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A general and unified geometry framework based on non-uniform rational B-splines is

presented. One key aspect of this framework is the use of free-form deformation where

the control points defining the geometry itself are embedded rather than the usual surface

grid points. This ensures that one maintains an analytical representation of the geometry

as it deforms and, if required, also enables the use of an integrated algorithm for mesh

movement. The flexibility and robustness of the proposed approach are demonstrated in

the context of aerodynamic shape optimization by maximizing, using an Euler-based flow

solver and gradient-based optimizer, the lift-to-drag ratio of an initially half-sphere-shaped

geometry. Sensitivities are computed analytically via the discrete adjoint method.

I. Introduction

Anthropogenic climate change has awakened global awareness.1 Its disastrous impacts on the environ-
ment have long been linked to oil, whose diminishing world reserves have led to a substantial rise in fuel

prices. As far as the aviation industry is concerned, greener alternatives to kerosene will remain uncertain
in the foreseeable future. Therefore, other means of reducing greenhouse gas emissions at reasonable cost
must be sought.2 One such prospect is through improved fuel efficiency via drag and weight reduction aided
by aerodynamic shape optimization3 (ASO) and multidisciplinary design optimization (MDO), due to their
potential for discovering novel, optimal aircraft configurations.

Until recently, high-fidelity ASO and MDO have been almost exclusively restricted to relatively simple
geometries,4,5 e.g. airfoils and wings. Indeed, efforts in these fields have largely focused on accurately and
efficiently evaluating aerodynamic functionals and their gradients with respect to a set of design variables.6

Instead, this paper addresses the fundamental need for an efficient shape control system capable of handling
large surface deformations as well as accompanying volume mesh movement. The proposed methodology
builds directly on the work of Hicken and Zingg,7,8 in view of incorporating an high-fidelity finite-element
structural solver in the near future.

Historically, shape control systems for ASO have been subdivided into two broad categories: CAD-based
and CAD-free.9 On the one hand, CAD-based systems usually benefit from well-developed and extensive
toolkits while, on the other hand, due to their proprietary nature they often veil their core components
from the user, making it difficult to compute, for example, sensitivities through the adjoint formulation,10

even with interfaces such as CAPRI.11 Furthermore, when parallel considerations are accounted for, other
practical issues such as the number of available CAD licenses may become problematic.12

In opting for a CAD-free system, one must also carefully choose a parameterization technique. A good
parameterization is one that can represent a broad range of useful shapes using as few (design) variables as
possible. Again, the developer is presented with two families of options: featured-based or free-form.13 While
featured-based parameterizations, such as the CST method of Kulfan,14 are well suited to improving existing
component-based aircraft, they generally assume prescribed geometries built from, but limited to, human
imagination. Since this project is partly aimed at uncovering yet unknown unconventional configurations, a
more flexible parameterization is required.
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Free-form parameterizations based on analytical bumps15 (Hicks and Henne, 1978), discrete points16

(Jameson and Reuther, 1994), and more recently B-splines17 (Nemec and Zingg, 2002) have all had their
share of success. In the case of B-splines, their high flexibility and efficient approximation power18 still make
them prime candidates when no a priori knowledge of the final geometry is known, even though continuity
requirements at their boundaries can be fairly complicated.19 It is important to realize that, being surface-
based parameterizations, none of these techniques can readily accommodate structural components.

In contrast, volume-based parameterizations can intrinsically account for any number of grids irrespective
of their disciplines. Jakobsson and Amoignon20 and later Morris et al.21 used radial basis functions to
parameterize full computational domains, including the outer mold line of geometries, thereby perturbing
both surface and internal grids in one shot. Other volumetric methods, mostly borrowed from the soft object
animation industry, have also recently gained in popularity. These include cage-based deformation22 and
free-form deformation23 (FFD); see Ref. 24 for a comprehensive review of direct manipulation methods based
on FFD and also Ref. 25 for applications to aerospace design.

Due to their attractive features, it is not surprising that a number of researchers have adopted some of
these newer modeling techniques for ASO26–29 and MDO.30,31 In their work, however, it is presumed that a
final geometry will have to undergo a reverse-engineering fit as a post-processing step (for say, manufacturing
purposes), in which case geometric fidelity will invariably be lost. This unfortunate price stems from the fact
that CAD-free, unlike CAD-based, shape optimization only requires an initial discrete geometry to operate.
By parameterizing only the relevant information of a geometric model, it should be possible to reconcile the
two worlds.

