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This paper assesses the potential of unconventional aircraft configurations for regional
transport through high-fidelity aerodynamic shape optimization. Several configurations are
investigated: a C-tip blended-wing-body, a box-wing, and a truss-braced wing concept, and
compared against a conventional jet similar in features and mission to the Bombardier CRJ-
1000. In all cases the objective is to minimize drag subject to lift and trim constraints using
a gradient-based optimizer coupled with a solver for the Euler equations governing inviscid
compressible flow. A novel parameterization technique derived from a combination of axial
and free-form deformation tools enables both planform and sectional shape changes to the
main lifting surfaces. The sensitivities of the aerodynamic functionals, e.g. lift and drag,
to the design variables are calculated analytically through the discrete-adjoint method.
Results point to the strut-braced wing as the most promising configuration with induced
drag reduction on the order of 46% relative to the tube-wing baseline.

I. Introduction

The impact of aviation on the environment will soon become, if it is not already, the main driving factor
affecting the design of future aircraft.1 This is reflected by the establishment of numerous projects

worldwide that share the same ultimate goal: to develop a greener aircraft industry. For instance, NASA’s
environmentally responsible aviation project2 has set aggressive milestones for the 2015, 2020 and 2025
scenarios that are aimed mainly at noise, emissions and performance improvements. The present work is
concerned with the last two of these three tactics, namely by minimizing drag produced by unconventional
aircraft at cruise. For a set mission, improved performance leads to reduced emissions.

One of the most cited benefits of unconventional aircraft configurations is their potential to offer higher
flight efficiencies through lower induced drag. Induced drag, also known as drag due to lift, is an inviscid
phenomenon experienced by wing systems of finite span. It accounts for roughly 40% of the total drag on a
conventional aircraft at cruise.3 Early attempts at mitigating this form of drag include the work of Munk,4

Mangler,5 and Cone,6 which led to all kinds of intriguing nonplanar shapes.7 An example is the ring-wing;
when optimally loaded, it has half the induced drag of an optimally loaded planar wing of the same span
and lift.4 Fundamental research later turned to drag at transonic speeds8 and derivative technologies,9

presumably due to their higher relevance to the commercial jet transports introduced at that time.
It seems that the incremental approach to drag reduction of the conventional tube-wing is reaching an

asymptote; hence the renewed interest for novel configurations.10 The ideas behind most futuristic designs are
not new, only their applications are. The “best wing system” derived by Prandtl11 led to Miranda’s transonic
“boxplane”,12 which was later refined by Frediani for a range of civil transports of varying capacity.13 The
blended-wing-body, whose origins can be traced back almost as far as the Wright brothers’ flying machine,
is reported by Liebeck to offer fuel burn per seat mile savings of 27% relative to an equivalent conventional
baseline.14 The truss-braced design of Pfenninger15 inspired many; see, for example, Ref. 16 where it is
studied in the context of a high-speed civil transport for minimum fuel.

Most configurations cited above have undergone trade studies to establish feasibility in various techno-
logical and market scenarios.17–19 However, while the assessment of their aerodynamic performance through
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computational fluid dynamics is common,13,20 their refinement through high-fidelity aerodynamic shape
optimization (ASO) is still rare. This is with the exception of the blended-wing-body, which recently has
even seen aspects of high-fidelity multidisciplinary analysis and optimization (MDO) incorporated into its
design cycle.21–23 Still, there is a clear need for a unified study based on high-fidelity ASO that compares
practical unconventional aircraft to a conventional baseline on the basis of environmental friendliness. One
contributing factor for this apparent gap is the difficulty of generating high-quality surfaces suitable for such
purposes.

All aircraft geometries investigated in this work were generated by a specialized in-house drawing tool
that outputs outer mold lines in the form of smooth networks of nonuniform rational B-spline surfaces
(NURBS).24 They consist of a conventional tube-wing baseline aircraft, a C-tip blended-wing-body, a box-
wing configuration, and a strut-braced wing configuration; all are regional jets sized for a nominal 100
passenger mission of 500 nm. In all cases, we minimize drag while maintaining trimmed lift at Mach 0.78,
thus effectively maximizing cruising aerodynamic efficiency. While acknowledging their importance, we
exclude all other considerations such as structures, stability, off-design performance, etc. Thus, we take a
step back and ask: from a purely aerodynamic standpoint, how much is there to gain by deviating from the
ubiquitous tube-wing? It is our hope that by including nonlinear effects as captured by the Euler equations
we will observe subtle trends otherwise undetectable with commonly used lower fidelity models.25,26

Another difficulty with ASO at this level of geometric fidelity is the one of parameterization and defor-
mation. A plethora of methods with varying degrees of success on airfoils and cantilever wings have been
proposed in the past; see, for instance, Ref. 27 for an excellent review. Yet we found that none truly satisfied
our needs; hence we developed and now present a novel parameterization scheme specifically tailored for
wing systems of arbitrary topology. It can be regarded as an extension to our previous work on free-form
deformation,28 whereby both surface and volume grids are tightly integrated with the geometry. Our new
approach is extremely intuitive and ideally suited for exploratory shape optimization, an important feature
in the realm of unconventional aircraft.

