ξ2) ∈ Ω̂ in the computational domain
to a point (x1, x2) ∈ Ω in the physical domain, the element-local mapping T : Ω̂ → Ω is
employed, defined by

x(ξ) = T (ξ) :=
N∑

i, j=1

xi j fi (ξ1) f j (ξ2), (1)

where

x(ξ) =
[
x1(ξ1, ξ2)
x2(ξ1, ξ2)

]
and xi j =

[
x1(i, j)
x2(i, j)

]
, (2)

i.e., xi j holds the physical coordinates of the control point corresponding to the index (i, j).
Furthermore, fi (ξ1) and f j (ξ2) represent basis functions in the ξ1 and ξ2 directions, respec-
tively. Note that it has been assumed that N control points are being used in each direction.
In general, the number of control points used to define the mapping will be different than the
number of nodes associated with the generalized SBP operator. In this work, two approaches
are used for choosing the control point locations and basis functions: one based on Lagrange
polynomials and one based on B-splines. Each approach is derived starting from an existing
grid consisting of structured blocks that is, in general, defined solely in terms of nonuniform
nodal locations in physical space.

For the Lagrange approach, fi (ξ1) and f j (ξ2) are chosen to be Lagrange polynomials,
i.e., fi (ξ1) = 
i (ξ1) and f j (ξ2) = 
 j (ξ2), where


i (ξ1) :=
N∏

m=1
m �=i

ξ1 − ξ1,m

ξ1,i − ξ1,m
, i = 1, . . . , N (3)

and the basis function 
 j (ξ2) is defined similarly. The initial grid is used directly to define the
control point locations xi j , i, j = 1, . . . , N . Finally, for the Lagrange approach the control
point xi j corresponds to the point (ξ1,i , ξ2, j ) in computational space.

For the B-spline approach, the approach of Del Rey Fernández et al. [7] is followed by
starting with the approach of Hicken and Zingg [16] and fitting the grid in a least-squares
sense on each element to identify suitable control point locations. Formally, the control

points xi j , i, j = 1, . . . , N are called de Boor control points, and fi (ξ1) = N (pg+1)
i (ξ1) and

f j (ξ2) = N (pg+1)
j (ξ2) are B-spline basis functions.
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The result of using either of the Lagrange or B-spline approaches is an element-local
analytical representation of a grid that approximates the true geometry. To use a specific
generalized SBP operator to numerically solve a given PDE on the resultant grid, the (ξ1, ξ2)

nodes in computational space that correspond to the nodes of the operator of interest are
determined, the (x1, x2) coordinates of the updated grid in physical space that corresponds to
the desired generalized SBP operator are computed, and the PDE is solved numerically. With
both the Lagrange andB-spline approaches, themapping is required to be onlyC0 continuous
at element interfaces due to the use of SATs. However, within elements, the mapping should
be at least C p continuous, where p is the degree of generalized SBP operator being used, to
avoid unnecessarily degrading the accuracy of the overall discretization. With the Lagrange
approach, the mapping is C∞ continuous within elements, which satisfies the C p continuity
requirement. With the B-spline approach, the continuity of the mapping within elements
depends on the number of control points used. When N > pg + 1, the continuity of the
mapping is only C pg−1 at interior knots. However, when N = pg + 1, there are no interior
knots (assuming open knot vectors having a multiplicity of pg + 1 are used), which means
that the continuity of themappingwithin elements isC∞. Therefore, due to theC p continuity
requirement, if one wants to use a degree pg B-spline mapping, one must use N = pg + 1
control points in each element.

Remark 1 In the context of unstructured grids, the degree of the mapping typically refers
to the total degree of the mapping (e.g., [6]), while in the present multidimensional tensor-
product case the degree of the mapping refers to the degree of the mapping in each coordinate
direction. Therefore, a two-dimensional degree p tensor-product mapping corresponds to a
mapping of total degree 2p in the unstructured case.

4 Accurate Solutions and Functionals for the Linear Convection
Equation

In this section, four dual-consistent discretizations of the two-dimensional linear convection
equation are presented and characterized with respect to truncation error, solution accuracy,
and functional accuracy.

4.1 Two-Dimensional Linear Convection Equation

Consider the two-dimensional linear convection equation posed as a boundary-value problem

∇ · F :=
2∑

m=1

∂(amU)

∂xm
= S in Ω,

U = U− on Γ −,

(4)

where U is the solution, S is the source term, and am are the constant components of the
convection speed. The inflow boundary Γ − is defined by Γ − := {(x1, x2) ∈ Γ | a · n ≤ 0},
where a = [a1, a2]T and n is the outward unit normal vector. The outflow boundary Γ + is
defined by Γ + := Γ \ Γ −.
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On a single element, the transformed divergence form, or strong conservation form, of (4)
is given by

2∑
l=1

∂

∂ξl

(
2∑

m=1

J
∂ξl

∂xm
amU

)
= JS in Ω̂, (5)

where J is the Jacobian of the transformation from physical coordinates to computational
coordinates, T : Ω̂ → Ω . See, for example, [28] for the definition of the Jacobian and
the various metric terms in two dimensions. Furthermore, for simplicity, it is assumed that
a = [1, 1]T for the presentation of the different discretizations, but am �= 1 is introduced for
the numerical examples. As noted by several papers (e.g., [7]), (5) can also be expressed in
skew-symmetric form using the canonical splitting

1

2

{∇ · F + Λ · ∇U
}

:= 1

2

2∑
l=1

{
∂

∂ξl

(
2∑

m=1

J
∂ξl

∂xm
U
)

+
2∑

m=1

J
∂ξl

∂xm

∂U
∂ξl

}
= JS in Ω̂,

(6)

where

Λ :=
[

2∑
m=1

J
∂ξ1

∂xm
,

2∑
m=1

J
∂ξ2

∂xm

]T
.

While the skew-symmetric form has been shown to be important for constructing provably
stable schemes (see, for example, [7]), in the present work discretizations of both forms are
examined with respect to dual consistency and functional superconvergence, in part because
discretizations approximating the divergence form of the governing equations are still used
in many production CFD codes.

4.2 Corresponding Continuous Dual Equation

To derive the continuous dual equation for both the divergence and the skew-symmetric forms
of the linear convection equation, the following integral functional is introduced that takes
the given form when one assumes that the domain consists of a single element:

I(U) :=
∫

Ω̂

JGU dΩ̂ +
∫

Γ̂ +
ψ

Γ̂
n · (ΛU) dΓ̂ , (7)

which has a contribution from the volume of the domain and a contribution from the outflow
boundary of the domain, denoted by Γ̂ +. Following a procedure similar to that in [13], the
dual problem can be expressed in both divergence and skew-symmetric forms analogous to
the primal problem:

−Λ · ∇ψ = JG and − 1

2

{
Λ · ∇ψ + ∇ · (Λψ)

} = JG.

Like the primal problem, the divergence and skew-symmetric forms of the dual problem are
analytically identical—only when discretized are the two forms no longer identical.
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4.3 Discretizations of the Two-Dimensional Linear Convection Equation

In the following sections, two discretizations of the divergence form of the linear convec-
tion equation and two discretizations of the skew-symmetric form of the linear convection
equation are presented. Each discretization is based on either the mortar-element approach
or the global SBP-operator approach as described in Del Rey Fernández et al. [7]. For the
mortar-element approach, the surface quadrature nodes are defined on mortar faces that are
introduced at element interfaces and boundaries and the gridmetrics are defined on themortar
faces. In contrast, for the global SBP-operator approach, a global SBP operator is constructed
over the entire grid, no mortar faces are introduced, and the grid metrics are approximated
using the global SBP operators. For each scheme, a discrete integral functional is defined that
approximates the continuous integral functional and a discretization is derived that approxi-
mates the corresponding dual problem. For simplicity, each discretization is constructed for a
domain consisting of only a single element, which eliminates the need for an element index.
Interface SATs for these types of schemes are discussed in [7].

4.3.1 Mortar-Element Approach: Divergence Form

First, the divergence form of the linear convection equation, given by (5), is discretized using
the mortar-element approach. This gives, on a single element,

2∑
l,m=1

Dξl diag

(
J

∂ξl

∂xm

)
h
uh = diag (Jh) s + SATuh

(2l−1) + SATuh
(2l), (8)

where the boundary SAT on the 2l − 1 face is defined as

SATuh
(2l−1) :=H−1

2∑
l=1

{
−RTαξl

H⊥
ξl

(
f (2l−1),h(uh) − f 	

(2l−1),h(uh)
)}

with

f (2l−1),h(uh) :=
2∑

m=1

Rαξl
diag

(
J

∂ξl

∂xm

)
h
uh

and

f 	
(2l−1),h(uh) := 1

2
Λ(2l−1),h

(
u[2l−1] + Rαξl

uh
)

− 1

2

∣∣Λ(2l−1),h
∣∣ (Rαξl

uh − u[2l−1]
)

.

The boundary SAT and fluxes on the 2l face are defined similarly. The volume metric terms
and metric Jacobians are stored in the diagonal matrices

diag

(
J

∂ξl

∂xm

)
h

and diag (Jh) ,

respectively, where the subscript h indicates that these terms are, in general, approximate
terms. Similarly, the metric terms appearing in the SAT on the 2l − 1 face, for example, are
the mortar metric terms given by

Λ(2l−1),h :=
2∑

m=1

diag

(
J

∂ξl

∂xm

)[2l−1]

h
,
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where the quantity within the square brackets on a given mortar metric term indicates the
surface on which that specific metric term is constructed. Similarly, the vectors u[2l−1] and
u[2l] hold, in the single element case, boundary data on the 2l − 1 face and the 2l face,
respectively. The discrete integral functional is given by

Ih(uh) := gTH diag (Jh) uh

− 1

2

2∑
l=1

ψT[2l−1]H⊥
ξl

(
Λ(2l−1),h − ∣∣Λ(2l−1),h

∣∣) Rαξl
uh

+ 1

2

2∑
l=1

ψT[2l]H⊥
ξl

(
Λ(2l),h + ∣∣Λ(2l),h

∣∣) Rβξl
uh .