For these and other reasons we hope to clarify in this paper, a new CAD-free geometry framework has been
developed. It is composed of a robust two-level FFD scheme that tightly integrates both surface warping
and resulting volume mesh movement, all the while retaining exact geometric representation. Following
recommendations from the NASA-IGES NURBS-Only standard,32 the entire framework is built onto non-
uniform rational B-splines33 (NURBS) objects.

The paper is divided as follows. Section II reviews essential concepts pertaining to NURBS. The ideas
involved in FFD are introduced in the first half of Section III before presenting the novel two-level approach
in the second half. Its coupling with a previously developed in-house aerodynamic optimizer is then briefly
discussed in Section IV. Finally, the results of a gradient-based optimization example are the subject of
Section V and concluding remarks are given in Section VI.

II. NURBS Concepts

A NURBS curve of degree p is defined as

C (ξ) =
N�

i=0

R(p)
i (ξ)Bi, a ≤ ξ ≤ b. (1)

A designer is free to choose the number, N + 1, and location of the control points {Bi ∈ R3, i = 0, . . . , N},
as well as the degree, p, and knot vector,

Ξ = {a, . . . , a� �� �
p+1

, ξp+1, . . . , ξN , b, . . . , b� �� �
p+1

},

with which the rational basis functions,

R(p)
i (ξ) =

N (p)
i (ξ)wi

�N
j=0 N

(p)
j (ξ)wj

,

are defined. These basis are themselves composed of user-defined scalar weights {wi}Ni=0 and pth-degree

B-spline functions {N (p)
i (ξ)}Ni=0. The piecewise polynomials making up these splines are joined at the

non-uniform and non-decreasing knot locations {ξi}N+p+1
i=0 introduced above, such that the basis is Cp−k

continuous at a given knot, where k is its multiplicity. Note that we choose a non-periodic knot vector, i.e.
with end knot multiplicities equal to the order of the splines, which ensures that C passes exactly through
its end points B0 and BN . This property becomes immediately apparent after examining the recursive
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relationships defining B-splines:

N (0)
i (ξ) =





1 if ξi ≤ ξ < ξi+1,

0 otherwise.

N (p)
i (ξ) =

ξ − ξi
ξi+p − ξi

N (p−1)
i (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
N (p−1)

i+1 (ξ) .

Similarly, NURBS surfaces (also called patches) and volumes can be created using tensor products. For
example, a NURBS volume mapping a cubic domain to R4 reads

Vw(ξ) =

Ni�

i=0

Nj�

j=0

Nk�

k=0

N (pi)
i (ξ)N (pj)

j (η)N (pk)
k (ζ)Bw

i,j,k, (2)

where here homogeneous weighted coordinates Bw
i,j,k = (wx,wy,wz, w)i,j,k are used to offer a non-rational,

compact analogue to Eq. (1) that is considerably easier to implement. The indices pi and Ni respectively
refer to the degree and last control point in the ξ direction; similar definitions hold for the η and ζ directions.
Projecting Vw(ξ) back onto the w = 1 plane retrieves the desired three-dimensional volume V(ξ). For the
special case of wi,j,k = 1, it can be shown that Vw(ξ) simply reduces to V(ξ), i.e. to the traditional B-
spline volume definition. Thus, without loss of generality, all weights are now assumed to be unity, and the
superscript w is dropped in the remainder of the manuscript.

III. Free-Form Deformation

Once an initial geometry has been defined with a network of watertight NURBS patches, it is customary
in ASO to group some or all of their control points to form so-called feature-based design variables, e.g.
based on span, dihedral, twist, etc. However, as discussed in Section I, it is often preferable to formulate the
problem in a more general way, i.e. in a free-form fashion, or a combination thereof. This is precisely what
FFD is capable of.

A. Definition

Conceptually, FFD23 is best visualized as embedding a flexible, rubber-like object into a transparent material
having the same constitutive properties. As the larger block deforms, so will the embedded object. In
practice, any parametric representation can be utilized as the embedding material; here, the trivariate
NURBS volumes expressed by Eq. (2) are used throughout this work. For this reason, the terms “NURBS
volume” and “FFD volume” will now be used interchangeably.

