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In combination with simultaneous approximation terms, summation-by-parts (SBP) op-
erators provide a flexible and efficient methodology that leads to consistent, conservative,
and provably stable high-order discretizations. Traditional diagonal-norm SBP operators
with a repeating interior point operator lead to solutions that have a global order of accu-
racy lower than the order of the interior point operator. A new family of diagonal-norm
SBP operators is proposed that retains the order of accuracy of the interior operator. This
new family of operators is compared to the traditional approach in the context of the linear
convection equation, demonstrating a significant improvement in efficiency.

I. Introduction

The focus of this paper is on the development of summation-by-parts (SBP) operators1–4 for the first
derivative with a repeating interior point operator. Using simultaneous approximation terms (SATs)5–10 for
the weak imposition of boundary conditions and inter-element coupling, the SBP-SAT approach leads to
consistent, conservative, and provably stable discretizations of PDEs. Diagonal-norm SBP operators lead to
stable discretizations in curvilinear coordinates.11 Traditional diagonal-norm finite-difference SBP operators
are of order 2p in the interior, while a number of boundary point operators are of order p, leading to errors
in solutions of hyperbolic problems of global order p + 1.12 The errors of traditional finite-difference-SBP
operators can be reduced by considering operators that have nonuniform nodal distributions for a finite set
of nodes at and near the boundaries.13,14 However, the order of accuracy of these operators is not increased.
The objective of this paper is to develop SBP operators where the order of the matrix operator matches the
order of the interior point operator, potentially leading to more efficient discretizations.

The paper is organized as follows: in Section II, the notation used in the paper is given. SBP operators
for the first derivative are reviewed in Section III. The development of the new family of SBP operators
is detailed in Section IV, while Section V outlines specific steps to construct particular instances of these
operators. In Section VI, a subset of the new family of SBP operators is compared to known SBP operators,
in the context of the steady linear convection equation. Finally, conclusions are drawn in Section VII.

II. Notation and definitions

The conventions in this paper are a shortened version of those given are based on those laid out in Refs.
15, 3, and 16.

Vectors are denoted with small bold letters, for example, x = [x1, . . . , xN ]T, while matrices are presented
using capital letters with sans-serif font, for example, M. Capital letters with script type are used to denote
continuous functions on a specified domain x ∈ [xL, xR]. As an example, U(x) ∈ C∞[xL, xR] denotes an
infinitely differentiable function on the domain x ∈ [xL, xR]. Lower case bold font is used to denote the
restriction of such functions onto a grid; for example, the restriction of U onto the grid x is given by

u = [U(x1), . . . ,U(xN )]
T
. (1)
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Vectors with a subscript h, for example, uh ∈ RN×1, represent the solution to a system of discrete or
semi-discrete equations.

The restriction of monomials onto a set of nodes is used throughout this paper and is represented by

xk =
[
xk1 , . . . , x

k
N

]T
, with the convention that xk = 0 if k < 0. We discuss the degree of SBP operators, that

is, the degree of monomial for which they are exact, as well as the order of the operators. The approximation
of the derivative has a leading truncation error term for each node, proportional to some power of h. The
order of the operator is taken as the smallest exponent of h in these truncation errors. For operators
approximating the first derivative, degree and order are equal.

III. Summation-by-parts operators for the first derivative

To motivate the definition of SBP operators for the first derivative, consider the unsteady linear-convection
equation

∂U
∂t

= −∂U
∂x

, (2)

where x ∈ [xL, xR], t ≥ 0, and the initial and boundary conditions are not important for the current
discussion. The energy method is applied to (2) in order to construct an energy estimate on the solution.
This estimate is then used to determine stability (for more information regarding stability and the energy
method, see Refs. 17, 18, and 19). The energy method consists of multiplying the PDE by the solution,
integrating in space, transforming the integral on the RHS using integration-by-parts, and then integrating
in time. This leads to

‖U (·, t) ‖2 = ‖U (·, 0) ‖2 −
t∫

τ=0

U2
∣∣xR

x=xL
dτ. (3)

SBP operators for the first derivative are constructed such that when the energy method is applied to the
semi-discrete or fully-discrete equations, energy estimates analogous to (3) can be constructed.

