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The generalized summation-by-parts (GSBP) framework enables the derivation of novel
and potentially efficient provably stable high-order finite-difference operators, applicable
on general nodal distributions. This paper explores the application of GSBP operators to
the solution of partial differential equations with first- and second-derivative terms. Here,
we investigate compatible and order-matched GSBP operators for the approximation of the
second derivative with a variable coefficient. These operators are one order more accurate
than the application of the first-derivative operator twice and more dissipative of under-
resolved modes. Several example operators are described in detail. To characterize the
various operators, the steady linear convection-diffusion equation with a variable coefficient
is solved.

I. Introduction

In this paper, we develop the generalized summation-by-parts (GSBP) method for the solution of partial
differential equations (PDEs) that contain first-, second-, and mixed-derivative terms. The GSBP framework
for the first derivative was developed by Del Rey Fernandez et al.,! extended to temporal terms by Boom and
Zingg,>3 and to approximations of the second derivative with a variable coefficient by Del Rey Ferndndez
and Zingg.* The GSBP framework is based on extending the theory of the finite-difference summation-by-
parts (SBP) operators of Kreiss and Scherer,® and Strand,® which we denote classical SBP operators, to a
broader class of operators with one or more of the following characteristics: i) a non-repeating interior point
operator, ii) a non-uniform nodal distribution, and iii) the exclusion of one or both boundary nodes. Bound-
ary conditions and inter-element coupling can be weakly enforced using simultaneous approximation terms
(SATs).” '* The SBP-SAT approach leads to consistent, conservative, and provably stable discretizations of
PDEs; the generalized framework extends these properties to a wide range of operators.

One of the main difficulties in the development of high-order methods is the construction of numerical
boundary operators that lead to stable methods. The SBP-SAT approach alleviates this difficulty by pro-
viding a tractable means of developing high-order methods that are provably time stable. For a certain
class of PDEs, it is possible to use the energy method to determine the conditions under which the PDE
and a set of initial and boundary conditions lead to a stable problem and, if a unique solution exists, a
well-posed problem.'®!7 In the SBP-SAT approach, boundary and initial conditions are modelled after the
continuous boundary and initial conditions that lead to a stable problem. Then, in a one-to-one fashion
to the continuous analysis, the discrete-energy method is applied to determine the conditions under which
the numerical boundary and initial conditions lead to stability. These same ideas can then be applied to
inter-block coupling SATs. The key that allows this one-to-one relationship is that SBP operators mimic
the integration-by-parts property of the continuous PDE. Another benefit of the SBP-SAT approach is that
the requirement for grid continuity between elements or blocks is at most C°. This is advantageous as it
significantly reduces the difficulty in constructing a mesh around complex geometries. The GSBP framework
extends the SBP-SAT approach for classical SBP operators to a larger family of operators, which is beneficial
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for two principal reasons. First, GSBP operators exist that potentially lead to more efficient discretizations
compared to classical SBP operators.*'® Second, GSBP element-type operators exist that, for a given order
of accuracy, require fewer nodes than classical SBP operators. This can be advantageous in tessellating
regions with significant geometric variation. For such regions, it is preferable to use a large number of small
elements with modest numbers of nodes. In this way, when applying the operators in curvilinear co-ordinates,
the metric Jacobians have a smaller probability of causing numerical issues.

The focus of this paper is on diagonal-norm GSBP approximations to the second derivative that are more
accurate than the application of the first-derivative operator twice. The GSBP first-derivative operator has
the form D; = H™!'Q, where the symmetric positive definite matrix H is known as the norm matrix and
can be either diagonal or dense. However, we do not discuss dense-norm operators since it is unclear
how to construct second-derivative operators using dense-norm operators that lead to stable discretizations
without an ad hoc procedure; for example, see Mattsson and Almquist.'® GSBP operators that are one
order more accurate than the application of the first-derivative operator twice, denoted order-matched, and
compatible with GSBP operators approximating mixed-derivative terms—meaning that they lead to stable
discretizations when such terms are present—have been developed by Del Rey Fernandez and Zingg.* Here,
we have two objectives. First, we provide a brief overview of GSBP operators as well as a detailed account
of how to implement such operators. Second, we showcase the efficiency gains that can be obtained by using
GSBP operators.

This paper is organized as follows: Section II introduces the notation used in this paper. We then explain
the two classes of GSBP operators considered in this paper in Section III. A brief review of GSBP operators
for the first and second derivatives is given in Section IV. In Section V, we show how to discretize the linear
convection-diffusion equation with a variable coefficient using GSBP operators and SATs for the imposition
of boundary conditions. A summary of the GSBP operators considered in this paper is given in Section VI.
Various GSBP operators are characterized by solving the linear convection-diffusion equation in Section VII.
Finally, conclusions are drawn in Section VIII.

II. Notation

Vectors are denoted with small bold letters, for example, x = [x1,...,2,]T, while matrices are presented
using capital letters with sans-serif font, for example, M. Capital letters with script type are used to denote
continuous functions on a specified domain = € [z, zr]. As an example, U(z) € C*°[xy, zr] denotes an
infinitely differentiable function on the domain x € [z, xr]|. Lower case bold font is used to denote the
restriction of such functions onto a grid; for example, the restriction of & onto the grid x is given by

u=[Uz),... . Uz,)]". (1)

Vectors with a subscript h, for example, u;, € R"*!, represent the solution to the discrete or semi-discrete
problem.