Formally, FFD can be formulated as a mapping F : R3 → R3 → R3, from world space, t, to parametric
space, ξ, to deformed world space, t̃. This is achieved by two functions. The first one is the embedding
function F−1(t) = ξ, which associates a parametric value ξ to each vertex t of an object. This is normally
carried out by a Newton search procedure and needs only be performed once. Note that here the embedded
vertices are taken to be the surface control points that define the object, not the surface points that discretize
it as is usually the case. An obvious advantage of this approach is, assuming a geometry was initially
described by NURBS entities only (or in fact any of its simplifications, e.g. Bézier, B-splines, etc.), then its
analytical definition will always remain intact. The second function is the deformation function F̃ (ξ) = t̃,
which translates to simply re-evaluating Eq. (2) for each embedded vertex once the FFD volume’s control
net {Bi,j,k}, or lattice, has deformed. The composition of F−1 and F̃ is what constitutes FFD:

F(t̃, t) = F̃ (F−1(t))− t̃ = F̃ (ξ)− t̃ = 0.

In the context of ASO, NURBS-based FFD offers many advantages. An obvious yet fundamental one
is that a given geometry can be parameterized to machine accuracy provided the inverse mapping search is
tightly converged. This remains true whether a geometry is available in discrete form, such as in a surface
triangulation, or in analytical form, such as with NURBS patches. Either way, FFD allows simple sets of
geometric design variables vgeo ∈ {Bi,j,k} to manipulate complex geometries. For example, more than one
FFD volume can be used simultaneously to optimize independent portions of an aircraft. Moreover, each
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FFD volume is capable of both local and global deformation, e.g. an isolated bump on the surface of a
wing can be produced by translating an individual FFD control point and large-scale twisting effects can be
achieved by rotating entire slices of {Bi,j,k}. Indeed, technically an entire wing can be twisted using only
8 control points, a difficult task for a B-spline surface parameterization alone where then the coupling of
control points can become involved, especially when boundary requirements, such as geometric continuity
along the leading edge, must also be accounted for. This capability of FFD to intrinsically retain topological
features ensures continuity of the design space, an important property when working with gradient-based
optimizers. This is also true for MDO applications where structural components can be simply embedded
alongside a geometry without additional special treatment. Finally but just as importantly, the sensitivities
of the embedded control points to the ones of the FFD lattice are exact and, as seen from Eq. (2), are easily
derived:

∂V(ξ)

∂Bi,j,k
= Ni(ξ)Nj(η)Nk(ζ)




1 0 0

0 1 0

0 0 1



 . (3)

B. Two-Level Approach

In order to account for both geometry changes and resulting volume mesh movement, a two-level FFD
scheme is introduced. At the first level, usually one FFD volume controls the surface control points of
the underlying geometry, while, at the second level, more FFD volumes — as many as there are blocks
decomposing a structured domain — control the computational grid points. The two levels of FFD volumes
are connected by the surface control points embedded in the FFD volume(s) of the first level.

1. Control-point-based Surface Warping

In contrast to the work of others,26–28,30,31,34 here the control points of the NURBS surfaces defining the
underlying geometry are embedded inside an FFD volume rather than the discrete grid points lying on those
surfaces. This way the exact geometry representation is never lost. As previously described, a geometry can
then be modified by perturbing either individual or groups of control points pertaining to a lattice B, a task
normally performed by the optimizer.

Surface
Sensitivity: -1.5      0      1.5

Figure 1. Control-point-based surface warping: from
sphere to blended-wing-body. See text for an explana-
tion of the red arrows. The embedded surface control
points are not shown for improved clarity.

In particular, if A denotes an xyz-coordinate
block-column vector corresponding to all the control
points that define a geometry, and Aemb a portion
of that vector matching the embedded control points
only, then control-point-based surface warping can be
succinctly expressed as

F1

�
Aemb,A

(0)
emb

�
= 0, (4)

where the superscript 0 refers to the state preceding
deformation. For example, Figure 1 on the left depicts
a sphere morphed into a blended-wing-body. In that
particular case, all surface control points are embed-
ded, i.e. Aemb ≡ A. The sensitivity of each discrete
surface node’s x coordinate to a global X-directional
scaling variable (to be described in Section V) repre-
sented by the red arrows and associated to the high-
lighted control points is also shown. Note the local
effect of that variable, a result of the local support

property of B-splines. Finally, observe how geometric continuity is naturally preserved at the boundaries of
the deformed patches, without requiring any constraint whatsoever.