The subsequent sections are divided as follows. In Section II we begin by formally presenting axial
deformation before demonstrating its suitability for wing shape design. A quick overview of our state-of-the-
art aerodynamic optimizer is given in Section III. In Section IV all four initial designs are then described along
with the rationale behind their sizing, after which we carry out both twist-only span efficiency validations
and practical drag minimizations subject to lift as well as trim constraints. Finally, Section V contains
concluding remarks and future directions.

II. Axial Deformation Adapted for Arbitrary Wing Systems

When confronted with aerodynamic shape design, the aerospace engineer must first choose one of two
geometry modeling paradigms: construction-based or deformation-based. The first route typically involves
well-developed and well-documented CAD packages, but comes with equally heavy disadvantages.29 For
one, operating a high-end CAD interface requires great expertise. Due to the internal source tree geometry
representation of CAD engines, the task of creating the right parametric “recipe” that shall ensure a thorough
exploration of the design space at the optimization stage is a difficult one, even for an experienced operator.
This is not to mention the proprietary rights protecting the large corporations responsible for the software,
giving the designer very little to no freedom in accessing their source code, let alone modifying it.

Turning to deformation-based geometry modeling, we are again presented with two alternatives: surface-
based or volume-based. The first usually involves analytic functions, such as Hicks-Henne bumps and Bézier
polynomials, or some kind of variational method where for example a curvature norm is minimized. Not only
does the latter option not scale well (matrix condition worsened with system size), but both surface-based
approaches are ill-suited for 1) maintaining continuity across seams adjoining surface patches, and 2) simul-
taneously accommodating multiple cross-disciplinary geometry formats such as is the case in aerostructural
problems. In contrast, volumetric deformation techniques, such free-form deformation30 (FFD), provide
embedded objects with smooth deformations, irrespective of their discipline and format.

If one is not careful, the attractive properties of FFD — intuitiveness, smoothness, local control, rapid
deformation, mathematical background — can be quickly overshadowed by the overwhelming number of
control points that an FFD lattice may require. This is a simple consequence of its tensor product definition.
Ideally, a wing designer would be able to rely on FFD’s excellent intrinsic properties, while being spared from
the cumbersome task of constraining every individual control point to prevent unfeasible designs. The most
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Figure 1: Axial deformation: a curve deforms an
object in 3D space such that the cross sections
of the object always remain perpendicular to the
curve’s local axes.

obvious way of achieving this is to group control points
by proximity, and let a simpler, higher level object con-
trol the overall movement of the lattice. In this work, we
investigate the use of axial curves for such purposes in
the context of wing design. The result is a highly gen-
eral and intuitive deformation technique that confines
the design space to what makes sense aerodynamically,
but without overly constraining possibly optimal wing
shapes.

The term “axial deformation” was coined by Lazarus
et al.31 in 1994 and has since enjoyed some popularity,
especially in the computer graphics community.32 Like
FFD, it is a volumetric deformation technique that, as
its name suggests, operates from a single curve, i.e. the
axial curve. Figure 1 shows the conceptual idea behind
its functioning. First, an axial curve is positioned either
inside or outside an object of interest. Once every point

of that object has been associated (mapped) to the closest point on the axial curve, the axial curve is
deformed, after which the initial points are re-evaluated to their new world space coordinates based on their
new local coordinate frame. Although not shown in Figure 1, other effects such as twisting and scaling can
be achieved by means of transformational functions.

The application to wing deformation follows directly. Refer to Figure 2 where the chordwise, spanwise,
and vertical directions of the wing are assumed to be oriented along the positive X, Y, and Z directions,
respectively.

Let the axial curve be a NURBS curve33 defined with n control points Pi and n piecewise rational

polynomials of degree p, R(p)
i (u):

A (u) =
n�

i=1

R(p)
i (u)Pi, 0 ≤ u ≤ 1. (1)

The basis functions are joined at non-decreasing knot locations {ui}n+p+1
i=1 , where the end knot multiplicities

must equal the order of the splines in order for A(0) and A(1) to pass exactly through the end control points
P1 and Pn, respectively.
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Figure 2: Axial-driven free-form deformation applied to a
generic wing.

The first step is to position A(u) relative
to the wing, for example at the wing’s quarter-
chord curve as shown in Figure 2. Next, rela-
tive to the global origin, O, a local orthonormal
coordinate system {o(u),x(u),y(u), z(u)} that
moves along A(u) is introduced. For any given
u ∈ [0, 1], let

o(u) = A(u), y(u) =
A

�(u)⊥
�A�(u)⊥�

, (2)

where the prime denotes the first derivative in u
and the ⊥ symbol refers to the projected vector
onto the YZ plane (the reason for this projec-
tion will be clarified below). We define wing
twist to be about the axial curve, and com-
pute z(u) directly from its spanwise distribu-
tion. Indeed, assuming B(u) to be a vector-
valued function satisfying B(u) · y(u) = 0 for
all u, we have

z(u) =
B(u)

�B(u)� . (3)

Finally, x(u) is simply defined as
x(u) = y(u)× z(u). (4)
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For the special case of an untwisted wing, then x(u) = X for all u (hence y(u) and z(u) appear perpendicular
when looking in the X direction).