The restriction of monomials onto a set of nodes is used throughout this paper and is represented by
xF = [x’f, e ,xfl] T, with the convention that x* = 0 if K < 0. A subscript is used to denote which derivative
is being approximated. For example, D; denotes an SBP approximation to the first derivative. The second
derivative can be approximated by applying an SBP operator approximating the first derivative twice or by
constructing SBP operators that have preferential properties. For this latter type, it is necessary to differenti-
ate between approximations of the constant-coefficient derivative and the variable-coefficient derivative. We
use Da to denote an SBP approximation to the constant-coefficient second derivative, while Dy (B) represents
the approximation to the second derivative with variable coefficients B, where B = diag[B(z1), ..., B(xy,)]
and B is the variable coefficient. We discuss the degree of SBP operators, that is, the degree of monomial
for which they are exact, as well as the order of the operators. The approximation of the derivative has a
leading truncation error term for each node, proportional to some power of h. The order of the operator is
taken as the smallest exponent of h in these truncation errors. The relation between the order and degree
of an operator approximating the m'™ derivative is

order = degree — m + 1. (2)

2 of 20

American Institute of Aeronautics and Astronautics



Downloaded by David Zingg on July 7, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.2015-2915

III. Element-type operators vs. operators with a repeating interior point
operator

In this paper, we consider two classes of GSBP operators, element-type operators and operators with a
repeating interior point operator. Element-type operators exist on nodal distributions of fixed size, and the
domain is discretized by dividing the domain into a number of elements. Then, mesh refinement is carried
out using the element approach whereby each element is subdivided. For example, consider the following
four-node element-type GSBP operator for the second derivative on = € [xy,, zRr], constructed by applying
the first-derivative operator twice:

5 _%_154\/3 _%_’_154\/3 _g
3 5 5 5 _3
Do = ity f\/gjrz -5 3 T-1v6 3)
imivs I G

This operator is of order two and approximates the second derivative on the Legendre-Gauss-Lobatto nodes,
which after transformation from the canonical domain & € [-1,1] to « € [z1, zR], are given by

TR — T T xr+x
x="T [ 1 Ly 1|+ (1)

On a mesh with m equally sized elements on the domain z € [z, xRr], the operator becomes:
Do
4m?

(zr — 71)°

()
D2

To understand an operator with a repeating interior point operator, consider the following SBP operator
applied on a nodal distribution with n equally-spaced nodes:

di1 di2 diz du
da1 do2  dog  dag
d31 ds2 d3z  d3s  dss
dy1 dyo  dyz dyg dys  dgs
2 % 3 ~3 3 —1
D, = (n—1) - . . (6)
(er = 1) 14 _4 4 _1
2 3 2 3 12
dgg dgs  diz  di2  dp
d3s d3qg d32 d3z2  d3
dag  doz  daz  da
L dig  diz di2 dir |
The repeating interior point operator is % [ - % -2 3 -5 } and is a fourth-order approx-

imation to the second derivative. There are boundary point operators at the first and last four nodes which
have coefficients d;;. With such an operator, mesh refinement is accomplished using the traditional finite-
difference approach where the number of nodes at which the interior point operator is applied is increased.
Note that one can also fix the size of such an operator and apply it using the element approach. We use
element through this paper and only use block when the difference is important.

IV. Generalized summation-by-parts operators for the first and second
derivatives

For the first derivative, a GSBP operator is defined as

3 of 20

American Institute of Aeronautics and Astronautics



Downloaded by David Zingg on July 7, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.2015-2915

Definition 1 Generalized summation-by-parts operator: A matriz operator Dy € R™ "™ of order p is
an approximation to the first derivative, on the nodal distribution x that need neither be uniform nor include
nodes on the boundaries and may have nodes that lay outside of the domain of the element x € [zy,, Tr], with
the SBP property if it satisfies the equations

Dix? = jx’', j €[0,p], (7)

and is of the form
D, =H™!Q, (8)

where H, which is referred to as the norm matriz, is symmetric positive definite, and Q + QT = E, where
(') Ex) = a7 — a7 g e [0,0], v > p.

For later use, we note that E = E;, — E;,, where
Eop = tanta,, Eap = to s

(9)
tepu=U(xR) + O(h™1), t, u=U(xy)+ O(h™1).

This is relevant if the nodal distribution does not include boundary nodes. If both boundary nodes are
included, then E = diag (—1,0,...,0,1).

For the second derivative, we can apply the first-derivative operator twice; this leads to discretizations
that are provably stable using the energy method. However, for operators with a repeating interior point
operator, this has the drawback that the interior point operator requires solution information from almost
twice the number of nodes, as compared to the interior point operator of the first-derivative operator.
Moreover, whether the first-derivative operator has a repeating interior point operator or is an element-
type operator, the application of the first-derivative operator twice leads to an approximation of the second
derivative that is one order less accurate than the first-derivative operator. Therefore, we search for GSBP
operators that are one order more accurate than the application of the first-derivative operator twice. In
addition, we only consider operators that are compatible with the first-derivative GSBP operator used to
discretize the same spatial direction of mixed-derivative terms since such operators can be shown to lead to
stable discretizations for PDEs that contain such terms.!?2° The definition for the second-derivative GSBP
operator we propose combines ideas from Refs. 11, 20, 12, and 21, and full details can be found in Del Rey
Fernandez and Zingg.*

Consider the following definition for a second-derivative GSBP operator:*

Definition 2 Compatible and order-matched second-derivative GSBP operator: The matriz Dy (B) €

R™ "™ 4s a GSBP operator approximating the second derivative, a% (B’g—g), of order p that is compatible with

the first-derivative GSBP operator Dy = H™'Q, on a nodal distribution x, if it satisfies the equations

D, (diag (xk))xs =s(k+s—Dx" 2 k+s<p+l1, (10)
and is of the form
n
D, (B) =H™' | -DIHBDy + » B(i,i)R; + EBD, | . (11)
i=1

The matrices R;, B, and Dy are € R™*"; R; is symmetric negative semi-definite,
B= dZCLg(B(Zl), s 7B(xn))>
and Dy is an approximation to the first derivative of order > p + 1.

For stability, the norms H of all operators in a given spatial direction must be the same. As a result, all
first-derivative terms are typically approximated using the same GSBP operator.