(9)

The discrete dual problem is constructed by linearizing the discrete residual and the discrete
integral functional as follows (see, for example, Hartmann [13]): find ψh ∈ R

n such that

R′
h[uh](wh,ψh) = I ′

h[uh](wh) ∀wh ∈ R
n, (10)

where R′
h[uh](wh,ψh) is the Fréchet derivative of Rh(·,ψh) at uh in the direction wh ,

I ′
h[uh](wh) is the Fréchet derivative of Ih(·) at uh in the directionwh , and n is the number of

nodes. As the linear convection equation is a linear PDE, the use of Fréchet derivatives in the
definition of the discrete dual problem might not be strictly necessary in all cases; however,
in the present case it facilitates the extension of the approach to nonlinear PDEs.

For the present discretization, the evaluation of (10) leads to the following discrete dual
problem

−
2∑

l,m=1

diag

(
J

∂ξl

∂xm

)
h
Dξlψh = diag (Jh) g + SAT

ψh
(2l−1) + SAT

ψh
(2l), (11)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) :=H−1

2∑
l=1

{
f 	′

(2l−1),h[uh]
}T

H⊥
ξl
Rαξl

ψh

− 1

2
H−1

2∑
l=1

RTαξl
H⊥

ξl

(
Λ(2l−1),h − ∣∣Λ(2l−1),h

∣∣)ψ [2l−1].

Like u[2l−1] and u[2l], the vectorsψ [2l−1] andψ [2l] hold, in the single element case, boundary
data on the 2l − 1 face and the 2l face, respectively.

4.3.2 Mortar-Element Approach: Skew-Symmetric Form

Next, the skew-symmetric form of the linear convection equation given by (6) is discretized
using the mortar-element approach. This gives, on a single element,

1

2

2∑
l,m=1

{
Dξl diag

(
J

∂ξl

∂xm

)
h
uh + diag

(
J

∂ξl

∂xm

)
h
Dξl uh

}

= diag (Jh) s + SATuh
(2l−1) + SATuh

(2l),

(12)

where the general structures of the boundary SATs are unchanged from the mortar-element
discretization of the divergence form in addition to the discrete integral functional. Likewise,
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the fluxes in the boundary SATs are the same as for the mortar-element discretization of the
divergence form; however, the numerical fluxes are not. For (12), the numerical flux in the
boundary SAT on the 2l − 1 face, for example, is defined by

f 	
(2l−1),h(uh) := 1

2

(
Λ(2l−1),hu[2l−1] + Rαξl

2∑
m=1

diag

(
J

∂ξl

∂xm

)
h
uh

)

− 1

2

∣∣Λ(2l−1),h
∣∣ (Rαξl

uh − u[2l−1]
)

.

The corresponding discrete dual problem is given by

− 1

2

2∑
l,m=1

{
Dξl diag

(
J

∂ξl

∂xm

)
h

+ diag

(
J

∂ξl

∂xm

)
h
Dξl

}
ψh

= diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l),

(13)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) := 1

2
H−1

2∑
l=1

RTαξl
H⊥

ξl
Rαξl

2∑
m=1

diag

(
J

∂ξl

∂xm

)
h
ψh

− 1

2
H−1

2∑
l=1

2∑
m=1

diag

(
J

∂ξl

∂xm

)
h
RTαξl

H⊥
ξl
Rαξl

ψh

+ H−1
2∑

l=1

{
f 	′

(2l−1),h[uh]
}T

H⊥
ξl
Rαξl

ψh

− 1

2
H−1

2∑
l=1

RTαξl
H⊥

ξl

(
Λ(2l−1),h − ∣∣Λ(2l−1),h

∣∣)ψ [2l−1].

4.3.3 Global SBP-Operator Approach: Divergence Form

Next, the divergence form of the linear convection equation, given by (5), is discretized using
the global SBP-operator approach. This gives, on a single element,

2∑
l,m=1

Dξl diag

(
J

∂ξl

∂xm

)
h
uh = diag (Jh) s + SATuh

(2l−1) + SATuh
(2l) (14)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh
(2l−1) := − 1

2
H−1

2∑
l=1

{
RTαξl

H⊥
ξl
Rαξl

(
Λh,l + ∣∣Λh,l

∣∣)} (uh − Ĩξl u[2l−1]
)

,

where

Λh,l :=
2∑

m=1

diag

(
J

∂ξl

∂xm

)
h
,

Ĩξ1 := 1ξ1 ⊗ Iξ2 , and Ĩξ2 := Iξ1 ⊗ 1ξ2 have been introduced.
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The discrete integral functional is given by

Ih(uh) := gTH diag (Jh) uh

− 1

2

2∑
l=1

ψT[2l−1]H⊥
ξl
Rαξl

(
Λh,l − ∣∣Λh,l

∣∣) uh

+ 1

2

2∑
l=1

ψT[2l]H⊥
ξl
Rβξl

(
Λh,l + ∣∣Λh,l

∣∣) uh .
(15)

This leads to the following discrete dual problem

−
2∑

l,m=1

diag

(
J

∂ξl

∂xm

)
h
Dξlψh = diag (Jh) g + SAT

ψh
(2l−1) + SAT

ψh
(2l), (16)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) := 1

2
H−1

2∑
l=1

{(
Λh,l − ∣∣Λh,l

∣∣) RTαξl
H⊥

ξl
Rαξl

} (
ψh − Ĩξlψ [2l−1]

)
.

4.3.4 Global SBP-Operator Approach: Skew-Symmetric Form

Here, the skew-symmetric form of the linear convection equation given by (6) is discretized
using the global SBP-operator approach. This gives, on a single element,

1

2

2∑
l,m=1

{
Dξl diag

(
J

∂ξl

∂xm

)
h
uh + diag

(
J

∂ξl

∂xm

)
h
Dξl uh

}

= diag (Jh) s + SATuh
(2l−1) + SATuh

(2l),

(17)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh
(2l−1)

:= − 1

2
H−1

2∑
l=1

{
1

2
RTαξl

H⊥
ξl
Rαξl

(
Λh,l + ∣∣Λh,l

∣∣)+ 1

2

(
Λh,l + ∣∣Λh,l

∣∣) RTαξl
H⊥

ξl
Rαξl

}

×
(
uh − Ĩξl u[2l−1]

)
.

The discrete integral functional is given by

Ih(uh) := gTH diag (Jh) uh

− 1

2

2∑
l=1

{
1

2

(
Ĩξlψ [2l−1]

)T
RTαξl

H⊥
ξl
Rαξl

(
Λh,l − ∣∣Λh,l

∣∣) uh

+1

2

((
Λh,l − ∣∣Λh,l

∣∣) Ĩξlψ [2l−1]
)T

RTαξl
H⊥

ξl
Rαξl

uh

}

+ 1

2

2∑
l=1

{
1

2

(
Ĩξlψ [2l]

)T
RTβξl

H⊥
ξl
Rβξl

(
Λh,l + ∣∣Λh,l

∣∣) uh

+1

2

((
Λh,l + ∣∣Λh,l

∣∣) Ĩξlψ [2l]
)T

RTβξl
H⊥

ξl
Rβξl

uh

}
.

(18)
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This leads to the following discrete dual problem

− 1

2

2∑
l,m=1

{
Dξl diag

(
J

∂ξl

∂xm

)
h

+ diag

(
J

∂ξl

∂xm

)
h
Dξl

}
ψh

= diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l)

(19)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SAT
ψh
(2l−1)

:= 1

2
H−1

2∑
l=1

{
1

2
RTαξl

H⊥
ξl
Rαξl

(
Λh,l − ∣∣Λh,l

∣∣)+ 1

2

(
Λh,l − ∣∣Λh,l

∣∣) RTαξl
H⊥

ξl
Rαξl

}

×
(
ψh − Ĩξlψ [2l−1]

)
.

4.4 Approximations of theMetrics

To derive the transformed version of the linear convection equation in computational coor-
dinates, the volume metric invariants are used, given by

2∑
l=1

∂

∂ξl

(
J

∂ξl

∂xm

)
= 0, m = 1, 2. (20)

Also, note that by integrating the volumemetric invariants over the domain the surface metric
invariants are obtained, given by

∫
Ω̂

2∑
l=1

∂

∂ξl

(
J

∂ξl

∂xm

)
dΩ̂ =

∮
Γ̂

2∑
l=1

(
J

∂ξl

∂xm

)
nξl dΓ̂ = 0, m = 1, 2. (21)

Discretely satisfying themetric invariants is important for freestream preservation [7]. There-
fore, approximations of the metric terms are sought that satisfy discrete versions of the metric
invariants.

4.4.1 Mortar-Element Metrics

Substituting the constant solution uh,κ = 1κ into the mortar-element discretizations of the
skew-symmetric and divergence forms of the linear convection equation, the following dis-
cretization of the volume metric invariants on element κ is obtained:

2∑
l=1

Dξl diag

(
J

∂ξl

∂xm

)
h,κ

1κ

= H−1
2∑

l=1

{
Eξl diag

(
J

∂ξl

∂xm

)
h,κ

1κ + RTαξl
H⊥

ξl
diag

(
J

∂ξl

∂xm

)[2l−1]

h,κ

1[2l−1]

− RTβξl
H⊥

ξl
diag

(
J

∂ξl

∂xm

)[2l]

h,κ

1[2l]

}
, m = 1, 2.

(22)
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Furthermore, discretely integrating the discrete volume metric invariants over the domain by
premultiplying by 1TκH and using the SBP property results in a discrete approximation of the
surface metric invariants.

As the baseline approach, the volume metric terms are approximated using the same
SBP operator used to discretize the flux terms and the surface metric terms are constructed
by extrapolating the volume metric terms to the surface of each element. For operators
with boundary nodes in two-dimensions, the standard approach for the metrics leads to the
satisfaction of the discrete volume and surface metric invariants. However, as noted in [7], for
operators without boundary nodes, themetric values extrapolated from adjacent elements to a
shared surface will not coincide in general (this occurs in two dimensions when pg ≥ p+1).