The next step is to enclose the wing inside a sufficiently large FFD lattice whose spanwise cross-sections
are oriented according to the local coordinate functions described by Eqs. (2–4). Specifically, let ū1, . . . , ūm

be the parameters associated with m such cross-sections; then the local coordinate system associated with
the first one is {o(ū1),x(ū1),y(ū1), z(ū1)}, and so forth. Also notice, in Figure 2 (where m = 4), how control
points pertaining to the same cross-section reside in the same plane perpendicular to the local y axis. This
requirement, together with the projection of y(u) in Eq. 2, is required in order to keep wing cross-sections
facing the flow field no matter what the orientation of A(u) becomes. Lastly, as for the degree selection
of the FFD splines, we use cubic NURBS both in the chordwise and spanwise directions, but linear in the
vertical direction. This choice forces the number of control points in the vertical direction to two, and to a
minimum of four in the other two directions.

Once the FFD volume is setup, and each one of its spanwise lattice cross-sections “attached” to a point
on the axial curve, the wing’s surfaces are embedded (mapped) to the FFD volume (as apposed to the axial
curve, as originally proposed by Lazarus). This is normally carried out by a Newton search procedure,
and needs only be performed once. An important note here is that we embed the surfaces’ control points
rather than their discretizations. This allows us to integrate surface and volume mesh movement tightly for
increased computational efficiency. More on this topic is given in the next section.

At this point the axial curve can be deformed, followed by the FFD lattice, and finally the embedded
wing. Manipulating the axial curve’s control points enables variations in span, sweep, and dihedral. To vary
twist, chord, and sectional shape, a sequence of transformation matrices34,35 can be applied separately to
each FFD cross-section. For example, let S(Q, c, w) be a scaling operator where Q is the scaling origin, c the
scaling factor, and w the scaling direction; then S(o(ū1), x, z(ū1)) scales an FFD control point pertaining
to the first cross-section by a factor of x in the local vertical direction, thus impacting the wing’s sectional
shape within the region of influence of that control point. Because other transformations are similarly taken
about the local origins {o(ūi)}mi=1, it should be clear that the position of the axial curve relative to the wing
matters; if say, twist about the trailing edge is desired then the axial curve should be positioned accordingly.

By judiciously choosing the number and placement of control points of both the axial curve and attached
FFD volume, as well as their degree, it is possible to achieve any combination of linear or nonlinear variations
in span, sweep, dihedral, twist, chord, and sectional shape. We also emphasize the fact that the sole purpose
of the axial curve is to “drive” the movement of the FFD volume, and as such both entities are completely
decoupled insofar as their mathematical definitions go. This is desirable, for example, in cases where more
FFD cross-sections are required for increased local surface control but without the typical increase in number
of planform design variables.

III. Discrete Adjoint-Based Aerodynamic Optimizer

The axial deformation scheme just introduced is part of a broader ASO methodology developed by the
University of Toronto Computational Aerodynamics Group. The core components of the methodology are
thoroughly described and verified in Ref. 36; thus only a brief summary is given here.

Following an update in the design variables, e.g. the xyz-coordinates of axial control points, wing sections
are regenerated by updating the location of the embedded surface control points. To account for these
changes inside the computational domain, we initially fit our multi-block grids with as many FFD volumes
as there are blocksa, and we make sure that the FFD control points bordering the geometry fall exactly
on the embedded control points of the wings. This allows us to apply the equations of linear elasticity
to this much coarser grid of FFD control points and to subsequently regenerate the computational mesh
algebraically. This semi-algebraic method results in fast, high-quality mesh movements and is robust enough
to accommodate very large shape changes.28,36

With the computational mesh conforming to the deformed geometry, the aerodynamic functionals are
then evaluated based on the solution of the Euler governing equations. Those are discretized with second-
order accurate finite-difference summation-by-parts operators.37 Simultaneous approximation terms38 are
applied to enforce boundary conditions and couple blocks, requiring only C0 continuity between matching
mesh lines at interfaces. The solution in the vicinity of shocks is stabilized by a pressure switch mechanism
involving both second- and fourth-difference scalar dissipation. Further details regarding the flow solver are

aThis second level of FFD volumes is completely separate from those of the axial-driven FFD, see Ref. 28.
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available in Ref. 39.
We use the gradient-based optimization package SNOPT40 to find locally optimal designs. SNOPT is

based on sequential quadratic programming, where the Hessian of the Lagrangian is approximated using
the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno.41 SNOPT is capable of handling
problems with large numbers of design variables and constraints, as long as all gradient entries are provided by
the userb. For aerodynamic functionals, which depend on the flow, the gradients are calculated analytically
by using discrete-adjoint variables.36 Other constraints, such as projected area and volume, are mostly
hand-differentiated. In all cases the sensitivity of the surface control points to the axial design variables are
computed to machine accuracy with the complex-step method.42