The equations that an order p SBP operator, Dx, approximating the first derivative must satisfy can be
constructed using the restriction of monomials onto the grid. They are denoted the degree conditions and
given as

Dxx
k = kxk−1, k ∈ [0, p]. (4)

For the first derivative, the above discussion leads to the following definition:3,4

Definition 1 Summation-by-parts operator for the first derivative: A matrix operator Dx ∈ RN×N
is an approximation to ∂

∂x , on the uniform nodal distribution x, of order p with the SBP property if

1. Dxx
k = H−1Qxk = kxk−1, k ∈ [0, p];

2. H, denoted the norm matrix, is symmetric positive definite; and

3. Q + QT = E = diag (−1, 0 . . . , 0, 1).

The operators originally developed by Kreiss and Scherer1 and Strand2 are referred to as classical finite-
difference-SBP operators, which are characterized by a uniform nodal distribution that includes both bound-
ary nodes and a repeating interior point operator. It is possible to extend the SBP idea to a broader set
of operators by considering the construction of SBP operators on more general nodal distributions. For
example, Carpenter and Gottlieb20 proved that using the Lagrangian interpolant, operators with the SBP
property can be constructed on nearly arbitrary nodal distributions. In related work, Gassner21 used these
same ideas to interpret the discontinuous Galerkin spectral element method on the Legendre-Gauss-Lobatto
quadrature nodes as a diagonal-norm SBP SAT method. These ideas led to generalized SBP (GSBP) oper-
ators, where the nodal distribution can be nonuniform and can exclude one or both boundary nodes.16 The
required change in Definition 1 for a GSBP operator is to define E such that

xT
j Exi = xi+jR − xi+jL , i, j ∈ [0, r], r ≥ p. (5)

2 of 10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 D

av
id

 Z
in

gg
 o

n 
Ju

ly
 7

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

29
14

 



Q =

MM

− 1
2 q12 q13 q14 0 0 0 0 0 0 0 0

−q12 0 q23 q24 0 0 0 0 0 0 0 0

−q13 −q23 0 q34 − 1
12 0 0 0 0 0 0 0

−q14 −q24 −q34 0 2
3 − 1

12 0 0 0 0 0 0

0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0 0 0

0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0 0

0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0

0 0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0

0 0 0 0 0 0 1
12 − 2

3 0 q34 q24 q14

0 0 0 0 0 0 0 1
12 −q34 0 q23 q13

0 0 0 0 0 0 0 0 −q24 −q23 0 q12

0 0 0 0 0 0 0 0 −q14 −q13 −q12 1
2




Figure 1. Classical form of Q.

We describe an SBP or GSBP operator with a repeating interior point operator as a block operator. They are
normally implemented using the traditional finite-difference approach where mesh refinement is accomplished
by increasing the number of mesh nodes where the repeating interior point operator is applied. Conversely,
a GSBP operator with no repeating interior point operator, denoted element-type operators, must be imple-
mented using the element approach where h-refinement is carried out by increasing the number of elements
while maintaining the element size. Note that a block operator can also be implemented as an element-type
operator. However, the new family of SBP and GSBP operators with a repeating interior point operator
considered here must necessarily be applied as elements; the reasons are discussed below.

IV. Form of new operators with order of accuracy of 2p

The goal of this paper is to construct SBP operators with a repeating interior point operator that are of
order 2p everywhere by proposing a modification to the form of diagonal-norm SBP operators. We first discuss
the construction of diagonal-norm classical finite-difference SBP operators and then their modification such
that the resultant operator has the same order of accuracy at boundary nodes as in the interior. Consider
such an operator for p = 2 on 12 nodes; thus, the repeating interior point operator is of order 2p = 4 and
the boundary point operators are of order p = 2. The norm matrix is given as