The main difficulty in deriving compatible and order-matched GSBP operators is fulfilling the requirement
that the R; be symmetric negative semi-definite. Instead, we can leverage the compatible and order-matched
GSBP operator for the constant-coefficient case, which is given as

Do =H! [-DTHD, + R. + EDl] (12)
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Figure 1: Tessellation of the domain €2 into N equally sized non-overlapping elements.

and construct the variable-coefficient operator as?

> B(i, i)
Dy (B) =H™! [-DIHBD, + =L —R. +EBD, | . (13)
n

In this paper, we use form (13) to construct element-type GSBP operators for the second derivative. However,
for practical implementation, it is more convenient to recast (13) or (11) in terms of the variable coefficient,
which leads to

D, (B) = Z B(i,i)M;. (14)

This is the form that we use in presenting the operators as well as in the example in the next section.

V. Implementing the GSBP-SAT method

In this section, the mechanics of discretizing a steady PDE using the GSBP-SAT approach are exemplified
by discretizing the linear convection-diffusion equation. We begin by discussing how to discretize the PDE,
without reference to a particular set of GSBP operators. We then discuss SATs for GSBP operators that
include boundary nodes and those that do not, using specific examples of such operators. Finally, we discuss
the implementation of compatible and order-matched operators and an efficient means of implementing
operators with a repeating interior point using the traditional finite-difference approach.

The continuous problem that we solve is given as

ou 0 ou
—ag + P <B<9:c> =0, z€[zp,zr], B>0, and, a,u > 0. (15)
The boundary conditions are given as
ou ou
a:()Lu.’L‘L + BwLBwL E o == gach axRuxR + ﬂ:CRBJ)R E on = ga’:R7 (16)

where we use the notation U, = U (z1,), for example. For stability, the coeflicients in (16) must satisfy the

relations??
2pagg 2pag,

Bax Bav,

For operators with a repeating interior point operator, we can use the traditional finite-difference ap-
proach. In such a case, the discretization is given as

a+ >0, a+ < 0. (17)

—aDyiuy, + uDy (B) up, + SAT,, + SAT,, =0. (18)

The vectors SAT,, and SAT,, are the boundary SAT vectors. For the linear convection-diffusion equation
they are given as

SAT,, = o, H'E,, (% w, + B, BD1uy, — gmL1> — SAT,, u, + gu, SATCLL,
(19)
SAT,, = 04 H 'Eqy, (amuh + B2, BD1uy, — gml) = SAT, s + guy SATECRL,
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where SAT,, , SATgcL, SAT,,, and SATgcr, are n X n matrices. Furthermore, g, and g¢,, are from the
continuous boundary conditions, and 1 is a vector of ones. On close inspection of (19), we can see that the
terms within the parentheses are modelled after the continuous boundary conditions. Rearranging (18), we
obtain A

r

[—aD1 + /JDQ (B) + SATzL + SATIR] up = —Yqp, SATgcLl — ngSATBCR]_ . (20)

The solution to (20) is given as
u, = Al (21)

Alternatively, we divide the domain Q = {z|z € [zL,zr]} into N equally sized non-overlapping elements.
Figure 1 displays this simple tessellation, where the partition is given as

Q' ={zlr€[(i —1)Az+ar,iAz]}, i€[l,N]

and Az = *ELFL. The elements highlighted in blue, Q! and QV, are the elements where the numerical
boundary operators must be applied. The remaining elements, highlighted in orange, require numerical
interface procedures to couple the solution. If the nodal distribution within each element contains nodes at
the element boundaries, then the global solution is multivalued at those nodes.

The discretization of (15) at the first element is given as

—aDyuj, + puDs(BY)u}, + SAT,, + SATE =0, (22)
while for the last element, the discretization is given as
—aDyul + uDy(BM)ulY + SAT,, + SATY =0. (23)

The boundary SAT vectors are given by (19), where u;, and B are replace by u} and B* for SAT,, and ul’
and BN for SAT,,,—we discuss the interface coupling SAT vectors, SATR and SAT} below.
For the i*" element, 1 < i < N, the discrete approximation to the PDE is given as

—aDyuj, + Dy (BY) uj, + SAT], + SAT}, = 0. (24)

The SAT vectors couple the " element to the (i — 1)™ and (i + 1)** elements and can generically be
decomposed into contributions from the adjacent elements and the i** element as

SAT} = SAT|uj + SATi cui™*,
(25)
SAT} = SAThu), + SATRoultt,

where S/—\Ti, SATiC, SAT%, and S/—\Tﬁc are n X n matrices. In this paper, we use the Baumann-Oden type
interface SATs, 22 where the matrices in (25) are given by

SATE = oR’H'E,, + oRH'E,.B'D; + ofH 'DTBE

TR

SAThe = —ofH M, tL — oRH 1, tT Bi*1D; — ofH DT Bit,, t1 ,
(26)
SAT} = o}H'E,, + oFH'E, B'D; + ofH!DTBE,, ,
SAT ¢ = —oPH 't tT — o¥H 1, t1 B"'D; — oyH D] Bit,, tT

TL VTR TL VTR TL "TR "

The SAT parameters, o, , 05, and the os in the interface coupling SATs above are chosen so that the
resulting discretization is stable and conservative. For the numerical studies in this paper, the following
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Coefficient matrix

N
~ ~
_ o _ _ -
Ll
3
~aDs + 4Dy (BY) SATL '<T:m
+SAT,,, + SATL RC £
g
|
—
by —aD;y + uDz(BZ) by
SATLe FSAT? + SAT? SAThe @
—
—
—aD; +
. uD2(BN ) .
SAT G ! FSATY 1 SATRG! 0
SATR !
—
-
[
2
N —aD;+uDy (BY) =
SATLc +SATY + SAT,, &
$

Figure 2: Schematic of the discretization of the linear convection-diffusion equation using the GSBP-SAT
method.

values for the boundary condition and SAT parameters, based on the analysis in Ref. 22, are used:

gy, = BIL =K Qg = 0 ﬁfEL =/
Om =g Oen = B
(27)
of' =3 o} =p  of=-p-of
01:0{{711 J%:J§+p O’%Z*U%.