While FFD volumes are extremely malleable, the embedded objects they contain are not exempt from
self-intersection(s). Such would be the case should an FFD volume’s control net become heavily intertwined.
In order to prevent this, a simple injectivity test,35 which amounts to ensuring the determinants of the FFD
Jacobian are strictly positive, can be optionally carried out following each deformation F1. Upon failure,
a gradient-based optimizer could backtrack and reduce the current step-length or, if possible, try another
design direction.
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(a) Sphere (b) Blended-wing-body

Figure 2. Grid-point-based volume mesh movement: (a) undeformed and (b) deformed grids. Control grids
including surface control points are shown as insets.

2. Grid-point-based Volume Mesh Movement

Following Hicken and Zingg,7 each block in a three-dimensional structured domain is assigned a NURBS
volume whose global control net acts as a coarse grid b ⊃ A ⊇ Aemb,a where here the symbol ⊃ denotes
a strict superset while ⊇ implies the possibility Aemb ≡ A. Once again, these volumes can be regarded as
FFD volumes where this time around the full set of volume grid points x are embedded inside them;

F2

�
x,x(0)

�
= 0, (5)

either directly by discretizing the parametric domain of each NURBS volume36 or, as performed in Ref. 7, by
fitting B-spline volumes to an already existing multi-block mesh. Note that either approaches are as equally
applicable to structured than unstructured grids.

In response to changes in Aemb resulting from F1, the control points b of this second level of FFD
volumes are updated according to the equations of linear elasticity:37

M
�
b,b(0)

�
= Ku− f = 0, (6)

where K = K(b(0)) is the stiffness matrix, f is the block-column force vector (implicitly defined by boundary
alterations ∆A) and u = b−b(0) is the block-column displacement vector of the B-spline volume control point
coordinates. After solving these, the entire computational mesh can be regenerated algebraically from the
displaced control mesh b through F2. This last operation is almost instantaneous thanks to a very efficient
implementation of de Boor’s algorithm,18 and since there are typically two or three orders of magnitude
fewer control points b than grid points x, the resources spent to converge Eq. (6) with a preconditioned
conjugate gradient solver are only a few percent of what a grid-point-based deformation would cost.7

To be clear, the proposed two-level approach relies on a one-to-one correspondence between those control
points in b embracing the geometry with those in A. Formally, if b is ordered such that all internal control
points are first, followed by non-surface and finally surface boundary points, A can then be defined by the
restriction operation A = [0 0 I]b, where the identity matrix I is of size 3Ns × 3Ns, Ns being the total
number of surface control points. Mesh movement is thus tightly integrated with geometry parameterization.
Recall that the latter is itself constrained by the movement of the FFD lattice B by virtue of Eq. (4).

Two stiffening mechanisms are enforced through K in order to preserve mesh quality of the control mesh
b, which impacts the quality of the actual mesh x. The first one allows the Young’s modulus to vary spatially
according to a metric based on cell orthogonality, while the second one helps smaller elements maintain their
shape. Furthermore, a negative Poisson’s ratio of 0.2 is chosen with the aim of further preventing the
production of disproportionately high cell aspect ratios.

aThe work presented in this section is only a slight generalization of that conducted by the cited authors. Only a brief
description is given here for completeness.
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The elasticity-based model is however only valid under a small-strain assumption. If shape changes are
sufficiently large, the mesh movement is generally required to be broken up into m increments:

A(i) =
i

m

�
A(m) −A(0)

�
+A(0), i = 1, 2, . . . ,m. (7)

While this approach helps maintain linearity, it also has important consequences on the evaluation of the
objective function’s gradients,37 discussed in Section IV.

An example of grid-point-based volume mesh movement applied to the same half-sphere of Figure 1 is
depicted in Figure 2. First, mesh movement based on linear elasticity with m = 6 is applied to a coarse grid
of FFD control points b(0), yielding a perturbed control grid b (insets). Then, assuming a computational
mesh x(0) was embedded into b(0) prior to mesh movement, the new mesh x can be regenerated from b
through Eq. (5). Notice how the control grid mimics the computational one, and as such how the overall
mesh quality is maintained.