H = h diag (h11, h22, h33, h44, 1, . . . , 1, h44, h33, h22, h11) , (6)

where h is the mesh spacing. The matrix Q has the form given in Figure 1, where M is nearly skew symmetric
as shown. The repeating interior point operator is highlighted in blue, while the green triangles have entries
that originate from the repeating interior point operator and ensure that the resultant Q is nearly skew
symmetric. To apply this operator on a nodal distribution with more than 12 nodes, the matrix is expanded
by inserting additional interior point operators, which does not require a change to the boundary point
operators. In this example, there are 2p = 4 boundary point operators at either boundary, and this is the
minimum required.2 The number of boundary point operators can be increased by increasing the size of M;
this has the potential to result in boundary point operators with significantly reduced truncation error.13

The entries in M and H are specified by satisfying the degree conditions (4) and the constraint that H be
positive definite.

The new operators of order 2p at all nodes are given by D̃x = H̃−1Q̃, where

H̃ = h diag
(
h̃11, h̃22, h̃33, h̃44, 1, . . . , 1, h̃44, h̃33, h̃22, h̃11

)
, (7)
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Q̃ =

M̃̃M

−C̃T−C̃T

C̃̃C

− 1
2 q̃12 q̃13 q̃14 0 0 0 0 c11 c12 c13 c14

−q̃12 0 q̃23 q̃24 0 0 0 0 c21 c22 c23 c13

−q̃13 −q̃23 0 q̃34 − 1
12 0 0 0 c31 c32 c22 c12

−q̃14 −q̃24 −q̃34 0 2
3 − 1

12 0 0 c41 c31 c21 c11

0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0 0 0

0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0 0

0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0

0 0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0

−c11 −c21 −c31 −c41 0 0 1
12 − 2

3 0 q̃34 q̃24 q̃14

−c12 −c22 −c32 −c31 0 0 0 1
12 −q̃34 0 q̃23 q̃13

−c13 −c23 −c22 −c21 0 0 0 0 −q̃24 −q̃23 0 q̃12

−c14 −c13 −c12 −c11 0 0 0 0 −q̃14 −q̃13 −q̃12 1
2





,

Figure 2. Modified form of Q.

and Q̃ has the form given in Figure 2, where the matrix C̃ is constructed such that that the resultant
operator satisfies the asymmetry of the first derivative under a reflection of the x-axis, that is, x̃ = −x
leads to ∂

∂x = − ∂
∂x̃ . The entries in M̃ are not, in general, equal to those in M from the unmodified Q and

similarly the entries in H̃ are not the same as in H. The addition of the C̃ matrix allows the construction
of operators that are of order 2p everywhere. The entries in C̃ are dependent on the number of nodes in
the block. Therefore such an operator must be implemented as an element-type operator. This means that
distinct operators must be constructed for each block size.

V. Construction of new operators with order of accuracy 2p

One of the difficulties in deriving SBP operators is satisfying the positive-definite constraint on H. We
have found that restricting the number of non-unity weights in 1

hH to 2p at either boundary and first solving
for H results in a positive-definite H for the operators presented in this paper. The diagonal norm matrix
of an SBP operator of degree 2p has nonzero coefficients that result in a degree 4p − 1 quadrature rule;16

therefore, H must satisfy

1THxk −
(
xk+1
R − xk+1

L

)
k + 1

= 0, k ∈ [0, 4p− 1]. (8)

The solution to (4) typically results in free parameters that enable optimization. The norm matrix of
an order 2p SBP operator is a degree 4p − 1 approximation to the L2 inner product16,22 and is used to
compute functionals of the solution. Therefore, here the discrete SBP inner product of the error is used as
the objective function, which for the first-derivative operator, D̃x, is given as

Je = eT
2p+1H̃e2p+1, (9)

where the error vector is given as

e2p+1 = D̃xx
2p+1 − (2p+ 1) x2p. (10)

Without additional constraints, some of the operators that result have very large coefficients. These operators
can be highly susceptible to round-off error. Therefore, in addition to (9), we use a second objective function,
JQ̃, which is the sum of the squares of the entries of Q̃. Maple’s c© minimize function is used to determine
the minimum of objective function (9). Free parameters that do not affect Je are used to minimize JQ̃.