IV. Applications to Unconventional Aircraft

One of the main attractive features of high-fidelity numerical ASO is that, once a problem is properly
setup and launched, it supersedes human intuition. This strength becomes even more powerful when such
tools are applied to unconventional aircraft, for which very little empirical knowledge exists. The goal of this
section is to demonstrate such capabilities by minimizing the sum of induced and wave drag components
of three different aircraft configurations subject to lift and trim constraints, and comparing them against a
similarly optimized conventional baseline aircraft (Figure 3). In order to give the reader enough confidence

Figure 3: Conventional tube-wing regional jet. The axial curves
are shown in red and their control points in orange.

in our newly proposed axial deforma-
tion scheme, we present validation test
cases based on span efficiencies before
including practical constraints.

Similar to the Bombardier CRJ-
1000 NextGen, the configurations con-
sidered herein are aimed at the
medium-haul 100-passenger market seg-
ment. Their planform is borrowed (or
heavily inspired) from already existing
concepts that we scale to ensure that
their fuselage contains enough room to
house the passenger compartment, vis-
ible in magenta in Figures 3 to 6. Note
that the fuselages and propulsion sys-
tems shown on these figures are not in-
cluded in the flow analyses of the ASO

problems, although their weights are considered for the designs presented in Section B. Refer to Appendix A
where 3-views of all four initial jets are pictured along with some core dimensions. The corresponding wetted
areas are given in Table 1.

We select the wing sections based on a mix of historical trends, as described in the book of Raymer,43 and
two-dimensional methods. Specifically, starting from a rough aircraft weight estimate and a fixed planform,
we iteratively interpolate wing segments with airfoils taken from NASA’s supercritical phase 2 study44 until
the desired theoretical lift is achieved. This gives reasonable initial estimates since the reported design
lift coefficients of NASA’s airfoils assume zero angle-of-attack, which we match during the optimizations.
Moreover, we fix the far field Mach number to 0.78, in agreement with the reported cruising speed of the
actual CRJ-1000.45

The baseline tube-wing pictured in Figure 3 is modeled to the best of our ability from what is publicly

bStrictly speaking, this requirement is optional since SNOPT can finite-difference them; however this would not only be
prohibitive but would also yield values subject to round-off and truncation errors.

Conventional tube-wing C-tip blended-wing-body Box-wing Strut-braced wing

472.12 475.79 544.75 560.66

Table 1: Total aircraft wetted area [m2].
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available on the CRJ-1000. The pressurized cabin is designed for a 2-2 seating arrangement and long enough
to seat 104 passengers in economy class. Rather than trying to replicate the exact winglet (which is taken
from the CRJ-900, which is itself a scaled version of the one found on the CRJ-700), we choose not to model
any on the initial geometry but, as discussed in Section B, we give the optimizer enough freedom to produce
one on its own. The main wing is essentially a scaled-up version of the CRJ-700 W34 planform:46 straight
leading edge swept back 30 degrees with a root plug ending at 35% span. Based on the airfoil selection
design process described above, we opt for the NASA SC(2)-0614, -0412, and -0410 at the root, kink, and
tip sections, respectively. This choice yields satisfactory lift coefficients at the expense of small wave drag
penalties.

The blended-wing-body studied in this work, Figure 4, is based on the released press on the X-48C
hybrid/blended-wing-body demonstrator. Unlike the X-48C, it features C-tip extensions on the outboard

Figure 4: C-tip blended-wing-body regional jet. The axial curves
are shown in red and their control points in orange.

wings, which provide directional con-
trol and stability on top of mitigat-
ing induced drag. The nose bullet, in-
tended for increased cockpit visibility,
somewhat complicates surface genera-
tion. Indeed, the challenging task of fit-
ting the necessary volume inside a com-
pact yet smooth blended-wing-body of
this size might very well explain its
usual application to very large trans-
ports. Here, a 2-4-2 cabin layout is as-
sumed for improved ride quality, with

the cargo bays and fuel tanks located outboard. An airfoil stack arising from the linear interpolation of a
(modified) NASA SC(2)-0010 airfoil at the root and an (unmodified) NASA SC(2)-0410 airfoil at the tip is
fitted in a single sweep to generate a C2 continuous outer mold line. No initial twist is prescribed, hence the
initial design generates barely any lift. However, as pointed out in Sections A and B, the optimizer easily
remedies this situation by pitching up the centerbody by only a few degrees.