Alternatively, a modified approach for the mortar-element metrics can be used, which is
the same as that used by Crean et al. [6] in a multidimensional setting and Del Rey Fernández
et al. [7] in a tensor-product setting. With this approach, the volume metrics on element κ

are determined by solving a strictly convex quadratic optimization problem, namely

min
aκ
m

1

2

(
aκ
m − aκ

m,target

)T (
aκ
m − aκ

m,target

)
,

subject to Maκ
m = cκm, m = 1, 2,

(23)

where
(
aκ
m

)T := 1Tκ
[
diag

(
J ∂ξ1

∂xm

)
h,κ

, diag
(
J ∂ξ2

∂xm

)
h,κ

, diag
(
J ∂ξ3

∂xm

)
h,κ

]
. (24)

The entries in aκ
m,target are taken from the analytical mapping, while the constraintMaκ

m = cκm
arises from the discretization of the volume metric invariants on element κ . The solution to
the optimization problem is given by (see Proposition 1 in Crean et al. [6])

aκ
m = aκ

m,target + M†
(
Maκ

m,target − cκm
)

, (25)

where M† is the Moore-Penrose pseudoinverse of M. As articulated in [7], to solve the
optimization problem for themetrics given by (23), the condition 1Tκ c

κ
m = 0 is required,which

is the discrete analogue of the continuous surfacemetric invariant condition on element κ . The
condition 1Tκ c

κ
m = 0 is satisfied if the surface metric terms appearing in cκm are taken directly

from a polynomial curvilinear coordinate transformation and the degree of the transformation
leads to surfacemetric termswhose degree is less than or equal to the degree of the quadrature
associated with the SBP operator being used.

Remark 2 In general, one does not need to restrict oneself to a certain degree of polynomial
curvilinear coordinate transformation to use the modified approach for the metrics. Indeed,
there is no need to assume that the curvilinear coordinate transformation has any polynomial
properties at all. As alluded to by Crean et al. [6], in the general case, one can first solve a
global optimization problem for the surface metrics appearing in cκm for each element such
that the condition 1Tκ c

κ
m = 0 is satisfied on each element. Following this global optimization,

the modified approach for the metrics can be used to solve for the volume metrics on each
element.

4.4.2 Global SBP-Operator Metrics

For the global SBP-operator approaches, the metrics are approximated using the global oper-
ators with one of the standard approaches. In two dimensions, this process is straightforward.
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In three dimensions, there are more possibilities. In Del Rey Fernández et al. [7], an example
using the approach of Thomas and Lombard [30] is given. Other standard approaches include
those given by Deng et al. [11] and Vinokur and Yee [32].

4.5 Numerical Results

In this section the results of numerical experiments exploring the properties of the various
schemes are presented, with a particular focus on dual consistency and functional supercon-
vergence.

4.5.1 Two-Dimensional Scalar Linear Boundary-Value Problem

The steady two-dimensional linear convection equation is considered over a unit square, and
the primal and dual source terms, denoted by S = S(x, y) and G = G(x, y), respectively,
are chosen such that the exact primal and dual solutions are defined by

Uexact(x, y) := sin(2πx) + sin(2π y) and

ψexact(x, y) := sin(2πx) + exp(y) − 1

exp(1) − 1
,

respectively. These particular primal and dual solutions ensure that both the volume and
boundary contributions to the integral functional (7) are nonzero. The initial grid is con-
structed via the following analytical transformation,

x(ξ, η) = ξ + 1

40
sin(2πξ) sin(2πη),

y(ξ, η) = η + 1

40

exp(ξ) − 1

exp(1) − 1
sin(2πη),

where (ξ, η) ∈ Ω . The Lagrange approach for constructing high-order grids outlined in
Sect. 3 is used together with the exact analytical transformation above to generate the grids
for the numerical experiments summarized in this section. Each of the four primal and dual
discretizations from Sect. 4 can be written in the following compact forms,

Aguh,g = f g,

AT
gψh,g = f dualg ,

where uh,g and ψh,g are the global primal and dual solution vectors, respectively, Ag and

AT
g are the primal and dual system matrices, respectively, and f g and f dualg are the primal

and dual load vectors, respectively. The discrete primal functional Ih(uh,g) for each scheme
is computed from either (9), (15), or (18), depending on the discretization, and the discrete
dual functional for each scheme is computed from

Ih(ψh,g) := ψT
h,g f g,

where Ih(uh,g) = Ih(ψh,g) by construction. To evaluate the accuracy of each scheme,
the six accuracy measures summarized in Table 1 are used. The truncation error should be
O(h p) to confirm that the primal and dual discretizations are consistent and dual consistent,
respectively. The solution error should be at leastO(h p) withO(h p+1) often being observed
in the literature. Finally, the functional error is considered to be superconvergent if it is at
least O(h2p) and anything less is considered suboptimal.
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Table 1 Accuracy measures for the linear convection equation

Accuracy measure Definition

Primal truncation error
∥∥∥J−1

g H−1
g (Agug − Fg)

∥∥∥∞ = max
∣∣∣J−1
g H−1

g (Agug − Fg)
∣∣∣

Primal solution error
∥∥uh,g − ug

∥∥
Hg

=
√

(uh,g − ug)THg(uh,g − ug)

Primal functional error
∣∣Ih(uh,g) − I(U)

∣∣
Dual truncation error

∥∥∥J−1
g H−1

g (ATgψg − Fdual
g )

∥∥∥∞ = max
∣∣∣J−1
g H−1

g (ATgψg − Fdual
g )

∣∣∣
Dual solution error

∥∥∥ψh,g − ψg

∥∥∥
Hg

=
√

(ψh,g − ψg)
THg(ψh,g − ψg)

Dual functional error
∣∣∣Ih(ψh,g) − I(ψ)

∣∣∣

Table 2 Test case matrix for the boundary-value problem governed by the linear convection equation

Type of discretization Form of equation Metrics Mapping pg

Mortar-element Divergence Baseline Lagrange p

Mortar-element Divergence Baseline Lagrange p + 1

Mortar-element Divergence Modified Lagrange p + 1

Mortar-element Skew-symmetric Baseline Lagrange p

Mortar-element Skew-symmetric Baseline Lagrange p + 1

Mortar-element Skew-symmetric Modified Lagrange p + 1

Global SBP-operator Divergence Global Lagrange p

Global SBP-operator Divergence Global Lagrange p + 1

Global SBP-operator Skew-symmetric Global Lagrange p

Global SBP-operator Skew-symmetric Global Lagrange p + 1

Table 2 summarizes the test case parameters considered for the boundary value problem
governed by the linear convection equation. For each case listed in Table 2, the six accuracy
measures outlined in Table 1 were evaluated for degree one through four LGL and LG
operators. With respect to accuracy, it was found that the the mortar-element divergence and
skew-symmetric discretizations give similar results, likewise for the global SBP-operator
divergence and skew-symmetric discretizations. Therefore, the presentation of the results
is restricted to the divergence forms of the schemes with the understanding that the same
conclusions apply to the skew-symmetric forms. Furthermore, in the tables that follow the
data are only shown for the degree two and three operators (one even degree operator and
one odd degree operator) for conciseness.

Table 3 gives the accuracy results when using the mortar-element discretization of the
divergence form of the linear convection equation using the baseline approach for the metrics
with a degree p Lagrange mapping in each element. All operator types and degrees converge
at either optimal or near optimal rateswith respect to both primal and dual truncation, solution,
and functional error. Relative to the LGL operators, the discretizations based on LG operators
generally have similar convergence rates with lower error values. Note that in this case, the
baseline and modified approaches for the metrics return identical results when using degree
p mappings and this is why only the results using the baseline approach for the metrics are
given.
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Table 3 Numerical results for themortar-element discretization of the divergence form of the linear convection
equation using the baseline approach for the metrics with a degree p Lagrange mapping in each element

Operator p Element size Primal error Dual error

Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.39e+01 2.80e−01 2.81e−01 3.68e+00 2.03e−01 2.81e−01

2.50e−01 6.34e+00 8.37e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02

1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04

6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.70 2.92 4.75

LGL 3 5.00e−01 8.76e+00 1.37e−01 7.88e−02 1.51e+00 8.43e−02 7.88e−02

2.50e−01 9.65e−01 8.90e−03 4.62e−04 4.14e−01 7.21e−03 4.62e−04

1.25e−01 1.56e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06

6.25e−02 1.87e−02 4.39e−05 7.90e−09 6.26e−03 2.31e−05 7.90e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.25e+00 7.16e−02 1.01e−02 2.21e+00 4.85e−02 1.01e−02

2.50e−01 1.89e+00 1.41e−02 3.49e−03 6.86e−01 9.98e−03 3.49e−03

1.25e−01 5.51e−01 1.95e−03 1.42e−04 2.05e−01 1.42e−03 1.42e−04

6.25e−02 1.49e−01 2.41e−04 4.61e−06 5.54e−02 1.75e−04 4.61e−06

Convergence rate 1.83 2.93 4.78 1.82 2.92 4.78

LG 3 5.00e−01 2.80e+00 2.75e−02 1.02e−02 1.04e+00 1.93e−02 1.02e−02

2.50e−01 6.64e−01 2.10e−03 1.10e−04 2.61e−01 1.67e−03 1.10e−04

1.25e−01 7.49e−02 1.10e−04 6.69e−07 2.96e−02 8.38e−05 6.69e−07

6.25e−02 1.08e−02 6.86e−06 5.44e−09 4.34e−03 5.17e−06 5.44e−09

Convergence rate 2.97 4.13 7.16 2.95 4.17 7.16

Convergence rates based on the three finest grids

Table 4 gives the accuracy results when using the mortar-element discretization of the
divergence form of the linear convection equation using the baseline approach for the metrics
with a degree p+1 Lagrange mapping in each element. Although this specific problem does
not require the use of a degree p + 1 mapping, when solving more complex nonlinear
problems the use of higher degree mappings can be beneficial (see, for example, [1, 35]),
which motivates the study of the use of higher degree mappings in the present linear context.
From Table 4, the results with the LGL operators are virtually indistinguishable from the
degree p mapping results summarized in Table 3. Likewise, the primal and dual truncation
and solution error values and convergence rates with the LG operators with the degree p+ 1
mappings are very similar to those with the degree p mappings. In contrast, the functional
convergence rates with the LG operators are significantly reduced with the baseline approach
for themetrics relative to the LGLoperators and relative to the LGoperators with the degree p
mappings, due to the degree p accuracy of the LG extrapolation operators. Note that because
the dual truncation error still converges at a rate close to p, this indicates that this loss of
functional superconvergence is not due to a lack of dual consistency.