The steps to construct an order 2p operator are thus:
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• Specify the number of nodes.

• Solve for the quadrature rule using (8) with H̃ constructed to have 2p non-unity weights at the first
and last 2p nodes. It is necessary to check that the resulting H̃ is positive definite (for the operators
considered in this paper we did not encounter negative or zero weights).

• Construct Q̃ and solve the degree conditions (4).

• Optimize the free parameters using objective Je and specify the remaining free parameters by opti-
mizing using objective JQ̃.

The above steps are sufficient for the operators considered in this paper. However, for even higher order
operators, it may be the case that 1

h H̃ will require greater than 2p non-unity weights at the first and last

number of nodes in order to satisfy the positive definite constraint; similarly, M̃ and C̃ might need to be
expanded.

Up to this point we have used the˜ to differentiate between the constituent matrices of operators with
and without the corner correction, to make clear that the entries in these matrices are different. Since this
is now clear, we no longer make this distinction.

In addition to SBP operators constructed on uniform nodal distributions, we investigate GSBP operators
with a repeating interior point operator that have a number of nodes at the boundaries that are not uniformly
spaced. By allowing the nodal distribution to vary near the boundary, it is possible to construct operators
with reduced error but with no effect on the order of accuracy.13

Deriving the optimal nodal locations beyond two or three nodes while at the same time ensuring that
a positive-definite norm matrix can be found is difficult.13 Instead, for diagonal-norm SBP operators, it
is possible to start with a quadrature rule with positive weights and then construct the norm matrix by
injecting the weights of the quadrature rule along the diagonal.16 Quadrature rules on nodal distributions
that have a number of unequally spaced nodes at and near boundaries with equally spaced interior nodes
were proposed by Alpert23 and have been successfully used to construct GSBP operators.14 The nodal
locations and quadrature weights are derived from the solution to

j∑
i=1

w̃ix̃
r
i = Br+1(a)

r+1 , r = 0, 1, . . . , 2j − 2,

x̃0 = 0,

(11)

where Bi (x) is the ith Bernoulli polynomial, B0 (x) = 1, and the last equation ensures that nodes at the
boundaries are included. The resultant nodal distribution is referred to as the hybrid Gauss-trapezoidal-
Lobatto (HGTL) nodal distribution. The parameters a and j are chosen so that a particular degree is
attained. For the nodal distributions considered by Alpert,23 choosing a = j results in quadrature rules
with positive weights up to degree 20.23 We therefore choose a = j. To construct a nodal distribution on
x ∈ [0, 1], the following relations are used:

xi = hx̃i, xN−(i−1) = 1− hx̃i, i ∈ [1, j],

xi+j+1 = h(a+ i), i ∈ [0, n− 1],

(12)

where h = 1
n+2a−1 , n is the number of uniformly distributed nodes, and the total number of nodes is given

as N = n+ 2j.
Rather than using the quadrature rules given by Alpert,23 we use the nodal distributions that result from

(11) and construct operators with Q or Q̃ on these nodal distributions using the previously described steps.
Table 1 summarizes the various operators considered in this paper. The HGTL2, HGTLC25 4, HGTLC50 4,
HGTLC25 6, and HGTLC50 6 operators are constructed on the HGTL nodal distribution derived from (11)
for a = j = 2, while the HGTL3 operator is constructed on the HGTL nodal distribution for a = j = 3.
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Table 1. Abbreviations for GSBP operators for the second derivative

Abbreviation Operator

CSBP[p] Order p classical finite-difference-SBP operator with a repeating interior point
operator of order 2p

CSBPC[N ] [2p] Order p classical finite-difference-SBP operator on N nodes with a repeating
interior point operator of order 2p constructed using Q̃

HGTL[p] Order p GSBP operator with a repeating interior point operator of order 2p
constructed on the HGTL nodes using Q

HGTLC[N ] [2p] Order 2p GSBP operator on N nodes with a repeating interior point operator
of order 2p constructed on the HGTL nodes using Q̃

VI. Results

In this section, a steady form of the linear convection equation with a source term is used as a testbed
to characterize the proposed operators. The continuous problem is given as