IV. Gradient-based Optimization Suite

Design spaces in two-dimensional ASO based on the Reynolds-averaged Navier-Stokes (RANS) equa-
tions are typically convex – and thus amenable to gradient-based optimizers – while in three dimensions
their multimodality is common.38 Gradient-free methods would then seem the best approach; however their
computational cost when applied to high-fidelity, three-dimensional ASO is still prohibitive.39 In that re-
gard, surrogates and other efficient global optimization methods, such as those presented by Chernukin and
Zingg,38 offer a good compromise between speed and depth of design space exploration.

For now, because the main focus of this paper is to demonstrate the applicability of the proposed two-
level FFD formulation, only a straightforward gradient-based optimization will be conducted in Section V.
Before then, a short presentation on the evaluation of the objective function, J , and its gradient with respect
to a set of design variables, dJ /dv, is given. We also present two test cases validating the aerodynamic
optimizer. The involved algorithms are of course the fruit of many researchers, and the reader is encouraged
to consult the cited literature for more details.

A. Function Evaluation

In order to determine the discrete objective function J , for example drag or CL/CD, the flow field surrounding
an aerodynamic surface must first be solved for. While RANS-based ASO40 will be performed in the future,
only the Euler governing equations are considered here. Once discretized in space with finite-difference
SBP-SAT operators,41 these read dq

dt +R = 0, from which

R(q,b(m)) = 0 (8)

at steady-state. Here, q is a block-column vector of the conservative flow variables, while the dependence
of the nonlinear flow residuals R on b(m), which is kept constant throughout a flow solve, is through the
grid metrics. A major advantage of SBP-SATs over other discretization methods is that mesh lines meeting
at block interfaces are only required to be C0 continuous there, thus reducing inter-process communication
and also eliminating the need for special treatments of exceptional points.

If the implicit Euler time-marching method is applied with local time linearization to the semi-discrete
equations, then we obtain �

A(n) +
I

∆t(n)

�
∆q(n) = −R(n),

where A is the flow Jacobian ∂R/∂q, and I the identity matrix. At each iteration n, this system of linear
equations is solved inexactly by a parallel Schur-preconditioned Jacobian-free Krylov iterative method. For
even better performance, the time-step ∆t is varied spatially and also quickly increases at each n thus
recovering the quadratically converging Newton’s method.

B. Gradient Evaluation

Evaluating the objective function’s sensitivities to the design variables, dJ /dv, in an efficient manner is
equally important. The design variables considered here are v = [vT

geo, α]
T, where vgeo is the vector of
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geometric design variables, taken to be the xyz-coordinates of individual FFD control points involved in
F1 (or any variable that handles groups of them simultaneously), and α is the freestream angle-of-attack.
Since the number of design variables involved in problems of interest in ASO is typically on the order of
O(102), a logical choice for evaluating the total derivative dJ /dv is the adjoint method.3 Indeed, unlike
finite-differencing, the computational cost of the adjoint method is virtually independent of the size of v.

As pointed out in Ref. 37, it is preferable to augment the traditional adjoint formulation with grid
variables. Indeed, as seen from Eqs. (6) and (8), it is to be expected that J not only depends on the design
variables v and the flow variables q, but also on the final control grid nodes b(m). Likewise, the mesh
residuals {M(i)}mi=1 are functions of both the previous b(i−1) and current b(i) control grids, as well as the
perturbed surface control points A(i), which are themselves functions of A(m) through Eq. (7) and vgeo

through F1. Finally, the flow residuals R also depend on v, q and b(m). Note that by directly accounting
for the control grids {b(i)}mi=1, the only remaining explicit dependence of J , M, or R, on v is through α.

Once the relative dependencies between state variables have been established, an elegant formulation to
the adjoint problem is:37

minimize J
�
v,q,b(m)

�
,

w.r.t. v,q,b(m),

s.t. M(i)
�
A(i)(v) ,b(i),b(i−1)

�
= 0, i = 1, 2, . . . ,m,

R
�
v,q,b(m)

�
= 0.