Another appealing configuration is the box-wing: in theory, if the two wings are infinitely distanced,
and each one carries half the lift of a monoplane of the same span, then the induced drag is halved. In

Figure 5: Box-wing regional jet. The axial curves are shown in
red and their control points in orange.

practice, reductions on the order of 20%
can be expected for vertical-gap-to-span
ratios of about 0.1.47 These results
should also hold for swept wings in tran-
sonic flows by virtue of Munk’s theorems,
however in the high-subsonic regime sev-
eral difficulties were uncovered by Lange
et al. in 1974.47 Chief among these
was wing divergence encountered well be-
low the target flutter speed. This prob-
lem was also well recognized by Fredi-
ani, whose solution was to mount the rear
wings attaching at the tail on two vertical
fins with maximum horizontal distance.13

Although our models do not account for
aeroelasticity, we still position the two
fins on our design, see Figure 5, though
like the fuselage we exclude them from
the aerodynamic analyses. The airfoil se-
lection here is of little importance since,
as pointed by Wolkovitch,48 the flow cur-
vature induced by the neighboring wings
calls for highly customized airfoils.

The final aircraft configuration con-
sidered in this study is the strut-braced
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wing, which is similar to the truss-braced wing but without the additional juries. The strut is used for
wing-bending load alleviation, thus allowing a higher aspect ratio wing with reduced thickness-to-chord ra-
tios. The thinner wing has less transonic wave drag, permitting the wing to unsweep thus favoring natural
laminar flow. We choose the planform and strut dimensions as per the guidelines of Jobe et al.,49 resulting
in a wingspan 1.5 times that of the baseline (see Figure 6 below). The main wing is based of the NASA
SC(2)-0410 airfoil throughout its full span while the strut is interpolated from the NACA 64A-010 symmetric
airfoil. Just like the previous three configurations, all wings are initially untwisted and have zero angles of
incidence relative to the fuselage, i.e. the symmetry plane.

Figure 6: Strut-braced wing regional jet. The axial curves are shown in red and their control points in
orange.

All four geometries were generated by an in-house drawing tool that is a hybrid between a script-based
aircraft conceptual sketchpad and a CAD package.24 Wing surfaces, including tails whenever applicable, (the
cyan surfaces in Figures 3 to 6) were then output in IGES format and tesselated inside three-dimensional,
multi-block meshes of H-H and O-grid topologies in ANSYS ICEM CFD. Some statistics are listed in Table 2
for the baseline grids used throughout the optimizations. The fine grids are obtained by refining, in parameter
space, the final FFD block mappings responsible for the mesh movements, thus ensuring that the surface
nodes coincide with the optimal shapes.

A. Span Efficiency Validations

Before considering optimization with practical constraints, we first present cases validating our new axial
deformation approach. For each configuration, the optimizer is instructed to minimize drag while maintaining
lift at zero angle-of-attack. Recall that the freestream Mach number is fixed at 0.78 for all cases. Since we
are mainly interested in span efficiency, our approach to isolating induced drag is to eliminate wave drag
by enabling section design variables. By further allowing twist variations, the optimizer should be able to
recover span efficiencies equal to or greater than one by optimally loading all lifting surfaces. To avoid
defining reference areas, we use the dimensional form of the span efficiency formula

e =
L2

πq∞b2Di
, (5)

where L is the (constrained) lift, q∞ the freestream dynamic pressure, b the span, and Di the induced drag.
To prevent the wings from becoming excessively thin, we force, through a nonlinear constraint, the

evolving wings to maintain at least 95% of their initial internal volume. We also restrict the vertical scaling
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Design Blocks Grid sizes Spacing

Off-wall Walla

Conventional tube-wing 126 2,461,956 0.000404 0.01242

(2236) (96,175,368) (0.000109) (0.00367)

C-tip blended-wing-body 234 1,646,820 0.000108 0.00521

(2114) (91,644,303) (0.000027) (0.00136)

Box-wing 96 1,893,570 0.000451 0.01390

(2610) (96,495,514) (0.000118) (0.00374)

Strut-braced wing 280 3,156,640 0.000608 0.02295

(2206) (92,712,289) (0.000204) (0.00751)

a
�

S/Nwall, where S is the total surface area and Nwall the number of grids nodes on
the wall surfaces.

Table 2: Grid size properties, in root-chord units, for each aircraft design. The numbers in parentheses refer
to the refined grids.

factors, which are taken about the local origin of the FFD cross-sections (as explained in Section II), to
be no less than 0.5 and no more than 1.5. This is with the exception of the cross-sections covering the
centerbody of the blended-wing-body, for which we choose values of 0.95 and 1.05, respectively. As an aside,
we warn the reader that enabling such sectional control often causes unavoidable explosions in the number of
design variables. That is because we define each FFD cross-section with 10 chordwise control points, which
translates to 20 section design variables (since there are 2 rows of control points in the vertical direction).
While we recommend using at least 4 FFD cross-sections (80 section design variables) per wing segment, i.e.
per axial curve, this number may be overly conservative in certain cases.