Table 5 gives the accuracy results when using the mortar-element discretization of the
divergence form of the linear convection equation using the modified approach for the met-
rics with a degree p + 1 Lagrange mapping in each element. With respect to the present
accuracy measures being studied, the main benefit of the modified approach for the met-
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Table 4 Numerical results for themortar-element discretization of the divergence form of the linear convection
equation using the baseline approach for the metrics with a degree p + 1 Lagrange mapping in each element

Operator p Element size Primal error Dual error

Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01

2.50e−01 6.32e+00 8.36e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02

1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04

6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.69 2.92 4.75

LGL 3 5.00e−01 8.56e+00 1.36e−01 7.92e−02 1.51e+00 8.43e−02 7.92e−02

2.50e−01 9.65e−01 8.89e−03 4.60e−04 4.13e−01 7.19e−03 4.60e−04

1.25e−01 1.55e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06

6.25e−02 1.87e−02 4.38e−05 7.89e−09 6.26e−03 2.31e−05 7.89e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.18e+00 7.06e−02 1.12e−02 2.15e+00 4.76e−02 1.12e−02

2.50e−01 1.88e+00 1.48e−02 1.15e−02 8.62e−01 1.06e−02 1.15e−02

1.25e−01 5.49e−01 2.38e−03 2.93e−03 3.02e−01 1.59e−03 2.93e−03

6.25e−02 1.47e−01 4.43e−04 7.56e−04 7.81e−02 2.44e−04 7.56e−04

Convergence rate 1.84 2.53 1.97 1.73 2.72 1.97

LG 3 5.00e−01 2.86e+00 2.94e−02 2.93e−02 1.43e+00 2.04e−02 2.93e−02

2.50e−01 6.64e−01 2.14e−03 1.02e−03 2.61e−01 1.75e−03 1.02e−03

1.25e−01 7.56e−02 1.15e−04 6.57e−05 2.99e−02 8.58e−05 6.57e−05

6.25e−02 1.09e−02 7.16e−06 4.20e−06 4.25e−03 5.26e−06 4.20e−06

Convergence rate 2.97 4.11 3.96 2.97 4.19 3.96

Convergence rates based on the three finest grids

rics is the retention of functional superconvergence with LG operators when using degree
p+1 mappings. In [7], the lack of conservation with the LG discretizations with the baseline
approach for the metrics in three dimensions was highlighted as one of the motivating factors
for using the modified approach for the metrics. From the present numerical results, it is
observed that considerations of functional accuracy also provide strong motivation for using
the modified approach for the metrics for LG discretizations.

Tables 6 and 7 give the accuracy results when using the global SBP-operator discretization
of the divergence form of the linear convection equation using the global approach for the
metrics with degree p and p + 1 Lagrange mappings in each element, respectively. With
degree p mappings, approximately optimal truncation and solution error convergences rates
are observed, along with functional superconvergence for both the LGL and LG families of
operators.With degree p+1mappings, functional superconvergence is observed for the LGL
schemes and suboptimal functional convergence is observed for the LG schemes (a similar
trend is observed when using exact mappings), despite the dual truncation error converg-
ing close to order p. Therefore, functional accuracy could be considered as a criterion for
potentially preferring the mortar-element approach over the global SBP-operator approach.

123



Journal of Scientific Computing            (2022) 93:36 Page 17 of 37    36 

Table 5 Numerical results for themortar-element discretization of the divergence form of the linear convection
equation using the modified approach for the metrics with a degree p + 1 Lagrange mapping in each element

Operator p Element size Primal error Dual error

Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01

2.50e−01 5.90e+00 8.43e−02 2.97e−02 1.20e+00 5.19e−02 2.97e−02

1.25e−01 1.53e+00 1.09e−02 1.60e−03 4.21e−01 7.27e−03 1.60e−03

6.25e−02 3.77e−01 1.37e−03 7.42e−05 1.17e−01 9.06e−04 7.42e−05

Convergence rate 1.98 2.97 4.32 1.68 2.92 4.32

LGL 3 5.00e−01 8.27e+00 1.39e−01 6.91e−02 1.89e+00 8.56e−02 6.91e−02

2.50e−01 9.69e−01 9.06e−03 5.11e−04 4.04e−01 7.37e−03 5.11e−04

1.25e−01 1.58e−01 7.21e−04 2.56e−06 4.52e−02 3.85e−04 2.56e−06

6.25e−02 1.90e−02 4.43e−05 1.41e−08 6.49e−03 2.37e−05 1.41e−08

Convergence rate 2.84 3.84 7.57 2.98 4.14 7.57

LG 2 5.00e−01 5.17e+00 7.06e−02 1.12e−02 2.15e+00 4.76e−02 1.12e−02

2.50e−01 1.89e+00 1.43e−02 3.60e−03 7.13e−01 1.03e−02 3.60e−03

1.25e−01 5.90e−01 1.99e−03 1.51e−04 2.25e−01 1.46e−03 1.51e−04

6.25e−02 1.61e−01 2.46e−04 4.88e−06 6.03e−02 1.79e−04 4.88e−06

Convergence rate 1.78 2.93 4.76 1.78 2.92 4.76

LG 3 5.00e−01 3.04e+00 2.88e−02 1.07e−02 1.21e+00 2.06e−02 1.07e−02

2.50e−01 6.69e−01 2.16e−03 1.20e−04 2.60e−01 1.72e−03 1.20e−04

1.25e−01 7.39e−02 1.13e−04 7.13e−07 2.99e−02 8.59e−05 7.13e−07

6.25e−02 1.09e−02 6.99e−06 5.78e−09 4.34e−03 5.29e−06 5.78e−09

Convergence rate 2.97 4.13 7.17 2.95 4.17 7.17

Convergence rates based on the three finest grids

5 Accurate Solutions and Functionals for the Euler Equations

In this section a dual-consistent mortar-element discretization of the Euler equations is pre-
sented that is based on the divergence form of the governing equations. In the context of the
Euler equations, it will be seen that the use of degree p+1 mappings facilitates the accuracy
of the flow tangency boundary condition. Hence, the mortar-element approach is preferred
over the global SBP-operator approach due to the ability of the mortar-element approach to
retain functional superconvergence in the presence of degree p+1 mappings when using LG
operators. Furthermore, in the context of the linear convection equation the divergence and
skew-symmetric discretizations gave very similar results in terms of accuracy. Therefore, in
this section only the discretization of the divergence form is presented for simplicity, and
also because the divergence form of the governing equations is used for simulating many
practical problems [15, 26].

5.1 Two-Dimensional Euler Equations

On a single element, the transformed steady two-dimensional compressible Euler equations
are given by
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Table 6 Numerical results for the global SBP-operator discretization of the divergence form of the linear
convection equation using the global approach for the metrics with a degree p Lagrange mapping in each
element

Operator p Element size Primal error Dual error

Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.39e+01 2.80e−01 2.81e−01 3.68e+00 2.03e−01 2.81e−01

2.50e−01 6.34e+00 8.37e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02

1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04

6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.70 2.92 4.75

LGL 3 5.00e−01 8.76e+00 1.37e−01 7.88e−02 1.51e+00 8.43e−02 7.88e−02

2.50e−01 9.65e−01 8.90e−03 4.62e−04 4.14e−01 7.21e−03 4.62e−04

1.25e−01 1.56e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06

6.25e−02 1.87e−02 4.39e−05 7.90e−09 6.26e−03 2.31e−05 7.90e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.86e+00 7.12e−02 1.74e−02 2.21e+00 4.83e−02 1.74e−02

2.50e−01 2.21e+00 1.73e−02 3.43e−03 6.85e−01 1.01e−02 3.43e−03

1.25e−01 7.06e−01 2.15e−03 1.42e−04 2.08e−01 1.40e−03 1.42e−04

6.25e−02 1.83e−01 2.66e−04 4.61e−06 5.52e−02 1.74e−04 4.61e−06

Convergence rate 1.80 3.01 4.77 1.82 2.93 4.77

LG 3 5.00e−01 3.74e+00 3.48e−02 9.73e−03 1.04e+00 2.03e−02 9.73e−03

2.50e−01 7.25e−01 2.25e−03 1.06e−04 2.61e−01 1.59e−03 1.06e−04

1.25e−01 9.58e−02 1.59e−04 6.55e−07 2.96e−02 8.28e−05 6.55e−07

6.25e−02 1.27e−02 9.84e−06 5.40e−09 4.34e−03 5.16e−06 5.40e−09

Convergence rate 2.92 3.92 7.13 2.96 4.14 7.13

Convergence rates based on the three finest grids

∇ · F :=
2∑

l=1

∂

∂ξl

(
2∑

m=1

J
∂ξl

∂xm
F xm (U)

)
= 0 in Ω̂, (26)

where definitions of the vector of conservative variables U and the flux vectors F xm can be
found in [28], for example. To complete the description of the continuous primal problem, (26)
is supplemented with appropriate boundary conditions. For example, suppose the reference
domain includes a wall boundary, Γ̂W, and a farfield boundary, Γ̂ \Γ̂W.On the wall boundary,
the normal flux is constrained as follows

n · F =
2∑

l=1

nξlFξl (PU) on Γ̂W, (27)

which enforces flow tangency by using the matrix P to remove the normal component of
momentum from U , where

Fξl :=
2∑

m=1

J
∂ξl

∂xm
F xm and P :=

⎡
⎢⎢⎣
1 0 0 0
0 1 − n2x1 −nx1nx2 0
0 −nx2nx1 1 − n2x2 0
0 0 0 1

⎤
⎥⎥⎦ . (28)
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Table 7 Numerical results for the global SBP-operator discretization of the divergence form of the linear
convection equation using the global approach for the metrics with a degree p + 1 Lagrange mapping in each
element

Operator p Element size Primal error Dual error

Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01

2.50e−01 6.32e+00 8.36e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02

1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04

6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.69 2.92 4.75

LGL 3 5.00e−01 8.56e+00 1.36e−01 7.92e−02 1.51e+00 8.43e−02 7.92e−02

2.50e−01 9.65e−01 8.89e−03 4.60e−04 4.13e−01 7.19e−03 4.60e−04

1.25e−01 1.55e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06

6.25e−02 1.87e−02 4.38e−05 7.89e−09 6.26e−03 2.31e−05 7.89e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.65e+00 7.01e−02 1.77e−02 2.15e+00 4.74e−02 1.77e−02

2.50e−01 2.21e+00 1.80e−02 7.36e−03 7.14e−01 1.04e−02 7.36e−03

1.25e−01 7.39e−01 2.28e−03 8.25e−04 2.27e−01 1.45e−03 8.25e−04

6.25e−02 1.95e−01 2.83e−04 9.61e−05 5.92e−02 1.81e−04 9.61e−05

Convergence rate 1.75 3.00 3.13 1.80 2.92 3.13

LG 3 5.00e−01 3.88e+00 3.79e−02 1.91e−02 1.17e+00 2.16e−02 1.91e−02

2.50e−01 7.27e−01 2.28e−03 5.72e−04 2.62e−01 1.63e−03 5.72e−04

1.25e−01 9.89e−02 1.61e−04 1.66e−05 2.97e−02 8.32e−05 1.66e−05

6.25e−02 1.27e−02 9.87e−06 5.15e−07 4.32e−03 5.16e−06 5.15e−07

Convergence rate 2.92 3.93 5.06 2.96 4.15 5.06

Convergence rates based on the three finest grids

Table 8 Components of the
outward unit normal,
n = nξ1 ξ̂1 + nξ2 ξ̂2 =
nx1 x̂1 + nx2 x̂2, on each side of