Typical of such a constrained optimization problem, a Lagrangian,

L = L
�
λ(i),ψ,q,b(i),v

�
, i = 1, 2, . . . ,m,

= J
�
v,q,b(m)

�
+

m�

i=1

λ(i)TM(i)
�
A(i)(v) ,b(i),b(i−1)

�
+ψTR

�
v,q,b(m)

�
,

is introduced. At optimality, this Lagrangian must at least obey the first order Karush-Kuhn-Tucker42

(KKT) conditions. The first two, ∂L/∂λ(i) = 0, i = 1, 2, . . . ,m, and ∂L/∂ψ = 0, are satisfied provided
Eqs. (6) and (8) are solved sequentially. The following two conditions, ∂L/∂q = 0 and ∂L/∂b(i) = 0,
i = 1, 2, . . . ,m, respectively lead to the equations for the Lagrange multipliers ψ and {λ(i)}mi=1, also known
as the adjoint variables. These must be solved in reverse order relative to the ordering used to calculate J :

�
∂R
∂q

�T

ψ = −
�
∂J
∂q

�T

,

�
∂M(m)

∂b(m)

�T

λ(m) = −
�

∂J
∂b(m)

�T

−
�

∂R
∂b(m)

�T

ψ, (9)

�
∂M(i)

∂b(i)

�T

λ(i) = −
�
∂M(i+1)

∂b(i)

�T

λ(i+1), i = m− 1,m− 2, . . . , 1.

Finally, assuming all first four conditions are solved to a small enough tolerance, it follows that L = J , so
the final condition, ∂L/∂v = 0, is the total derivative of J with respect to v, i.e. it is the desired gradient:

dJ
dv

=
∂J
∂v

+
m�

i=1

�
λ(i)T ∂M(i)

∂A(i)

∂A(i)

∂A(m)

∂A(m)

∂v

�
+ψT ∂R

∂v
, (10)

and is non-zero in general; it must be driven to zero by an optimizer. For that purpose, we use the optimiza-
tion package SNOPT,43 capable of handling thousands of simultaneous general constraints. SNOPT is based
on the sequential-quadratic-programming paradigm and approximates the Hessian of its own Lagrangian
using the quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno.42

A detailed description of the specialized solution strategies employed for solving Eqs. (9) is given in
Ref. 7. New to this paper are however the sensitivites of the final surface control points to the design
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variables, ∂A(m)/∂v, found in the second term of Eq. (10). In general, these surface sensitivities can be
further decomposed:

∂A(m)

∂v
=

∂A(m)

∂B

∂B

∂v
,

where B are the control points of an FFD lattice, and v any set of large-scale design variables moving parts of
B together; examples of such variables are given in Section V. The term ∂A(m)/∂B can be directly computed
using Eq. (3), while in this work we calculate ∂B/∂v using the complex-step method.44 Note that both terms
stay constant for all mesh increments i = 1, 2, . . . ,m, the former throughout an entire optimization run and
the latter during the course of a gradient evaluation; thus, in practice, ∂A(m)/∂v is pulled out from the
summation seen in Eq. (10).

C. Validation Test Cases

The following two test cases are based on the half-sphere geometry enclosed by the FFD lattice of Figure 1
and on the grids of Figure 2(a). In both cases, the freestream Mach number and angle-of-attack are set to
0.5 and 0, respectively.

(a) Gradient check (b) Inverse design

Figure 3. Validating the aerodynamic optimizer: (a) relative error between adjoint-based and finite-differenced
directional derivative DzJ ; (b) convergence history for the inverse design.

1. Gradient Check

As a means to verify gradient accuracy, the analytical directional derivative DzJ = (∂J /∂v) z, where
zi = sign[(dJ /dvi)], is well suited to compare against the centered, second-order finite-difference formula,7

DzJ ≈ J (v + �z)− J (v − �z)

2�
.

The relative error between the two is plotted in Figure 3(a) over a range of step-sizes �, for J = CL/CD

and v set to the design variables described in Section V. As expected, the truncation error of the finite-
difference approximation decreases and then plateaus until round-off errors prevail. Thus, the adjoint-based
d(CL/CD)/dv can be regarded as at least as accurate as finite-differences with optimal step-sizes, which is
in any rate sufficient for the purpose of gradient-based optimization.