The full discretization is given in Figure 2.

V.A. SATSs for GSBP operators

In Figure 2, the coupling SATs from adjacent elements, the green blocks in the coefficient matrix, appear as
full matrices. However, the contribution from these SATs depends on whether the nodal distribution of the
operator does or does not contain nodes that coincided with the boundaries of the element. As an example
of the former, consider using the first-order classical SBP operator applied using the element approach, each
element having five nodes. The nodal distribution for the i*" element is given by

A
x:f[o 1 2 3 4}+Ax(¢—1)+u, (28)

and we can see that the first and last nodes coincide with the boundaries of the element, which for the it
element are x1, + (i — 1) Az and zy, + ¢ Az. The various matrices for the first-derivative operator are given
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Figure 3: Coefficient matrix entries for an element on the interior of the domain discretized using first-order
classical GSBP operators which have nodal distributions that contain nodes on the element boundaries.
Entries with x originate from the discretization of the derivative terms, while ¢ are entries modified by
interface SAT's

by
-1 1 1 -1 1 1
11 -3 o 1 1 0 0 0
Dl:ﬁ -3 0 3 ,H="h 1 , BE= 0 stoy =10 tag =0, (29)
-1 0 1 1 0 0 0
-1 1 3 1 0 0
where h = %. Furthermore,
1 0 1 0
0 0 T 0 T 0
EIL = 0 B EwR = 0 ) tthzR - 0 ) tthﬂiR - 0 . (30)
0 0 0 0
0 1 0 1

Figure 3 depicts the contribution to the coefficient matrix in Figure 2 from the i element. The entries c
are those modified by the interface SATs, and we see that the coupling only occurs between the interface
nodes.

Alternatively, consider a GSBP operator constructed on the five-node Chebyshev-Gauss quadrature
nodes, which has a nodal distribution for the i*" element given by

X=— [ — cos (%) — cos (%) 0 cos (31—67) cos (%) ] erJrl’L- (31)
Notice that this nodal distribution does not contain nodes at the element boundaries. We now present the
various matrix operators to five digits of accuracy required for the first-derivative operator and SATSs; the
second-derivative operator is presented in the next section. Those interested in obtaining this operator or
any of the operators considered in this paper are encouraged to contact the primary author of this paper for
the associated Matlab® scripts. The first derivative and norm matrix are given as

47470 6.5995  —2.6537  1.0958  —0.20504 030947 0.0 0.0 0.0 0.0
Q| CLLTOT -013012 7L -0.53792 0.11768 0.0 060063 0.0 0.0 0.0
D, = 7, | 08285 13765 00 13765 —0.32185 |, H=h| o0 00  0.37986 0.0 00 |, (32)
—0.11768 0.53792 —1.7119 0.13012  1.1707 0.0 0.0 0.0  0.60063 0.0
020504 —1.0958 2.6537 —6.5995  4.7470 0.0 0.0 0.0 00  0.30947

where h = %. The matrices and vectors required for the SATs are given as

—1.5933 049221  —0.24621  0.11630 0.0 1.2627 0.031641
049221  —0.14357  0.058086 0.0 ~0.11630 —0.39237 ~0.10194
E = | —0.24621 0.058086 0.0 —0.058086  0.24621 |, g = | 020000 |, tzx = | 0.20000 |, (33)
0.11630 00  —0.058086 0.14357  —0.49221 ~0.10194 —0.39237
00  —0.11630 024621  —0.49221  1.5933 0.031641 1.2627
8 of 20
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Figure 4: Coefficient matrix entries for an element on the interior of the domain discretized using the five-
node Chebyshev-Gauss GSBP operators which have nodal distributions that do not contain nodes on the
element boundaries. Entries with ¢ are entries modified by interface SATs.

1.59454  —0.49566  0.25255 —0.12868  0.04000 0.00100  —0.00323  0.00634 —0.01243  0.04000
—0.49566  0.15407 —0.07850  0.04000 —0.01243 —0.00323  0.01038  —0.02038  0.04000 —0.12868
EmL = 0.25255  —0.07850  0.04000  —0.02038  0.00634 ,EmR: 0.00634  —0.02038  0.04000 —0.07850  0.25255 |, (34)
—0.12868  0.04000 —0.02038 0.01038 —0.00323 —0.01243  0.04000 —0.07850 0.15407  —0.49566
0.04000 —0.01243 0.00634 —0.00323  0.00100 0.04000 —0.12868 0.25255  —0.49566  1.59454
0.04000 —0.12868 0.25255  —0.49566  1.59454 0.04000 —0.01243 0.00634 —0.00323  0.00100
—0.01243  0.04000 —0.07850 0.15407 —0.49566 —0.12868  0.04000 —0.02038 0.01038 —0.00323
thtER = 0.00634  —0.02038  0.04000 —0.07850  0.25255 ,tﬁRtg‘L = 0.25255  —0.07850  0.04000  —0.02038  0.00634
—0.00323  0.01038  —0.02038  0.04000  —0.12868 —0.49566  0.15407  —0.07850  0.04000 —0.01243
0.00100  —0.00323  0.00634 —0.01243  0.04000 1.59454  —0.49566  0.25255 —0.12868  0.04000

(35)
In contrast to classical SBP operators, which include boundary nodes, the matrices required for the SATs
are not sparse. The contributions of the spatial discretization of the i*" element to the coefficient matrix is
given in Figure 4 and we see that the interface SATs completely couple adjacent elements; therefore, all else
equal, this makes such operators more expensive. However, as we will see in the results section, operators
that do not include nodes at element boundaries can be constructed that are more efficient than operators
that contain nodes at element boundaries . This results from the significant reduction in the truncation error
that can be attained for such operators.