Ω̂

Face number nξ1 nξ2 nx1 nx2

1 −1 0 − ∂ξ1
∂x1

/ ‖∇ξ1‖ − ∂ξ1
∂x2

/ ‖∇ξ1‖
2 1 0 ∂ξ1

∂x1
/ ‖∇ξ1‖ ∂ξ1

∂x2
/ ‖∇ξ1‖

3 0 −1 − ∂ξ2
∂x1

/ ‖∇ξ2‖ − ∂ξ2
∂x2

/ ‖∇ξ2‖
4 0 1 ∂ξ2

∂x1
/ ‖∇ξ2‖ ∂ξ2

∂x2
/ ‖∇ξ2‖

The face numbering convention is the same as that outlined in Table 1
in [7]

Here, nx1 and nx2 are components of n = nx1 x̂1+nx2 x̂2, where n is the outward unit normal
vector and x̂1 and x̂2 are unit coordinate vectors. For reference, the different components of
the outward unit normal on each side of Ω̂ are given in Table 8.

On the farfield boundary, the following condition is specified

n · F = A+U + A−U∞ on Γ̂ \ Γ̂W, (29)

123



   36 Page 20 of 37 Journal of Scientific Computing            (2022) 93:36 

where U∞ is the farfield state and A± = A±(U, n) with

A± := 1

2
(A ± |A|) and A :=

2∑
l=1

Aξl nξl , (30)

where

Aξl :=
2∑

m=1

J
∂ξl

∂xm
Axm and Axm := ∂F xm

∂U . (31)

The matrix A can be diagonalized as follows

A = XΛX−1,

where X and X−1 are matrices holding the right and left eigenvectors of A, respectively, and
Λ is a diagonal matrix holding the eigenvalues of A (see [14] for more details). To obtain
|A|, the eigenvalues of A contained along the diagonal of the matrix Λ are replaced with their
absolute values.

5.2 Corresponding Continuous Dual Equations

To derive the continuous dual problem corresponding to (26), it is helpful to introduce the
following boundary force functional

I(U) :=
∫

Γ̂

i(U) dΓ̂ =
∫

Γ̂W

φ̆
T {n · F(PU)} dΓ̂ , (32)

where i(U) := φ̆
T {n · F(PU)} on Γ̂W and i(U) := 0 on Γ̂ \ Γ̂W, and, following Hartmann

and Leicht [14], for example, the vector φ̆ is defined by

φ̆ := [
0 φT 0

]T
(33)

with

φ =
{

(cos(α), sin(α))T for drag

(− sin(α), cos(α))T for lift,
(34)

where α is the angle of attack. The corresponding strong form of the dual problem is given
by

− (F ′[U])T ∇ψ = 0 in Ω̂,
(
n · F ′[U])T ψ = (

i ′[U])T on Γ̂ . (35)

On the wall boundary the following term is obtained:

n · F =
2∑

l=1

nξlFξl (PU) =
2∑

l=1

nξl

[
0 J ∂ξl

∂x1
p J ∂ξl

∂x2
p 0
]T × ‖∇ξl‖

‖∇ξl‖

=
2∑

l=1

J ‖∇ξl‖ n̆p, where n̆ = [
0 nT 0

]T
.

Also, expanding i(U) along Γ̂W gives

i(U) = φ̆
T
{

2∑
l=1

nξlFξl (PU)

}
=

2∑
l=1

J ‖∇ξl‖ φ̆
T
n̆p.
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Then, expanding
(
n · F ′[U])T ψ = (

i ′[U])T from (35), along Γ̂W, gives

2∑
l=1

J ‖∇ξl‖
(
p′[U])T n̆Tψ =

2∑
l=1

J ‖∇ξl‖
(
p′[U])T n̆Tφ̆, (36)

where p′[U] ∈ R
1×4. This implies that the dual boundary condition along Γ̂W is given by

n̆Tψ = n̆Tφ̆ on Γ̂W. (37)

On the farfield boundary the following term is obtained:

(
n · F ′[U])T ψ = 0 on Γ̂ \ Γ̂W. (38)

Similar results may be found in [13, 14, 18].

5.3 Discretization of the Two-Dimensional Euler Equations

The divergence form of the Euler equations given by (26) is discretized using the mortar-
element approach. This gives on a single element

2∑
l,m=1

Dξl diag
˜

(
J

∂ξl

∂xm

)
h
f xm (uh) = SATuh

(2l−1) + SATuh
(2l), (39)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh
(2l−1) :=H−1

2∑
l=1

{
−RTαξl

H⊥
ξl

(
f (2l−1),h(uh) − f 	

(2l−1),h(uh)
)}

,

where

f (2l−1),h(uh) :=
2∑

m=1

Rαξl
diag

˜
(
J

∂ξl

∂xm

)
h
f xm (uh).

The following notation has been introduced for the volume metric terms

diag
˜

(
J

∂ξl

∂xm

)
h
:= diag

(
J

∂ξl

∂xm

)
h

⊗ I4,

with analogous notation being adopted for the surface metric terms. The numerical fluxes in
the SATs depend on the boundary conditions being applied. As in [18], suppose that farfield
boundary conditions are specified on faces 1, 2, and 4, and a wall boundary condition is
specified on face 3. In this case, the numerical boundary flux functions on faces 3 and 4, for
example, are given by

f 	
(3),h(uh) :=

2∑
m=1

diag
˜

(
J

∂ξ2

∂xm

)[3]

h
f xm (P̃hRαξ2

uh) and

f 	
(4),h(uh) :=A+

(4),h(uh) Rβξ2
uh + A−

(4),h(uh) × (1ξ1 ⊗ U∞),
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where P̃h = Iξ1 ⊗ I4 − ñh ñ
T
h ∈ R

4Nξ1×4Nξ1 with

ñh =

⎡
⎢⎢⎢⎣

n̆h(ξ1,1, ξ2,αξ2
)

n̆h(ξ1,2, ξ2,αξ2
)

. . .

n̆h(ξ1,Nξ1
, ξ2,αξ2

)

⎤
⎥⎥⎥⎦ ∈ R

4Nξ1×Nξ1

and

n̆h(ξ1, ξ2) = [
0 nx1,h(ξ1, ξ2) nx2,h(ξ1, ξ2) 0

]T
.

The boundary flux Jacobian terms in f 	
(4),h , for example, are computed from

A(4),h(uh) =
2∑

m=1

diag
˜

(
J

∂ξ2

∂xm

)[4]

h
Axm (Rβξ2

uh),

where Axm (u) = ∂ f xm (u)/∂u, m = 1, 2, are block diagonal matrices.
The discrete integral functional is given by

Ih(uh) := − (1ξ1 ⊗ 1ξ2 ⊗ φ̆)TRTαξ2
H⊥

ξ2
f 	

(3),h(uh). (40)

This leads to the following discrete dual problem

−
2∑

l,m=1

{
diag

(
J

∂ξl

∂xm

)
h
f ′
xm [uh]

}T
Dξlψh

= diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l),

(41)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) :=H−1

2∑
l=1

{
f 	′

(2l−1),h[uh]
}T

H⊥
ξl
Rαξl

ψh

− H−1
{
f 	′

(3),h[uh]
}T

H⊥
ξ2
Rαξ2

(1ξ1 ⊗ 1ξ2 ⊗ φ̆).

5.4 Accuracy of the FlowTangency Boundary Condition

Bassi and Rebay [1] were the first to recognize the importance of having high-order rep-
resentations of curved boundaries in the presence of flow tangency boundary conditions.
Subsequently, van der Vegt and van der Ven [31] showed that for the linear (i.e., p = 1) case
the use of local mesh refinement provides another means of reducing the error associated
with the boundary representation in conjunction with the flow tangency boundary condi-
tion in the context of the Euler equations. Furthermore, they showed that it is necessary to
take the curved boundary into account for a consistent discontinuous Galerkin discretiza-
tion [31]. Krivodonova and Berger [20] also proposed an alternative approach to recover
accuracy in the presence of wall boundary conditions without resorting to high order geom-
etry representations. More recently, Zwanenburg and Nadarajah [35] compared the use of
isoparametric and superparametric geometry representations. For the Euler equations, they
observed suboptimal solution error convergence rates when using isoparametric geometry
representations and optimal solution error convergence rates when using superparametric
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geometry representations [35]. Note that Bassi and Rebay [1] did not notice a similar benefit
when using superparametric geometry representations with their degree p = 2 and degree
p = 3 discretizations; however, Zwanenburg and Nadarajah [35] numerically demonstrated
that this was likely because Bassi and Rebay only examined entropy error and used elements
with aspect ratio close to one near wall boundaries [35]. Finally, Navah and Nadarajah [24]
and Navah [23] found that using isoparametric geometry representations in combination
with exact normals was sufficient to achieve good solution error convergence rates for a
manufactured solution governed by the Euler equations.

The aim in this section is to provide a mathematical analysis of the accuracy of the flow
tangency boundary condition to elucidate the reasons why superparametric geometry repre-
sentations are beneficial when solving problems governed by the Euler equations (as observed
by [1, 31, 35], for example). Furthermore, while this specific analysis is performed within the
SBP framework, the conclusions could be extended to other types of discretization method-
ologies due to the generality of the SBP approach. To begin, consider the wall boundary SAT
from the discretization of the Euler equations on a single element, given by

SATu
Wall := − H−1RTαξ2

H⊥
ξ2

×
2∑

m=1

⎧⎨
⎩Rαξ2

diag
˜

(
J

∂ξ2

∂xm

)
h
f xm (u) − diag

˜
(
J

∂ξ2

∂xm

)[3]

h
f xm (P̃hRαξ2

u)

⎫⎬
⎭ ,

(42)

where u has been substituted for uh because the objective is to show consistency. The wall
boundary SAT, given by (42), is design order consistent for the Euler equations if

∥∥diag (Jh)
−1 SATu

Wall

∥∥∞ = O(h p), (43)

since the Euler equations are a first-order system of PDEs. Note that the wall boundary
SAT has been multiplied by diag (Jh)

−1 because the discretization is constructed in the
computational domain and it is of interest to evaluate the consistency of the wall boundary
SAT in the physical domain. The following theorem is now proven.