2. Inverse Design

The inverse design problem is based on surface pressure and is intended to validate SNOPT itself. First, the
half-sphere is deformed by randomly perturbing the coordinates of four control points of its enclosing FFD
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lattice. A flow solve is then performed, and the nodal pressure distribution recorded. Finally, SNOPT is
given the unperturbed sphere and attempts to recover the perturbed variables using the objective

J =
1

2

Nsurf�

i=1

(pi − pi,rec)
2 ∆Ai,

where Nsurf is the number of surface grid points, and ∆Ai, pi and pi,rec are the surface area element, pressure
and recorded pressure at node i, respectively. As seen from Figure 3(b), the optimizer could reduce J by 18
orders and the optimality, a measure of the gradient, by 10 orders, thus successfully retrieving the perturbed
coordinates of the sphere to almost machine accuracy in 29 function evaluations.

V. From Sphere to Aircraft

Both ASO and MDO are now used routinely to improve current aircraft designs. But can we do better
than that? In particular, can these tools discover novel aircraft capable of superior performances compared
with the conventional tube-and-wing? While we acknowledge that the full answer will undeniably involve
highly-coupled MDO, as a step toward that direction we attempt, through aerodynamics only, to maximize
the lift-to-drag ratio of an initially half-sphere-shaped geometry. A thorough analysis of this exploratory
shape optimization problem is however beyond the scope of this paper, which is merely to demonstrate the
flexibility and robustness of the proposed two-level FFD approach in a particularly demanding ASO setting.
Thus, here we only perform a single-objective, gradient-based optimization in the hope of finding one local
optimum out of the likely highly multimodal design space.

The half-sphere geometry used for this study is of radius r = 1 and corresponds to the union of 20 B-spline
patches, each made up of a 6 × 6 control net, for a total of 720 non-unique surface control points. All of
these are embedded inside the FFD volume depicted on the left-hand-side of Figure 1; it is in fact a 6×6×2
NURBS volume, cubic in both streamwise (X) and spanwise (Y ) directions, and linear in the vertical (Z)
direction. The control and computational grids are those of Figure 2(a), which are respectively composed
of 13, 720 and 900, 000 nodes, with respective off-wall spacings on the order of O(10−2) and O(10−3). The
farfield velocity is kept subsonic at Mach 0.5 (to avoid the formation of shocks) with a fixed 1.2 degree angle
of incidence. This choice of α is somewhat arbitrary; the idea is simply to discourage an overly pitched
evolving geometry.

1: 000
2: 010
3: 110
4: 110
5: 111
6: 111

                  Local   Global
Scaling
Translation None

Figure 5. Cross-section design variables: groups of FFD
control points are translated and/or scaled together. All
cross-sections have their scaling design variables enabled.

The number and choice of design variables in
ASO can have a significant impact on both the
final shape obtained and the convergence of the
optimizer. For instance, experience suggests that
planform-like variables can be an effective means
to consolidate clouds of control points. Thus, in-
stead of choosing the coordinates of every FFD
lattice control point as design variables (of which
there are 216), we group together all the con-
trol points lying on the same spanwise station
of the FFD volume’s control net. There are 6
such stations in the present case (see Figure 5
where the last one is showcased in the gray rect-
angle), and each one is free to translate (blue
arrows) in a direction only if its corresponding
bit (found in the lower left portion of Figure 5)
is turned on; the rightmost bit refers to trans-
lation in X, the next one in Y and the leftmost
one in Z. These so-called cross-section design
variables are well suited for global deformations,
but another mechanism able to develop airfoil-
like profiles must also exist. For that purpose, we give each control point the freedom to scale vertically
in its own cross-sectional plane (small red arrows). An additional scaling variable, this one global and
perpendicular to the ones just described, is also used so as to allow variations in taper (big red arrows).
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Summarizing, there are 11 translational and 78 scaling design variables, for a total of 89 overall design
variables. As previously stipulated, α remains fixed at all time and is thus excluded from v.

In order to ascertain the existence of a local optimum, SNOPT uses a Lagrangian in much the same
way the gradient evaluation procedure does, where the first-order KKT conditionsb must be converged to
within an “optimality” tolerance, here specified to � = 10−6. SNOPT best satisfies these conditions if there
are only relatively few degrees of freedom at a solution, i.e. many constraints are active. While constraints
in a real-life problem are generally meaningful, such as manufacturing requirements would call for, here we
use them solely as a means to enable SNOPT to converge. Specifically, we put quite restrictive bounds on
the design variables, especially the ones related to scaling, while still allowing for blended-wing-body-like
shapes to develop. We also impose two other set of linear constraints, one designed to maintain symmetry
across the Y = 0 plane and the other to prevent two adjacent FFD stations to overlap. Finally, we force the
evolving shape to maintain an internal volume of at least that of the initial half-sphere, i.e. 2π/3, through a
nonlinear inequality constraint.