We begin with the conventional tube-wing baseline, for which the initial pressure contours are shown
in Figure 7(a). Shocks are clearly seen on the aft region of the inboard upper wing and outboard along
the leading edge. To remedy this, we start by defining three axial curves, two for the main wing and one
for the horizontal tail, as illustrated in Figure 3. Note that on this figure, as well as on Figures 4 to 6,
the axial curves have been translated for improved clarity; for the tube-wing, the axial curves are actually
positioned at the leading edge of their respective wing segments, thus ensuring that the main wing’s leading
edge remains straight regardless of twist. There are 15 twist design variables and 300 section design variables
(15 FFD cross-sections times 20 control points each), totaling 315 geometric design variables. The optimized
wing is shown in Figure 7(b). Not only are the shocks completely eliminated, but the isobars are much
more evenly spaced and at constant sweep angles. It is interesting to note that the optimal lift distribution
inboard of the main wing does not appear to be elliptical in the presence of the lift-producing horizontal tail.

Next, inspecting Figure 8(a), we see that the initial blended-wing-body is mostly shock-free, except in the
transonically stressed flow environment located inside the C-tip extension. This is emphasized in the top left
inset, which reveals a complicated shock structure on the (not to-scale) inboard portion of the vertical fin.
For the optimization, a total of 5 axial curves are used, visible in Figure 4: one going from the main body’s
root all the way to its tip, one for the vertical fin, one for the horizontal stabilizer, and two for the (smooth)
corner transitions. Notice that many control points are required to capture the blended wing’s leading edge.
In our case, this approximation is exact since the axial curves are the same NURBS curves used to generate
the blended-wing-body.24 With a total of 29 twist and 580 section design variables, SNOPT reduced its
optimality measure by 2 orders to 4.5× 10−6 in 50 major iterations. The top view of the optimized surfaces,
shown in Figure 8(b), indicates improved isobar tailoring, whereas the inset shows the now shock-free vertical
portion.

Unlike the previous two cases, the initial flow solution of the box-wing configuration has no shock (due to
the thin airfoils that could be selected because of its larger wing exposure) with the exception of a localized
supersonic bubble at the leading edge root of the rear wing. Smooth flow gradients are also observed on
the initial inboard portion of the vertical tip fin, shown in the top left corner of Figure 9(a). Indeed, unlike
the blended-wing-body’s C-tip, the flow there is not overly stressed by lateral disturbances caused by the
presence of a highly tapered centerbody. To set up the optimization, we again use one axial curve per wing
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segment, plus two for the corner fillets, for a total of 7 axial curves. In all, there are 30 twist and 600 section
design variables. Although the optimization converged by 2 orders and reduced overall drag by roughly 30%,
the resulting spanwise lift distribution (Figure 9(b), right) is surprising. The optimizer almost completely
unloaded the front wing by quite literally reversing its camber; hence, most of the lift is carried by the
rear wing. This setting does form a favorable induced flow field for the (normally downwashed) rear wing,
however this solution does not correspond to the global optimum. Indeed, as discussed in Section B, higher
span efficiencies can be obtained when the two wings are encouraged to produce the same lift.

Just like the box-wing, the strut-braced wing has thin airfoil sections and as such sees no shock waves over
most of its initial surfaces. The only detected shocks are found on the outboard panel of the strut intersecting
the wing, although we choose to show the (not to-scale) inboard panel (Figure 10(a), top middle) for its more
interesting flow patterns. Axial curves are assigned to wing segments in a similar fashion to the previous
three cases, yielding 18 twist and 520 section design variables. The strut, being purely a structural member,
is not allowed to twist and has limited freedom in sectional shape changes during the optimization. The
optimizer takes 62 design cycles (67 function and gradient evaluations) to reduce optimality by 2 orders,
from 1.7× 10−2 to 1.6× 10−4. The flow on the optimized shape is remarkably well-behaved, as seen by the
contours on Figure 10(b). Notice how the suction side of the strut is now reversed.

The span efficiencies of the above validation cases are summarized below in Table 3. These were calculated
from a single flow solve performed on the fine grids of Table 2. The initial values are reported for comparison
purposes only since they do account for nonzero wave drag.

Conventional tube-wing C-tip blended-wing-body Box-wing Strut-braced wing

Initial 0.8665 0.7706 0.8722 0.6536

Optimal 1.0169 1.2692 1.1349 0.9821

Table 3: Span efficiencies of the initial and optimally loaded designs.

B. Designs with Practical Constraints

Encouraged by the span efficiencies obtained, we repeat the same problems but now constrained by practical
aircraft requirements. To begin with, each aircraft must perform the same mission: to carry 100 passengers
and 3 crew members over 500 nm at Mach 0.78 and an altitude of 10.5 km (∼ 35,000 ft). Since we limit
ourselves to single-point optimizations, we pick the most critical point of the cruise segment, i.e. at the
beginning where the required lift is maximum.

To estimate the aircraft weights, and therefore the required lift constraints at the specified altitude, we
use a low-fidelity model based on wetted areas.43 In this model, each major aircraft component is assigned
a single weight per unit area, and that same value is used for all configurations. For example, the weight of
the conventional tube-wing is reflected by the wetted areas of its “wing”, “tail”, “vertical”, and “fuselage”
components. The same goes for the box-wing and strut-braced wing configurations. In the case of the
blended-wing-body, only the “wing” component is used for the lack of a better weight estimate for the
embedded fuselage. Although of limited accuracy, this approach at least ensures that each aircraft is sized
according to the same technology levels. The values used in this work, listed in Table 4, are calibrated against
the reported operating empty weight of the CRJ-1000.45 The calibration assumes predetermined weights for
the propulsion, equipment, operational, and useful load groups, all taken as percentages of the take-off gross
weight of an aircraft of the same class.43 Those weights are assumed fixed across all configurations.