V.B. Implementation of compatible and order-matched operators

As discussed, compatible and order-matched operators can be constructed as
n
Da (B) = B(i,i)M;. (36)
i=1

Continuing the example using GSBP operators constructed on the five-node Chebyshev-Gauss quadrature
nodes, the required matrices are given as

24590 —36.689 19.206 —10.544  3.4383 ~7.5346  —1.4131  11.966 —4.0647  1.0462
54730 —7.5024 2.8279  —1.0568  0.25836 0.25706 —0.23531 0.079251 —0.18040 0.079393
M; = 73| TLOST6 22619 —10070 047307 —0.14037 |, Mg = 73| L4854 051802 27708 1008 030344 |,
0.69077 —1.0568 0.59650 —0.34703 0.11655 —0.50062 —0.41207 1.3437  —0.62918  0.19903
—1.5550 2.3523 —1.2846 0.72934 —0.24200 1.0462 077237 —2.6522 1.2128  —0.37914
(37)
—~1.0178  4.0607 —0.50192 —3.2486 0.70764
1 0.68748 —2.7025 0.41950  2.0237 —0.42821
M3 = 72 —0.13730  0.35946 —0.44432 0.35946 —0.13730 |, (38)

—0.42821  2.0237  0.41950 —2.7025 0.68748
0.70764 —3.2486 —0.50192 4.0607  —1.0178
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—0.37914  1.2128 —2.6522  0.77237 1.0462 —0.24200 0.72934 —1.2846 2.3523 —1.5550

|| 019903 062018 13437 041297 —0.50062 | | 011655 034703 05965 10568 0.69077
My = 72| 080344 L0T0S 27708 051802 14854 |, Ms = 2| 014037 047307 10070 22619 15876
0.079393 —0.18040 0.079251 —0.23531  0.25706 0.25836  —1.0568 2.8279 —T7.5024 5.4730
10462 —4.0647 11966 —14131 —T.5346 34383 —10.544  19.206 —36.689 24.500
(39)
Finally, we also require the following matrix for the construction of the SATs (see (19) and (26)):
~4.9798  T.2068  —3.4026 17013 —0.52573
L] TrosIs 044903 2002 085065 024522
D1 = 7 0.32492  —1.3764 0.0 1.3764  —0.32492 |. (40)

—0.24822  0.85065 —2.1029  0.44903 1.0515
0.52573  —1.7013  3.4026  —7.2068 4.9798

If the PDE contains a time-varying variable coefficient, or is nonlinear and therefore requires a nonlinear
solver, for example using pseudo time marching, then the sum in (36) needs to be reevaluated at each time
step. Conversely, if the PDE contains a constant coefficient, i.e., we need only discretize a term of the form
n
‘gig, the sum Y M; is constructed once and for all, rather than evaluated at each time step.
i=1
For operators with a repeating interior point operator, we take advantage of the fact that such operators
are sparse and instead of applying M; we apply the nonzero sub-matrices. For the first-order classical SBP

operator, on five nodes, the compatible and order-matched operator is given as

Dy (B) = 35

= Ih?
10b; — 6b2 8by — 160 —2by + 66y 0 0
4by 2b; — 2bs — 8b —2b1 + 4by + 2b3 0 0 (41)
—by +b1  —2b; +4by +2b3 —3by —3bs + by —4bs + b5 2b3 + 4by — 2b5 —by + bs
0 0 2bs + 4by — 2bs —2b3 + 2bs — 8by 4by
0 0 —2by + 6bs 8bsy — 1605 —6b4 + 10bs5

In (41) the short form b; = B(i,4) has been used. It is possible to construct the second derivative operator
using the above form, which requires the evaluation of the individual entries in the matrix. This has the
disadvantage that the variable coefficient needs to be accessed or constructed multiple times. The form (36)
reduces the above to one loop, based on the variable coefficient, and is also advantageous for the construction
of implicit methods that require the linearization of the compatible and order-matched GSBP operator, since
the linearization is completely transparent. Now we reorganize (41) in terms of the variable coefficient using
form (36), which leads to the following M; matrices:

[10 —-16 6 0 0] [ =6 8 -2 0 0]
0 2 -2 0 0 4 -8 4 0 0
|\/|1:4—12 1 -2 1 0 0 |,4®My=1| -1 4 -3 0 0|, (42)
0 0 0 0 0 0 0 0 00
L0 0 0 0 0. L0 0 0 0 0]
0 0 0 0 0]
0 -2 2 0 0
l\/|3:4—12 0 2 -4 2 0], (43)
00 2 -20
Lo 0 0 0 0
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0 0 O 0 0 0 0 O 0 0
0 0 O 0 0 0 0 O 0 0
1 1
My = 12 0 0 -3 4 -1 |,Ms= 12 o0 1 -2 1 (44)
0 0 4 -8 4 00 -2 2 0
L0 0 -2 8 —6 | L0 0 6 —16 10 |

Note that My and M5 are equal to the permutation of the rows and columns of My and My, respectively.
Instead of using the full M; matrices, the operator can be constructed using only the nonzero sub-matrices.
We define the following five matrices:

Fi:=M1(1:3,1:3), Fa:=My(1:3,1:3), F3:=M3(2:4,2:4),
(45)
Fy:=My(3:5,3:5), F5:=M5(3:5,3:5).

The the second-derivative operator is constructed using the following four steps:
1. Dy := zeros(n,n)
2. Do(B)(1:3,1:3):=b1F1 + baFs
3. Da(B)(2:4,2:4):=D3(B)(2:4,2:4)+ bsF;3
4. D2 (B)(3:5,3:5):=Dy(B)(3:5,3:5)+ byFy + bsFs,

To extend the above algorithm to more than five nodes, it is only necessary to change the indexing of the
last matrix addition and add F3 additional times. Thus, for n nodes, we have the following algorithm:

Algorithm 1 Pseudo code for constructing Dy (B) for a classical first-order compatible and order-matched
SBP operator

D5 (B) := zeros(n,n)
Dg (B) (1:3,153) = b1F1+b2F2
for i=3:n—-2do

Do(B)(i—1:i4+1,i—1:i4+1):=Dy(B)(i —1:i+1,i—1:9+1)+b;F3
end for
Da(B)(n—2:n,n—2:n):=D3(B)(n—2:n,n—2:n)+b,_1F4 + b,F5

The crucial observation is that we are simply adding F3 additional times for additional nodes. In fact,
F3 is simply the contribution from the interior point operator.