Theorem 1 Assume that a degree pg polynomial geometry representation is used in each
element and assume that the wall normals are constructed directly from the degree pg geom-
etry representation. Then, assuming that the wall boundary SAT given by (42) is not trivially
zero, the wall boundary SAT satisfies the consistency condition (43) if and only if pg ≥ p+1
(i.e., if and only if the geometry representation is superparametric, as opposed to being
isoparametric or subparametric), where pg and p are integers.

Proof Using the Cauchy-Schwarz inequality and noting that
∥∥diag (Jh)

−1
∥∥∞ = O(h−2),

∥∥H−1
∥∥∞ = O(1),∥∥∥RTαξ2

∥∥∥∞ = O(1),
∥∥∥H⊥

ξ2

∥∥∥∞ = O(1),

gives
∥∥diag (Jh)

−1 SATu
Wall

∥∥∞

= O(h−2)

∥∥∥∥∥∥
2∑

m=1

⎧⎨
⎩Rαξ2

diag
˜

(
J

∂ξ2

∂xm

)
h
f xm (u) − diag

˜
(
J

∂ξ2

∂xm

)[3]

h
f xm (P̃hRαξ2

u)

⎫⎬
⎭
∥∥∥∥∥∥∞

.
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Using the triangle inequality the summation can be brought outside the infinity norm to
obtain∥∥diag (Jh)

−1 SATu
Wall

∥∥∞

= O(h−2)

2∑
m=1

∥∥∥∥∥∥Rαξ2
diag

˜
(
J

∂ξ2

∂xm

)
h
f xm (u) − diag

˜
(
J

∂ξ2

∂xm

)[3]

h
f xm (P̃hRαξ2

u)

∥∥∥∥∥∥∞
.

(44)

Due to the accuracy of Rαξ2
and because diag

˜
(
J ∂ξ2

∂xm

)
h

= O(h), the accuracy of the extrap-

olation of the flux multiplied by the volume metrics is given by

Rαξ2
diag

˜
(
J

∂ξ2

∂xm

)
h
f xm (u) = diag

˜
(
J

∂ξ2

∂xm

)[3]

h
f xm (u[3]) + O(hr+2), (45)

where r ≥ p is the degree of the extrapolation operator Rαξ2
. Substituting (45) into (44),

using the Cauchy-Schwarz inequality, and noting that
∥∥∥∥∥∥diag

˜
(
J

∂ξ2

∂xm

)[3]

h

∥∥∥∥∥∥∞
= O(h),

gives
∥∥diag (Jh)

−1 SATu
Wall

∥∥∞

= O(h−1)

2∑
m=1

∥∥∥ f xm (u[3]) − f xm (P̃hRαξ2
u) + O(hr+1)

∥∥∥∞ .
(46)

Now it is determined howwell f xm (P̃hRαξ2
u) approximates f xm (P̃u[3]), where P̃u[3] = u[3],

since u[3] is the exact solution on the wall boundary and therefore satisfies the wall boundary
condition. As P̃h = Iξ1 ⊗ I4 − ñh ñ

T
h depends on the wall normals, the accuracy of the wall

normals is determined first. Recall from Table 8 that the components of the outward normals
along side 3, which is the side corresponding to the wall boundary in this case, are given by

nx1 = −
∂ξ2
∂x1√(

∂ξ2
∂x1

)2 +
(

∂ξ2
∂x2

)2 and nx2 = −
∂ξ2
∂x2√(

∂ξ2
∂x1

)2 +
(

∂ξ2
∂x2

)2 .

Assuming the wall normals are constructed directly from a degree pg geometry representa-
tion, at a given point along the wall boundary the following is obtained for nx1,h , for example,

nx1,h = −
(

∂ξ2
∂x1

)
h√((

∂ξ2
∂x1

)
h

)2 +
((

∂ξ2
∂x2

)
h

)2 ,

where (
∂ξ2

∂x1

)
h

= ∂ξ2

∂x1
+ O(h pg−1) and

(
∂ξ2

∂x2

)
h

= ∂ξ2

∂x2
+ O(h pg−1).
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To determine the order of nx1 − nx1,h , the following term is evaluated

nx1 − nx1,h

= −
∂ξ2
∂x1√(

∂ξ2
∂x1

)2 +
(

∂ξ2
∂x2

)2 +
∂ξ2
∂x1

+ O(h pg−1)√(
∂ξ2
∂x1

+ O(h pg−1)
)2 +

(
∂ξ2
∂x2

+ O(h pg−1)
)2 ,

or, replacing O(h pg−1) with ε in the second term on the right-hand side and performing a
series expansion gives

∂ξ2
∂x1

+ ε√(
∂ξ2
∂x1

+ ε
)2 +

(
∂ξ2
∂x2

+ ε
)2 =

∂ξ2
∂x1√(

∂ξ2
∂x1

)2 +
(

∂ξ2
∂x2

)2 + O(h pg ),

where ∂ξ2
∂x1

= O(h−1) and ∂ξ2
∂x2

= O(h−1) have been used. Therefore, the accuracies of the
x1 and x2 components of the wall normals are given by

nx1 − nx1,h = O(h pg ) and, similarly, nx2 − nx2,h = O(h pg ), (47)

respectively. Furthermore, since P̃h = Iξ1 ⊗ I4 − ñh ñ
T
h depends directly on the wall normals,

the accuracy of P̃h is given by P̃h = P̃ + O(h pg ). The following term can now be evaluated

P̃hRαξ2
u =

{
P̃ + O(h pg )

} {
u[3] + O(hr+1)

}
= P̃u[3] + O(hr+1) + O(h pg ),

since P̃ = O(1), u[3] = O(1), and O(h pg )O(hr+1) = O(h pg+r+1) is a higher order term
that can be neglected. Substituting

P̃hRαξ2
u = P̃u[3] + O(hr+1) + O(h pg )

into f xm (P̃hRαξ2
u) and performing a series expansion gives

f xm (P̃hRαξ2
u) = f xm (P̃u[3]) + O(hr+1) + O(h pg ). (48)

Finally, substituting (48) into (46) and using the triangle inequality results in the following
expression

∥∥diag (Jh)
−1 SATu

Wall

∥∥∞ = O(hr ) + O(h pg−1). (49)

Since r ≥ p by construction, the first term on the right-hand side always satisfies the con-
sistency condition (43). However, the second term on the right-hand side only satisfies the
consistency condition (43) when pg ≥ p + 1, which gives the desired result. ��

Theorem 1 explains why superparametric geometry representations are beneficial when
solving problems governed by the Euler equations that involve flow tangency boundary
conditions. Finally, for the preceding analysis, the normal boundary flux function presented
in [13, 22] was used. However, similar techniques can be used to show that the numerical
boundary flux based on the interior flux function as used by Hartmann and Leicht [14] also
satisfies Theorem 1 when used in place of the normal boundary flux function.
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5.5 Numerical Results

In this section the results of several numerical experiments are presented exploring the prop-
erties of the different operators and discretization choices with a particular focus on dual
consistency and functional superconvergence. The global H-norm ‖ · ‖Hg

is used to evalu-
ate the different types of solution error measures considered in this section. For example,
pressure error is evaluated as follows:

∥∥ ph,g − pg
∥∥
Hg

=
√

( ph,g − pg)THg( ph,g − pg),

where ph,g and pg are global vectors holding the numerical and exact pressures, respectively,
and Hg is the global H-norm matrix. A similar expression is used to evaluate entropy error.

5.5.1 Two-Dimensional Steady Isentropic Vortex

The test problem considered in this section is a steady isentropic vortex governed by the Euler
equations on a quarter annulus domain. The aims of the studies in this section are as follows:
1) to examine the impact of superparametric geometry representations; 2) to characterize
and compare the baseline and modified approaches for approximating the metrics; and 3) to
compare the B-spline and Lagrange approaches for constructing high-order grids. The exact
density for the steady isentropic vortex is given by

ρ(r) = ρin

{
1 + γ − 1

2
M2

in

(
1 − r2in

r2

)}1/(γ−1)

with the remaining flow quantities being derived via isentropic relations [17]. The solution
is characterized by the flow quantities used at the inner radius, which in this case are chosen
as ρin = 2 and Min = 0.95. A perturbation is applied to the grid to prevent grid-dependent
error cancellations, by applying the following transformation to a square linear grid prior
to applying the polar transformation. The transformation applied to the square linear grid is
given by

xn = ξ + 1

10
sin(πξ) sin(πη),

yn = η + 1

10
exp(1 − η) sin

(
πξ − 3

4

)
sin(πη),

where [xn, yn] ∈ [0, 1]2 are normalized coordinates and [ξ, η] ∈ [0, 1]2. Flow tangency is
specified at the inner boundary rin = 1, θ ∈ [0, π/2] with Dirichlet conditions being weakly
imposed via SATs at the remaining boundaries. The outer boundary is given by rout = 3,
θ ∈ [0, π/2]. The functional considered is the drag force in the horizontal direction on the
inner boundary and in this case can be evaluated exactly as −1/γ .