Aside from the imposed lift constraint, we also add a y-directional moment constraint to each optimization
problem for trimming purposes. We take the component-weighted centroids (based on the values in Table 4)
as surrogates for centers of gravity. For the conventional tube-wing, this yields a center of gravity located at
29% of the mean aerodynamic chord (which suggests that the wings might have to be repositioned relative

Wing Tail Vertical Fuselage

30.67 20.01 16.48 20.12

Table 4: Empty weight per wetted area [kg/m2].
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Figure 7: Upper surface pressure coefficient contours (left) and spanwise lift/side force distribution (right)
of the conventional tube-wing regional jet.
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(c) Optimization with practical constraints.

Figure 8: Upper surface pressure coefficient contours (left) and spanwise lift/side force distribution (right)
of the C-tip blended-wing-body regional jet. Top left insets: inboard panel of the vertical tip fin.
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Figure 9: Upper surface pressure coefficient contours (left) and spanwise lift/side force distribution (right)
of the box-wing regional jet. Top left insets: inboard panel of the vertical tip fin.
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Figure 10: Upper surface pressure coefficient contours (left) and spanwise lift/side force distribution (right)
of the strut-braced wing regional jet. Top middle insets: inboard panel of the vertical strut.
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to the fuselage, but such action was deemed unnecessary given the lack of a stability criterion in our models).
The same goes for the unconventional aircraft, but, in order to account for their greater overall uncertainty
in say, wing planform, the longitudinal position of their center of gravity is considered a design variable,
with a margin with respect to the centroid of plus or minus 3% of the fuselage length.

We reuse the same axial curve/FFD volume combinations as in Section A, but this time we free up some of
the axial curves’ control points with the goal of exploring the design space of each configuration. Depending
on the configuration at hand, we try to do so in a manner that is sensible both from an aerodynamic and a
structural point of view. For example, for the conventional wing only, we allow a winglet to grow (to help
it compete with the unconventional designs), but we heavily restrict the winglet’s taper (to help reduce the
root bending moment). In general, because there is no structural model involved, we allow neither wing
span nor wing sweep to vary during any of the optimizations.

Let us begin with the conventional tube-wing. As just pointed out, we provide the optimizer the means
to produce a winglet. This is achieved by replacing the outer axial curve, visible in Figure 3, with three
other axial curves attached one after another, as seen in Figure 11. The axial curve that is sandwiched is

Figure 11: Close-up of the optimized tip geometries.
Both solutions exhibit wavy surfaces toward the trailing
edge, as seen by the jump in the zebra curvature stripes
on the winglet-up configuration.

cubic and is specifically defined to reproduce
Bombardier’s signature “beaver tail”. That
same axial curve also provides a smooth wing-
winglet transition together with the outermost
axial curve, whose end point controls the verti-
cal extent of the winglet. As expected, at the end
of the simulation the optimizer reaches the upper
bound of that vertical height. For comparison, we
reran the exact same optimization problem but
without that permissible vertical extent (that is,
with 1 less degree of freedom), and we found that
the winglet-up configuration produces roughly
3.5% less drag. As seen from Figure 7(c), the op-
timized wing is optimally loaded even though it
carries significantly more lift. Some of this extra
lift come as a consequence of the negative force
exercised on the tail to trim the aircraft. In fact,
where there used to be a dip in the spanwise force
distribution of the main wing is now a bulge.

We now shift our attention to the blended-wing-body, which is, in a sense, doubly unconventional with
its C-tip extension. Unlike their planar counterparts, the aerodynamics of C-tip blended-wing-bodies have
not received much attention in the past. Hence, we focus our efforts on the C-tip extension, more specifically
on its top horizontal segment. Originally, we varied both its length and dihedral angle, only to realize
that the optimizer invariably tried to eliminate it in favor of a higher vertical winglet, i.e. it wanted to
“unfold” the C shape. We say “tried” because the optimizer’s attempts were ultimately curtailed by mesh
movement failures. We thus took a step back and varied the horizontal segment’s spanwise extent only. As
seen from the resulting planform in Figure 8(c), the optimizer still chose to reduce this value as much as
it could (by the end of the optimization the lower bound is active). This suggests that for a fixed height
to vertical gap ratio, the C-tip is not advantageous — perhaps even disadvantageous — over the purely
vertical winglet. Though surprising, a similar conclusion was reached by Verstraeten and Slingerland when
comparing optimally loaded wingletted and C wings.50 As for the final twist angle of the centerbody’s root
section, the optimizer naturally reaches 2.15 degrees, thus favoring a reasonable deck angle at cruise.