VI. Summary of GSBP operators

We investigate two classes of operators: those with a repeating interior point operator and element-
type operators constructed on the Chebyshev-Gauss and Legendre-Gauss-Lobatto quadrature nodes. For
the former, we examine classical SBP operators and hybrid Gauss-trapezoidal-Lobatto (HGTL) and hybrid
Gauss-trapezoidal (HGT) operators, which are derived on evenly spaced nodal distributions on the interior
with a finite number of unequally spaced nodes near the boundaries; a similar family of operators has been
derived by Mattsson et al.?3 Table 1 lists the abbreviations for the various GSBP operators used in this
paper.® All of the operators used in this paper and many more are available in Matlab® script from the
primary author via email. The arguments of the abbreviations can take the following values:

e F2 for the application of the first-derivative operator twice or CO for compatible and order-matched
operators

e clem denotes that the operator is applied using the element approach, while trad is an operator applied
using the traditional finite-difference approach
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Table 1: Abbreviations for GSBP operators

Abbreviation Operator

LGL(F?, elem, n, p) Diagonal-norm element-type GSBP operator
constructed on the Legendre-Gauss-Lobatto
quadrature nodes.

CG(F? or CO,elem, n, p) Diagonal-norm element-type GSBP opera-
tor constructed on the Chebyshev-Gauss
quadrature nodes.

CSBP(F? or CO,elem or trad,n,p) | Diagonal-norm classical SBP operator with
a repeating interior point operator.

HGTL(F? or CO,elem or trad,n,p) | Diagonal-norm GSBP operator on the hy-
brid Gauss-trapezoidal-Lobatto nodal distri-
bution with a repeating interior point oper-
ator.

HGT(F? or CO, elem or trad,n,p) | Diagonal-norm GSBP operator on the hybrid
Gauss-trapezoidal nodal distribution with a
repeating interior point operator.

e n is the number of nodes in each element (not applicable to operators applied using the traditional
finite-difference approach)

e p is the order of the second-derivative operator

The order of operators for the first derivative, constructed on the Chebyshev-Gauss quadrature nodes
with n nodes, is [ 5] and for the application of the first-derivative operator twice is [§ ] — 1, where [-] is the
ceiling operator which returns the closest integer greater than or equal to the argument. For compatible and
order-matched operators, the order is [ ]. The first-derivative operator constructed on the Legendre-Gauss-
Lobatto quadrature nodes with n nodes has order n — 1.24 Using this nodal distribution, order-matched
operators cannot be constructed, and we are therefore limited to the application of the first-derivative
operator twice, which is of order n — 2. For operators with a repeating interior point operator, applying a
first-derivative operator of order p twice leads to an approximation to the second derivative of order p — 1,

while compatible and order-matched operators are of order p.

VII. Results

We solve the steady linear convection-diffusion equation (15) subject to boundary conditions (16). The
variable coefficient in (15) is given by
B =2+ sin (10x) . (46)

1

The physical constants are taken as a = 1 and p = g5, while the problem is solved on the domain z €
[32 94

2. 5], and the source term S and the functions G,, and G, are chosen such that the solution to (15)
and (16) is
tan—1! (2tan(5{z)+1)
ey = o3 (27EED)). .

leflh = V'eTHe, (48)

The solution error is defined by

12 of 20

American Institute of Aeronautics and Astronautics



Downloaded by David Zingg on July 7, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.2015-2915

Table 2: Convergence of the solution error obtained using oper-
ators with a repeating interior point operator of order four im-
plemented using the element approach or the traditional finite-
difference approach

Operator Order Operator Order
CSBP(F?,elem, 13,1)  3.134  CSBP(F?,trad, —, 1)  2.9939
CSBP(CO,elem, 13,2)  3.534  CSBP(CO,trad, —,2) 4.2867

HGT(F? elem,13,1)  3.0184 HGT(F? trad,—, 1)  2.9815
HGT(CO,elem, 13,2) 3.8143 HGT(CO,trad, —,2) 4.2693

where e = (uj, — u,), U, is the restriction of the analytical solution onto the grid, and H is a diagonal matrix
with the norm matrix, H, from each element along the diagonal.

Tables 2 through 5 give the convergence rates of the solution error, which is computed by determining
the slope of the line of best fit through the points (z,y) = (log(h),log(|le||n)) associated with the filled-in
markers in the figures. Figures 5 through 8 present the convergence of the |e||y versus ﬁ as well as the
cpu time to compute the left-hand side (LHS) of the discretization, where DOF stands for degrees of freedom
in the spatial operator. For operators implemented using the traditional finite-difference approach, DOF is
the number of nodes and h is the average spacing between nodes, i.e., #2=7L. For element-type operators,
DOF is the product of the number of elements and the number of nodes in each element and h is the size of
the element. In this paper, grid refinement using the element approach is carried out by equally subdividing
elements, starting with one element at the coarsest grid level, while grid refinement using the traditional
finite-difference approach is carried out by doubling the number of nodes.