−∂U
∂x

+ S = 0, x ∈ [0, 1], (13)

where S is a source term such that

U (x, t) = 1 + ((−32x+ 16) sin (10π x) + 10 cos (10π x)π) e−4 (2 x−1)2 (14)

is a solution to (13). The boundary condition is given as

U(0) = G0, (15)

where G0 (t) is constructed such that (14) is the solution to (13). The discrete H norm of the error of the
solution is computed using

‖e‖H = eTHe, (16)

where e = uh − u, uh is the discrete solution, and u is the projection of exact solution onto the nodal
distribution.The discrete equations are given as

−Dxuh + s + SATBC + SATI = 0, (17)

where s is the projection of the source term onto the nodal distribution. The term SATBC is to enforce the
boundary condition, while the term SATI is used to enforce the inter-element coupling (for more information
about SATs see Refs. 5, 6, 7, 8, 24, 25, 26, 27, and 28). The CSBP and HGTL operators are applied using
an element approach with blocks of 50 nodes.

Figures 3(a) and 4(a) depict the convergence of ‖e‖H, while Tables 2 and 3 give the convergence rates,
computed by determining the slope of the line of best fit through the points (x, y) = (log(h), log(‖e‖H))
associated with the filled-in markers in the figures. For operators with p = 2 (Table 2), the new operators
demonstrate convergence rates approximately two orders higher then both the classical SBP operator and
the HGTL operator. The p = 3 operators (Table 3), display convergence rates that are approximately 3
orders higher. Figures 3(a) and 4(a) show that the new operators lead to reduced errors as well. Figures
3(b) and 4(b) show the convergence of ‖e‖H as a function of floating point operations (FLOs) and it can be
seen that the new operators are more efficient than either the CSBP or HGTL operators for error tolerances
below a certain threshold.

The new operators require a small increase in the number of FLOs for a given element size. Figures
2(c) and 3(c) show the relative efficiency of the various operators compared to the CSBP operators. The
new operators, for p = 2 (Figure 2(c)), are increasingly more efficient for error tolerances smaller than 10−4.
Similarly, for the p = 3 operators (Figure 3(c)), the new operators are increasingly more efficient for error
tolerances smaller than 10−5. In contrast to the p = 2 operator, the HGTL operator for p = 3 is significantly
more efficient than the CSBP operator. For p = 3 the new operators are more efficient than HGTL for ‖e‖H
below 10−7.
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Table 2. Convergence rates of ‖e‖H for operators with p = 2

Operator Order ‖e‖H
CBP2 3

HGTL2 3.0001

CSBPC25 4 4.9896

CSBPC50 4 5.0444

HGTLC25 4 4.802

HGTLC50 4 4.856

Table 3. Convergence rates of ‖e‖H for operators with p = 3

Operator Order ‖e‖H
CBP3 4.0031

HGTL3 4.0107

CSBPC25 6 6.9847

CSBPC50 6 7.3071

HGTLC25 6 6.9856

HGTLC50 6 7.3443

VII. Conclusions

We modify the structure of classical SBP operators such that a new family of operators can be constructed
that has the same order at all nodes as the repeating interior point operator. The resultant operators are of
order 2p and for the steady convection equation produce solutions of order 2p + 1, while the classical SBP
operators are of order p and typically have solutions of order p + 1. For sufficiently tight error tolerances,
the new family of corner-corrected operators has lower global error, better convergence rates, and is more
efficient than either classical SBP operators or HGTL operators without the corner correction.
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(c)

Figure 3. Operators with p = 2: a) Convergence of ‖e‖H versus 1
DOF , b) Convergence of ‖e‖H versus 1

FLOs , and c)
floating point operations relative to the CSBP2 operator. Filled in markers are used in computing the convergence
rates.
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Figure 4. Operators with p = 3: a) Convergence of ‖e‖H versus 1
DOF , b) Convergence of the ‖e‖H versus 1

FLOs , and
c) floating point operations relative to the CSBP3 operator. Filled in markers are used in computing the convergence
rates.
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