Table 9 summarizes the test case parameters considered for this problem and provides an
index for the numerical results using Lagrange mappings. Analogous results using B-spline
mappings were also produced, and some of those results are shown in Fig. 2. For both the
Lagrange and B-spline approaches for constructing high-order grids the wall normals are
computed directly from either the Lagrange or B-spline mappings at the boundary mortar
nodes. For conciseness, in the following tables the data are only provided for the degree two
and three operators; however, the figures include results for operators of degree one through
four.
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Table 9 Test case matrix and index of numerical results for the steady isentropic vortex problem governed by
the Euler equations

Type of discretization Form of equation Metrics Mapping pg Table

Mortar-element Divergence Baseline Lagrange p 10

Mortar-element Divergence Baseline Lagrange p + 1 11

Mortar-element Divergence Modified Lagrange p + 1 12

(a) (b) (c)

(d) (e) (f)

Fig. 1 Convergence of drag error for the steady isentropic vortex problemgoverned by the Euler equations. The
caption of each sub plot indicates the operator, degree of mapping, and approach for the metrics, respectively.
Lagrange mappings are used

Figure 1 gives the convergence of the drag error for the steady vortex problem with the
LGL and LG families of operators when using the Lagrange approach for generating the
high-order grids as outlined in Sect. 3. In addition to tabulating the convergence of the drag
error, Tables 10, 11, and 12 give the convergence of the entropy and pressure error when
using degree p Lagrange mappings with the baseline approach for the metrics, degree p+ 1
Lagrange mappings with the baseline approach for the metrics, and degree p + 1 Lagrange
mappings with the modified approach for the metrics, respectively. For the LGL operators,
there is an improvement in the accuracy of the drag with the degree p + 1 mappings relative
to the degree p mappings due to the accuracy with which the boundary normal in the flow
tangency boundary condition can be computed. This agrees with Theorem 1. For the LGL
operators, the baseline and modified approaches for the metrics give similar results, with
respect to both solution and functional accuracy. With respect to solution accuracy with the
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Table 10 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the steady isentropic vortex problem using the baseline approach for the metrics with a degree
p Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 6.91e−04 5.66e−03 1.28e−03 2.06e−04 3.97e−03 3.95e−04

5.00e−02 7.46e−05 1.29e−03 1.10e−04 2.14e−05 8.32e−04 3.32e−05

3.33e−02 2.16e−05 5.39e−04 2.45e−05 5.69e−06 3.26e−04 7.31e−06

2.50e−02 9.31e−06 2.85e−04 8.32e−06 2.22e−06 1.66e−04 2.46e−06

2.00e−02 4.93e−06 1.73e−04 3.57e−06 1.07e−06 9.82e−05 1.05e−06

Convergence rate 2.90 2.22 3.77 3.26 2.35 3.80

3 1.00e−01 4.70e−05 5.92e−04 7.04e−06 2.01e−05 4.11e−04 7.22e−06

5.00e−02 2.55e−06 7.12e−05 5.88e−07 9.65e−07 4.18e−05 5.40e−07

3.33e−02 5.26e−07 1.98e−05 1.14e−07 1.62e−07 1.08e−05 1.09e−07

2.50e−02 1.82e−07 7.84e−06 3.56e−08 4.60e−08 4.14e−06 3.43e−08

2.00e−02 8.14e−08 3.80e−06 1.44e−08 1.73e−08 1.95e−06 1.40e−08

Convergence rate 3.65 3.23 4.06 4.38 3.36 4.02

Table 9 gives the index of numerical results. Convergence rates based on the three finest grids

Table 11 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the steady isentropic vortex problem using the baseline approach for the metrics with a degree
p + 1 Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 3.80e−04 5.67e−03 5.66e−04 9.53e−05 2.23e−03 1.95e−02

5.00e−02 5.47e−05 7.69e−04 3.95e−05 1.12e−05 5.92e−04 4.97e−03

3.33e−02 1.80e−05 2.40e−04 7.93e−06 3.24e−06 2.66e−04 2.21e−03

2.50e−02 8.26e−06 1.05e−04 2.52e−06 1.35e−06 1.50e−04 1.25e−03

2.00e−02 4.53e−06 5.51e−05 1.04e−06 6.88e−07 9.63e−05 7.98e−04

Convergence rate 2.70 2.88 3.98 3.03 1.99 2.00

3 1.00e−01 3.99e−05 4.36e−04 7.01e−06 5.75e−06 7.23e−05 2.29e−04

5.00e−02 2.73e−06 2.88e−05 5.20e−08 3.56e−07 4.68e−06 1.47e−05

3.33e−02 5.90e−07 5.82e−06 3.14e−09 7.02e−08 9.30e−07 2.91e−06

2.50e−02 2.03e−07 1.87e−06 4.80e−10 2.22e−08 2.95e−07 9.24e−07

2.00e−02 8.94e−08 7.71e−07 1.22e−10 9.06e−09 1.21e−07 3.79e−07

Convergence rate 3.69 3.96 6.36 4.01 3.99 4.00

Table 9 gives the index of numerical results. Convergence rates based on the three finest grids

LGL operators, only the degree p = 1 LGL operators demonstrate a reduction in the error
in entropy when going from a degree p geometry representation to a degree p + 1 geometry
representation, regardless of whether the baseline or modified approach for the metrics is
used. In contrast, similar to the observations of Zwanenburg and Nadarajah [35], there is
a noticeable reduction in pressure error when going from a degree p to a degree p + 1
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Table 12 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the steady isentropic vortex problem using the modified approach for the metrics with a degree
p + 1 Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 4.55e−04 7.01e−03 5.48e−04 8.95e−05 4.50e−04 1.96e−07

5.00e−02 5.76e−05 9.28e−04 3.96e−05 1.07e−05 5.31e−05 3.93e−07

3.33e−02 1.85e−05 2.86e−04 7.74e−06 3.12e−06 1.52e−05 9.19e−08

2.50e−02 8.37e−06 1.23e−04 2.41e−06 1.31e−06 6.28e−06 3.06e−08

2.00e−02 4.57e−06 6.41e−05 9.77e−07 6.68e−07 3.17e−06 1.29e−08

Convergence rate 2.73 2.92 4.05 3.01 3.07 3.85

3 1.00e−01 4.31e−05 4.55e−04 7.13e−06 5.63e−06 2.19e−05 3.26e−07

5.00e−02 2.83e−06 2.98e−05 5.64e−08 3.55e−07 1.35e−06 3.76e−09

3.33e−02 6.03e−07 6.04e−06 3.74e−09 7.01e−08 2.64e−07 2.72e−10

2.50e−02 2.06e−07 1.94e−06 6.08e−10 2.21e−08 8.24e−08 3.99e−11

2.00e−02 9.04e−08 8.00e−07 1.59e−10 9.06e−09 3.34e−08 8.06e−12

Convergence rate 3.71 3.96 6.19 4.01 4.04 6.89

Table 9 gives the index of numerical results. Convergence rates based on the three finest grids

geometry representation with degree p = 1 through p = 4 LGL operators, when using
either the baseline or modified metrics.

From Fig. 1 and Table 10, for the LG operators with degree p mappings, suboptimal
functional convergence is obtained due to the accuracy with which the boundary normal can
be represented, which is qualitatively similar to the behaviour of the drag error when using
the LGL operators with degree p mappings. Referring to Fig. 1 and Table 11, increasing the
degree of the mappings to p + 1 can rectify this issue with the boundary normal; however,
using the baseline approach for the metrics with degree p+1 mappings leads to significantly
reduced functional convergence rates for LG operators since their corresponding extrapola-
tion operators are only degree p accurate. However, from Fig. 1 and Table 12, functional
superconvergence is recovered for the LG operators with the modified approach for the met-
rics with degree p + 1 mappings. Furthermore, the best case functional convergence rate
approaches 2p + 1 with the LG operators, which is better than the best case functional
convergence rate of about 2p with the LGL operators.

Referring to Tables 10 and 11, with respect to solution accuracy, the degree p = 1 through
p = 4 LG operators all exhibit reduced entropy error when going from degree p to degree
p+1 mappings when using the baseline approach for the metrics. Furthermore, note that the
entropy error converges at a rate of at least p+1when using degree pmappings for the degree
p = 2 through p = 4 LG operators, and that these rates do not increase when using the
p + 1 mappings. Despite this, the absolute value of the entropy error is reduced when using
degree p+1 mappings with the baseline approach for the metrics. Finally, comparing Tables
11 and 12, there is not a notable difference between both the convergence rates and absolute
values of the entropy error when using degree p + 1 mappings with either the baseline or
modified metrics for the LG operators. For pressure error with the LG operators, comparing
Tables 10 and 11, there is a reduction in pressure error when going from degree p to p + 1
mappings with baseline metrics; however, in the former case none of the LG operators exhibit
p+1 convergence rates and in the latter case only the odd-degree LG operators obtain p+1
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convergence while the even-degree LG operators exhibit p convergence. Finally, comparing
Tables 11 and 12, an even greater improvement in pressure error is observed when using the
modified metrics with degree p + 1 mappings with all LG operators considered achieving
optimal p + 1 convergence rates.

The discussion thus far has focused on the results in Fig. 1 and Tables 10, 11, and 12, which
involve schemes that use the Lagrange approach for constructing high-order grids. Analo-
gous results using the B-spline approach for constructing high-order grids were generated,
and a portion of those results are highlighted in Fig. 2. Relative to the results with Lagrange
mappings, the results with B-spline mappings are qualitatively similar. The main difference
between the two approaches as currently implemented is that the Lagrange approach natu-
rally mimics the stretching of the initial grid within elements while the B-spline approach
does not. However, by not mimicking the stretching of the initial grid within elements, the
B-spline approach benefits from some error cancellations—potentially associated with the
annular geometry and symmetry—that improve its performance relative to the Lagrange
approach with respect to solution and functional accuracy. Figure 2 provides an example
result comparing the convergence of pressure and drag error with LGL operators when using
degree p + 1 Lagrange and B-spline mappings with the modified approach for the metrics.
The difference is subtle; however, in general the B-spline approach results in slightly reduced
drag and pressure errors compared to the Lagrange approach.

5.5.2 Two-Dimensional Subsonic Channel Flow Over a Gaussian Bump

In this section, subsonic channel flow over a Gaussian bump is considered, governed by the
Euler equations. The purpose of this section is to investigate the impact of superparametric
geometry representations and to compare the different approaches for the metrics in the
context of a somewhat more challenging test case. An efficiency study is also performed,
with respect to both total degrees of freedom and core hours. The physical domain for this
problem is given by

Ω :=
{
(x1, x2) ∈ [−1.5, 1.5] × (0, 0.8]

∣∣∣ x2 >
3

32
e−25x21

}
.