Tables 2 through 4 show that operators with a repeating interior point operator implemented using the
traditional finite-difference approach have convergence rates of approximately the order of the operator plus
two, which is in line with the theory of Sviird and Nordstrém.2?® In contrast, implementing these same
operators using the element approach, the convergence rates of even-order compatible and order-matched
operators are reduced. Examining Figures 5 through 7, we see that using the traditional finite-difference
approach significantly reduces the global error and leads to more efficient schemes. We also see the significant
advantage gained by considering operators that do not include boundary nodes, whether implemented using
the element approach or the traditional finite-difference approach, despite the additional computational
cost associated with the increased coupling from the SATs. Furthermore, compatible and order-matched
operators have increased convergence rates, lower global error, and are more efficient than the application
of the first-derivative operator twice. We find the hybrid Gauss-trapezoidal operators with interior point
operators of order four and six and the Gauss-trapezoidal-Lobatto operator with an interior point operator
of order eight to be more efficient than the classical SBP operators with equivalent order interior point
operators constructed as either the application of the first-derivative operator twice or the compatible and
order-matched versions.

Table 5 gives the convergence rates of the two families of element-type GSBP operators considered in this
paper. For the Chebyshev-Gauss operators, the application of the first-derivative operator twice attains a
convergence of the order of the operator plus two. In contrast, the Legendre-Gauss-Lobatto operators do not
have this superconvergence and, in fact, do not even attain convergence rates of the order of the operator plus
one. The compatible and order-matched Chebyshev-Gauss operator on five nodes has a convergence rate of
the order of the operator plus one, while the seven-node operator does not attain this level of convergence. In
Figure 8, we see that both five-node Chebyshev-Gauss operators are more efficient than the Legendre-Gauss-
Lobatto operator, with the compatible and order-matched operator being the most efficient of the three. In
that same figure, we find that both seven-node Chebyshev-Gauss operators are as efficient as the Legendre-
Gauss-Lobatto operator. Finally, all of the compatible and order-matched operators with a repeating interior
point operator, implemented as elements, are more efficient than the Legendre-Gauss-Lobatto operators.

We note that one possible reason for the under-convergence rates by either operators with a repeating
interior point operator implemented using the element approach or the element-type operators may be a
result of using the Baumann-Oden?® interface SATSs, which have previously been shown to lead to suboptimal
convergence rates for pseudo-spectral operators.m28
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Table 3: Convergence of the solution error obtained using op-
erators with a repeating interior point operator of order six im-
plemented using the element approach or the traditional finite-
difference approach

Operator Order Operator Order
CSBP(F? elem,19,2)  4.027  CSBP(F? trad,—,2) 3.9855
CSBP(CO,elem, 19,3) 4.8954 CSBP(CO,trad,—,3) 5.0286

HGT(F? elem,19,2)  3.8703 HGT(F? trad, —,2)  3.7329
HGT(CO,elem,19,3) 5.2723 HGT(CO,trad,—,3) 4.9415

Table 4: Convergence of the solution error obtained using op-
erators with a repeating interior point operator of order eight
implemented using the element approach or the traditional finite-
difference approach

Operator Order Operator Order

CSBP(F?,elem,25,3) 5.3374 CSBP(F?, trad,—,3) 5.8418
CSBP(CO,elem, 25,4) 5.7061 CSBP(CO,trad,—,4) 6.1933
HGT(F?, elem, 25,3)  5.4085 HGT(F? trad,—,3) 5.0517
HGT(CO, elem, 25,4) 55649 HGT(CO, trad, —,4)  5.8663

Table 5: Convergence of the solution error obtained using
element-type operators

Operator Order Operator Order
CG(F? elem,5,2) 3.9836 CG(CO,elem,5,3) 3.8073
CG(F? elem,7,3) 3.9836 CG(CO,elem,7,4) 3.8073

LGL(F? elem,4,3) 3.1959 LGL(F? elem,5,4) 3.1959
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Figure 5: Solution error obtained using operators with a repeating interior point operator of order four
implemented using the element approach or the traditional finite-difference approach. H norm of the error
in the solution to problem (15) versus &g, (a) and (c), or versus cpu time to construct the LHS, (b) and

(d).
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Figure 6: Solution error obtained using operators with a repeating interior point operator of order six using
the element approach or the traditional finite-difference approach. H norm of the error in the solution to
problem (15) versus 5&5, (a) and (c), or versus cpu time to construct the LHS, (b) and (d).
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Figure 7: Solution error obtained using operators with a repeating interior point operator of order eight
implemented using the element approach or the traditional finite-difference approach. H norm of the error
in the solution to problem (15) versus &g, (a) and (c), or versus cpu time to construct the LHS, (b) and

(d).
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Figure 8: Comparison of various second-derivative operators of order two and three, (a) and (b), or three
and four, (c) and (d). H norm of the error in the solution to problem (15) versus g5g, (a) and (c) or
versus cpu time to construct the LHS, (b) and (d). The first-derivative operator in (a) and (b) is of order
three and therefore the application of the first-derivative operator is of order two, while for (c) and (d) the
first-derivative operator is of order four and therefore the application of the first-derivative twice is of order
three.
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VIII. Conclusions and future work

The results in Section VII show that compatible and order-matched GSBP and classical SBP operators
can be more efficient than the application of the first-derivative operator twice. Several operators have
been presented in detail to enable other researchers to implement them. We are particularly interested in
examining the potential efficiency benefits of compatible and order-matched SBP second-derivative operators
in the numerical solution of the Navier-Stokes equations. Recently Hicken et. al>® have extended the GSBP
framework to multi-dimensional operators with the SBP property on simplices. Such operators can be
applied in the context of unstructured grids and in future work, we look to extend the idea of compatible
and order-matched second-derivative operators with the SBP property to simplices.

References

1Del Rey Fernandez, D. C., Boom, P. D., and Zingg, D. W., “A generalized framework for nodal first derivative summation-
by-parts operators,” Journal of Computational Physics, Vol. 266, No. 1, 2014, pp. 214-239.

2Boom, P. D. and Zingg, D. W., “High-Order Implicit Time-Marching Methods Based on Generalized Summation-By-Parts
Operators,” Submitted to SIAM Journal on Scientific Computing, (see arXiv:1410.0201[Math.NA]), 2014.