The evolution of the geometry shown at key stages of this highly constrained problem along with its
convergence history are pictured in Figure 4. Although not directly apparent from the diagram, the optimizer
morphs the sphere to a blended-wing-body in three distinct phases. The first one (function evaluations 1 to
13) gives the sphere some way to produce lift by mostly varying local scaling variables. The second phase,
spanning function evaluations 14 to 26, is characterized by a flattening of the contorted shape relative to
the streamwise direction. At the end of this phase, the maximum bounds acting on the streamwise global
scaling variables are already reached. Although wings have started protruding before then, it is only during
the final phase (function evaluations 27 to 35) that the optimizer really exploits the spanwise translational
design variables. This is also where most improvement is achieved. The final shape has a CL = 0.5386,
CD = 0.1818, half-span of 2.8990 unit and projected surface area of 3.9299 unit2 (recall that the sphere has
an initial radius of 1 unit); CL/CD and the aspect ratio are thus 3.0 and 4.3, respectively.

We emphasize that the optimized shape is in no way the best possible; according to lifting-line theory,
an optimally loaded planar wing with the same lift coefficient and aspect ratio has a drag coefficient of

0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0

Entropy:
3

2.5

2

1

0

1.5

0.5

Figure 6. Entropy contours on the optimized shape along with spanwise airfoil profiles taken at 0.5 unit apart,
except the last one which is located at 2.8 unit. Most entropy is generated at the trailing edge, especially
inboard where radii of curvature are highest. Inviscid air flows from the −X direction at Mach 0.5 with a 1.2
degree angle-of-attack.

bThese are not the same as in the sequential approach used to determine the gradient. Rather, they emanate from the
objective and constraints provided to SNOPT.

11 of 14

American Institute of Aeronautics and Astronautics



CD,ellip = 0.0401, which is about 4.5 times less compared with the optimized shape. This poor performance
can be partly explained by the optimizer failing to form a sharp trailing edge, which is an important feature
of any high-lifting body. In fact, it was impossible for it to do so since the sphere was smooth in the first
place. Instead, the final shape exhibits a small (in the scale of the grid resolution) rounded trailing edge
where numerical dissipation prevails; see Figure 6 where entropy contours pertaining to the optimized shape
are plotted. This artificial dissipation triggers (non-physical) local flow separation, which in turn increases
induced drag. It is therefore reasonable to expect much smaller values of drag should the sphere be allowed
to develop a sharp trailing edge, a task however difficult given the smooth properties of FFD volumes. In a
sense, the final shape’s performance was thus limited more by the problem definition, i.e. starting off from a
smooth sphere with a relatively coarse mesh, than by the aerodynamic optimizer itself. Indeed, by refining
the final grid alone from 900, 000 to 76, 317, 120 nodes (a task made easy given that the grid is described
analytically by B-spline volumes, recall Eq. (5)), the induced drag reduces from 0.1818 to 0.1118 (which is
about 2.8 times CD,ellip), yielding a lift-to-drag ratio of 5.5.

VI. Conclusions

A robust and efficient geometry framework comprising a novel two-level FFD approach suitable for high-
fidelity ASO and MDO has been presented. The result is a flexible technique that retains an analytical
geometry representation throughout an optimization and provides an efficient integrated mesh movement
capability that maintains mesh quality through large shape changes.

The framework proved to be a natural extension to an already existing gradient-based aerodynamic
optimizer capable of accurate functional and gradient evaluations with fast turnaround. The augmented
optimizer offers powerful tools to the aerodynamicist, a fact demonstrated by the challenging task of max-
imizing the lift-to-drag ratio of an initially spherical geometry. While the final shape was encouraged to
evolve as it did through constraints, it is an optimized one nonetheless, and it therefore further demonstrates
the suitability of the proposed two-level FFD approach to high-fidelity ASO. Future work will focus on
incorporating these tools within a high-fidelity MDO framework.
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