A small perturbation is applied to the grid using the following transformation

xn = ξ + 7

200
exp(1 − η) sin(πξ) sin

(
πη − 7

4

)
,

yn = η − 7

200
sin(πξ) sin(πη),

where [xn, yn] ∈ [0, 1]2 are normalized coordinates. The boundary conditions are as
follows: left boundary—subsonic inflow, right boundary—subsonic outflow, top boundary—
symmetry, bottom boundary—flow tangency. The flow tangency and symmetry boundary
conditions are enforced by projecting out the normal component of momentum at the wall as
described in Sects. 5.1 and 5.3. The subsonic inflow and outflow conditions used are outlined
in Appendix B of Fidkowski’s Master’s thesis [12]. The functional of interest is a weighted
lift:

I(u) =
∫
x1∈[−1.5,1.5], x2= 3

32 e
−25x21

nx2 p(u)e−8x21 ds,
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(a) (b)

(c) (d)

Fig. 2 Convergence of pressure and drag error for the steady isentropic vortex problem governed by the Euler
equations. The caption of each sub plot indicates the operator and type of mapping, respectively. Degree p+1
mappings with the modified approach for the metrics are used

Table 13 Test case matrix and index of numerical results for the subsonic channel flow over a Gaussian bump
problem governed by the Euler equations

Type of discretization Form of equation Metrics Mapping pg Table

Mortar-element Divergence Baseline Lagrange p 14

Mortar-element Divergence Baseline Lagrange p + 1 15

Mortar-element Divergence Modified Lagrange p + 1 16

where the Gaussian weight e−8x21 is used to localize the output around the bump portion of
the channel [22]. The flow in the channel is initialized with freestream conditions and driven
to a steady state via a parallel Newton-Krylov-Schur algorithm [15, 26].

Table 13 lists the test cases considered for this problem. The grids, metrics, and wall
normals are handled in a similar manner to the steady isentropic test case. Figure 3 gives the
convergence of the lift error for the steady bump problem with LGL and LG operators when
using the Lagrange approach for constructing the high-order grids used in the refinement
studies. Tables 14, 15, and 16 give the convergence of the entropy, lift, and drag error when
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Convergence of lift error for the subsonic channel flow over a Gaussian bump problem governed by
the Euler equations. The caption of each sub plot indicates the operator, degree of mapping, and approach for
the metrics, respectively. Lagrange mappings are used

using degree p Lagrange mappings with the baseline approach for the metrics, degree p+ 1
Lagrange mappings with the baseline approach for the metrics, and degree p + 1 Lagrange
mappings with the modified approach for the metrics, respectively. The reference values of
lift and drag for this problem are based on a fine grid solution using degree p = 4 LG
operators with degree p + 1 Lagrange mappings in each element and using the modified
approach for the metrics. The fine grid has 108 elements in the streamwise direction and 36
elements in the normal direction, whereas the finest grid used in the convergence studies has
90 elements in the streamwise direction and 30 elements in the normal direction. For the
LGL operators, there is a noticeable benefit in terms of lift error when using degree p + 1
mappings compared to using degree p mappings due to the increased accuracy with which
the boundary normals can be computed in the flow tangency boundary condition. The drag
error is already quite accurate with the degree p mapping, potentially due to the symmetry of
the problem, and therefore does not benefit nearly as much as the lift error when going from
the degree p to the degree p+ 1 mapping. With respect to entropy error, the benefit of using
a degree p + 1 mapping is primarily observed in the context of the degree p = 1 operator,
consistent with Bassi and Rebay [1]. For the LG operators in Fig. 3, the convergence rates
of the lift error with the degree p mapping are suboptimal due to the insufficient accuracy of
the normals. Likewise, the convergence rates of the lift error with the degree p + 1 mapping
are suboptimal due to the baseline approach for the metrics that involves extrapolating the
volume metrics to obtain the surface metrics, which can only be done with degree p accuracy
due to the accuracy of the LG extrapolation operators. The results with the degree p + 1
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Table 14 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the subsonic channel flow over a Gaussian bump problem using the baseline approach for the
metrics with a degree p Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 6.52e−04 6.96e−04 2.48e−04 3.00e−04 8.23e−04 3.74e−04

4.81e−02 9.25e−05 1.12e−04 4.12e−05 3.69e−05 5.18e−05 2.09e−05

3.21e−02 2.53e−05 2.09e−05 6.37e−06 9.59e−06 1.01e−05 3.90e−06

2.41e−02 1.19e−05 6.89e−06 2.01e−06 3.62e−06 3.19e−06 1.21e−06

1.92e−02 7.31e−06 2.91e−06 8.18e−07 1.70e−06 1.31e−06 4.90e−07

Convergence rate 2.43 3.86 4.02 3.39 4.00 4.06

3 9.62e−02 1.60e−04 1.03e−04 6.02e−05 6.04e−05 5.30e−06 1.30e−05

4.81e−02 9.15e−06 2.88e−06 7.33e−07 2.52e−06 1.95e−06 2.86e−07

3.21e−02 2.55e−06 4.36e−07 4.63e−09 3.55e−07 4.52e−07 2.79e−08

2.41e−02 1.10e−06 1.46e−07 4.24e−10 1.01e−07 1.52e−07 4.65e−09

1.92e−02 5.50e−07 6.25e−08 3.42e−10 3.63e−08 6.37e−08 1.11e−09

Convergence rate 3.00 3.80 5.10 4.46 3.84 6.31

Table 13 gives the index of numerical results. Convergence rates based on the three finest grids

Table 15 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the subsonic channel flow over a Gaussian bump problem using the baseline approach for the
metrics with a degree p + 1 Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 7.18e−04 5.78e−04 4.98e−04 1.93e−04 6.53e−04 1.38e−03

4.81e−02 8.95e−05 7.54e−06 6.44e−06 2.78e−05 2.97e−04 1.66e−04

3.21e−02 2.56e−05 3.23e−06 2.04e−06 7.47e−06 1.48e−04 5.00e−05

2.41e−02 1.22e−05 1.40e−06 9.04e−07 2.85e−06 8.66e−05 2.21e−05

1.92e−02 7.50e−06 6.59e−07 4.42e−07 1.34e−06 5.67e−05 1.20e−05

Convergence rate 2.41 3.11 2.99 3.36 1.87 2.80

3 9.62e−02 1.68e−04 1.08e−04 5.85e−05 5.64e−05 2.33e−05 1.37e−05

4.81e−02 9.93e−06 1.28e−06 1.18e−06 2.42e−06 1.86e−06 6.60e−07

3.21e−02 2.62e−06 2.94e−08 4.01e−08 3.45e−07 5.26e−07 8.75e−08

2.41e−02 1.12e−06 3.99e−09 8.39e−09 9.81e−08 1.89e−07 1.92e−08

1.92e−02 5.55e−07 1.38e−09 2.44e−09 3.55e−08 8.28e−08 5.80e−09

Convergence rate 3.04 5.99 5.48 4.45 3.62 5.31

Table 13 gives the index of numerical results. Convergence rates based on the three finest grids

mappings and modified metrics show that functional superconvergence with respect to lift
can be recovered with LG operators and that they can outperform LGL operators in some
cases.
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Table 16 Numerical results for themortar-element discretization of the divergence form of the Euler equations
when solving the subsonic channel flow over a Gaussian bump problem using the modified approach for the
metrics with a degree p + 1 Lagrange mapping in each element

p Element size LGL operator error LG operator error

Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 8.46e−04 2.27e−06 2.22e−05 2.06e−04 3.53e−04 2.14e−04

4.81e−02 1.04e−04 2.70e−05 2.06e−05 2.94e−05 1.29e−05 1.07e−05

3.21e−02 2.89e−05 7.71e−08 1.31e−07 7.97e−06 1.68e−06 1.52e−06

2.41e−02 1.31e−05 5.48e−07 3.56e−07 3.06e−06 3.62e−07 3.72e−07

1.92e−02 7.83e−06 3.49e−07 2.55e−07 1.45e−06 1.07e−07 1.25e−07

Convergence rate 2.98 5.62 5.85 3.27 5.16 4.85

3 9.62e−02 1.61e−04 1.24e−04 7.36e−05 5.36e−05 1.73e−05 1.34e−05

4.81e−02 1.00e−05 1.12e−06 1.08e−06 2.44e−06 1.65e−07 1.12e−07

3.21e−02 2.62e−06 1.86e−08 3.38e−08 3.58e−07 7.83e−09 7.71e−09

2.41e−02 1.11e−06 2.35e−09 7.59e−09 1.02e−07 1.26e−09 1.24e−09

1.92e−02 5.51e−07 9.91e−10 2.28e−09 3.69e−08 2.30e−10 2.59e−10

Convergence rate 3.05 5.74 5.28 4.45 6.90 6.64

Table 13 gives the index of numerical results. Lift and drag convergence rates for the degree p = 2 operators
are based on the three middle grids. Convergence rates for entropy error and the degree p = 3 operators are
based on the three finest grids

Finally, Fig. 4 gives the efficiency of the various best-case schemes with respect to total
degrees of freedom and core hours, respectively, where

core hours = (number of cores) × (wall-clock time in hours) .

Results with degree one through three CSBP operators under traditional refinement are
included for comparison. The results with the LGL/LG and CSBP schemes were obtained
using 12 Intel cores each. Furthermore, for all cases the system is solved to relative and
absolute residual norm tolerances of 10−12. For the CSBP schemes, the wall normals are
approximated by constructing degree p+ 1 one-sided stencils at the boundaries. High-order
grids for the CSBP schemes considered are constructed directly using the exact analytical
mapping and the alternative approach for computing the wall normals summarized above
is used along with the baseline approach for the metrics. Referring to Fig. 4, in terms of
total degrees of freedom, the purely element-type schemes are generally more accurate. In
contrast, the CSBP schemes with traditional refinement can be more efficient with respect
to core hours due to the decreased number of SATs and increased sparsity relative to the
purely element-type schemes. Finally, the competitiveness of the CSBP schemes in the cur-
rent context is partially due to the smoothness of the grids considered. For more distorted
or highly-stretched grids, it is expected that the efficiency of the LGL/LG schemes would
improve relative to the CSBP schemes.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Convergence of lift error as a function of grid size based on the total number of grid nodes and core
hours for the subsonic channel flow over a Gaussian bump problem governed by the Euler equations. The
caption of each sub plot indicates the operator, degree of mapping, and approach for the metrics, respectively.
Lagrange mappings are used for the LGL and LG schemes

6 Conclusions

High-order tensor-product generalized SBP discretizations have been investigated and con-
ditions for obtaining accurate solutions and functionals for CFD problems of increasing
practical complexity have been delineated. In Sect. 3, two procedures for constructing high-
order grids were presented based on Lagrange polynomials and B-splines. The requirements
for achieving functional superconvergence with generalized SBP discretizations of the linear
convection (Sect. 4) and Euler (Sect. 5) equations were outlined. The main features of a dis-
cretization affecting functional superconvergence include the representation of the geometry,
the approximation of the metrics, and the approximation of the normals appearing in the flow
tangency boundary condition. Work remains to determine the analogous requirements for
obtaining accurate solutions and functionals for more complex problems based on large eddy
simulations and those involving the Reynolds-averaged Navier-Stokes equations.
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