3Boom, P. D. and Zingg, D. W., “Runge-Kutta Characterization of the Generalized Summation-by-Parts Approach in
Time,” Submitted to SIAM Journal on Scientific Computing, (see arXiv:1410.0202[Math.NA]), 2014.

4Del Rey Fernandez, D. C. and Zingg, D. W., “Generalized summation-by-parts operators for the second derivative with
a variable coefficient,” Submitted to SIAM Journal on Scientific Computing, (see arXiv:1410.0201[Math.NAJ), 2014.

5Kreiss, H.-O. and Scherer, G., “Finite element and finite difference methods for hyperbolic partial differential equations,”
Mathematical aspects of finite elements in partial differential equations, Academic Press, New York/London, 1974, pp. 195-212.
6Strand, B., “Summation by parts for finite difference approximations for d/dx,” Journal of Computational Physics,
Vol. 110, No. 1, 1994, pp. 47-67.
7Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-stable boundary conditions for finite-difference schemes solving
hyperbolic systems: Methodology and application to high-order compact schemes,” Journal of Computational Physics, Vol. 111,
No. 2, 1994, pp. 220-236.
8Carpenter, M. H., Nordstrém, J., and Gottlieb, D., “A stable and conservative interface treatment of arbitrary spatial
accuracy,” Journal of Computational Physics, Vol. 148, No. 2, 1999, pp. 341-365.
9Nordstrém, J. and Carpenter, M. H., “Boundary and interface conditions for high-order finite-difference methods applied

to the Euler and Navier-Stokes equations,” Journal of Computational Physics, Vol. 148, No. 2, 1999, pp. 621-645.

10Nordstrém, J. and Carpenter, M. H., “High-order finite-difference methods, multidimensional linear problems, and curvi-
linear coordinates,” Journal of Computational Physics, Vol. 173, No. 1, 2001, pp. 149-174.

HMattsson, K. and Nordstrém, J., “Summation by parts operators for finite difference approximations of second deriva-
tives,” Journal of Computational Physics, Vol. 199, 2004, pp. 503—-540.

12Mattsson, K., “Summation by parts operators for finite difference approximations of second-derivatives with variable
coefficients,” Journal of Scientific Computing, Vol. 51, No. 3, 2012, pp. 650—682.

13Svird, M. and Nordstrém, J., “Review of summation-by-parts schemes for initial-boundary-value-problems,” Journal of
Computational Physics, Vol. 268, No. 1, 2014, pp. 17-38.

Del Rey Fernéndez, D. C., Hicken, J. E., and Zingg, D. W., “Review of summation-by-parts operators with simultaneous
approximation terms for the numerical solution of partial differential equations,” Computers & Fluids, Vol. 95, No. 22, 2014,
pp. 171-196.

15Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer, 2008.

16Gustafsson, B., Kreiss, H.-O., and Oliger, J., Time-Dependent Problems and Difference Methods, Pure and Applied
Mathematics, Wiley, 2nd ed., 2013.

17Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, Vol. 47 of Classics in
Applied Mathematics, STAM, 2004.

18Del Rey Fernandez, D. C. and Zingg, D. W., “New diagonal-norm summation-by-parts operators for the first derivative
with increased order of accuracy,” AIAA aviation 2015, 2014.

Mattsson, K. and Almquist, M., “A solution to the stability issues with block norm summation by parts operators,”
Journal of Computational Physics, Vol. 15, 2013, pp. 418—442.

20Mattsson, K., Svird, M., and Shoeybi, M., “Stable and accurate schemes for the compressible Navier-Stokes equations,”
Journal of Computational Physics, Vol. 227, No. 4, 2008, pp. 2293-2316.

21Kamakoti, R. and Pantano, C., “High-order narrow stencil finite-difference approximations of second-derivatives involving
variable coefficients,” SIAM Journal on Scientific Computing, Vol. 31, No. 6, 2009, pp. 4222-4243.

22Gong, J. and Nordstrém, J., “Interface Procedures for Finite Difference Approximations of the advection-diffusion equa-
tion,” Journal of Computational and Applied Mathematics, Vol. 236, 2011, pp. 602—-620.

23Mattsson, K., Almquist, M., and Carpenter, M. H., “Optimal diagonal-norm SBP operators,” Journal of Computational
Physics, Vol. 264, No. 1, 2014, pp. 91-111.

24Shen, J., Tang, T., and Wang, L.-L., Spectral methods algorithms, analysis and applications, Springer, 2011.

25Svird, M. and Nordstrém, J., “On the order of accuracy for difference approximation of initial-boundary value problems,”
Journal of Computational Physics, Vol. 218, No. 1, 2006, pp. 333-352.

19 of 20

American Institute of Aeronautics and Astronautics



Downloaded by David Zingg on July 7, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.2015-2915

26Baumann, C. E. and Oden, J. T., “A discontinuous hp finite element method for convection-diffusion problems,” Computer
Methods in Applied Mechanics and Engineering, Vol. 175, No. 3-4, 1999, pp. 311-341.

27Carpenter, M. H., Nordstrém, J., and Gottlieb, D., “Revisiting and Extending Interface Penalties for Multi-domain
Summation-by-Parts Operators,” Tech. rep., NASA Langley Research Center, 2007.

28Carpenter, M. H., Nordstrém, J., and Gottlieb, D., “Revisiting and Extending Interface Penalties for Multi-domain
Summation-by-Parts Operators,” Journal of Scientific Computing, Vol. 45, No. 1-3, 2010, pp. 118-150.

29Hicken, J. E., Del Rey Fernandez, D. C., and Zingg, D. W., “Multidimensional summation-by-part operators:
General theory and application to simplex elements,” Submitted to the Journal of Computational Physics (2015). (see
arXiv:1505.03125v1 [math.NA]), 2015.

20 of 20

American Institute of Aeronautics and Astronautics