Next in line is the box-wing. Recall from Section A and Figure 9(b) that the optimizer elected to transfer
most of the lift onto the rear wing. Maybe the optimizer did find a true local optimum, but we believe
that it more likely exploited numerical artifacts arising from the somewhat coarse discretization of our grid.
After all, classical lifting-line theory clearly indicates that both wings should generate equal lift for minimum
induced drag.47 In terms of aircraft trim, this necessarily implies that the center of gravity must lie midway
between the front and rear wings, a fact that was unaccounted for at the conceptual design stage of this
work. Thus, for the box-wing only, we disregard the fuselage weight and place the center of gravity based
on the centroids of the front and rear wings only. Also, using a quadratic axial curve, we give the optimizer
some freedom in shaping the outboard portion of the rear wing’s planform while ensuring that the location
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where the vertical fin intersects remains unchanged. Finally, linear taper variations are activated on all wing
segments, thus giving the optimizer the opportunity to redistribute internal volume between the front and
rear wings. As portrayed in Figure 9(c), the optimal solution exhibits almost equally loaded wings. Indeed,
the spanwise lift distribution closely resembles the one found by Prandtl in 1924: elliptical on both wings
and joined at the tip by a butterfly-shaped side-force distribution.11

The final case considered is the strut-braced wing, for which we further relax the axial curves’ range
of potential deformation. First, similar to the box-wing design, we activate the chordwise scaling variables
(taper) along the main wing, but this time we allow nonlinear changes. Because the axial curves are positioned
on the wing’s trailing edge, the latter will remain straight as taper is varied. Second, the first four axial
curve’s points controlling the inboard wing segment (of which the very first appears inside the fuselage in
Figure 6) are free to move in the chordwise direction by plus or minus 0.2 root-chord units. Hence, for this
region only the curvature of the trailing edge can potentially vary. Finally, the height of the vertical strut
segment is also subjected to change by plus or minus 0.1 root-chord units. At the end of the optimization,
the optimizer reaches the lower bound of that last design variable, thus maximizing the vertical gap between
the wing and the horizontal strut segment. This relieves the flow passing through the wing-strut opening.
Also, visible in Figure 10(c) and of higher interest is the final planform. The initial kink at about 80% span
appears to disappear, blended by a smooth bird-like leading edge. The inboard wing is also curved, but in
such a way to maximize the root sweep angle so to delay isobar unsweeping at the symmetry plane.

A summary of the results obtained from the optimizations just described is tabulated below. The aircraft
weights at the beginning of cruise are also included. It is interesting to note how the optimized box-wing’s
span efficiency is now 1.2322, in good agreement with the expected value of about 1.2 that corresponds to
a vertical gap to span ratio ratio, h/b, of 0.1.47 The last line of Table 5 offers a comparison in terms of
induced drag reduction between the conventional configuration and the unconventional ones. According to
this preliminary study on regional transports, the strut-braced wing concept is the one that generates the
least amount of induced drag (−46%), followed by the C-tip blended-wing-body (−28%), and finally the
box-wing aircraft (−9%).

Conventional tube-wing C-tip blended-wing-body Box-wing Strut-braced wing

e 0.9982 1.1730 1.2322 0.9909

Lift/Drag 55.5 84.3 64.9 110.0

Weight [N] 370,068 407,321 395,099 397,336

Drag [N] 6,668 4,832 6,088 3,612

∆Drag [%] 0 28 9 46

Table 5: Performance and drag reduction of the optimized practical designs.

V. Conclusions

This paper introduced an intuitive and versatile technique that parameterizes wing shape changes. It
uses the principles of axial deformation combined with those of free-form deformation to achieve both global
and local control. Any form of span, sweep, dihedral, taper, twist, and sectional shape changes can be
achieved by the means of simple transformation matrices, an approach that promotes an easy and thorough
exploration of the design space. The technique also proved to be directly extensible to multi-segmented wings
of arbitrary topology. Together these characteristics are advantageous in the systematic and consistent study
of unconventional lifting systems.

The second portion of this work sought to assess and quantify the relative aerodynamic benefits of three
next-generation unconventional regional jets compared with a conventional baseline aircraft sized for the
same mission. From a purely induced drag perspective, our results indicate that the strut-braced wing
configuration is the most efficient. This is assuming that the strut does indeed allow for a span 1.5 times
that of the conventional baseline (even if it does not, additional trusses could presumably help relieve stress
paths). The poorer performance of the box-wing should not by any means deter further investigation. Indeed,
if the vertical gap to span ratio were to double, i.e. taken from 0.1 to 0.2, drag reductions on the order of
21% can be expected.
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Two secondary outcomes of the optimizations are worth reiterating. The first is that a box-wing is
optimally loaded only when the front and rear wings carry the same amount of lift, which entails that the
center of gravity should be halfway between the two wings. This observation could only be made possible
with sufficiently fine mesh spacings, fine enough to capture the many subtleties present in the induced flow
field generated by the staggered wings. The second point is that a C wing does not appear to offer any
drag benefit over a vertical winglet of the same height to span ratio. Either this trend represents a real
phenomenon, or, similar to the box-wing, our grid was simply too coarse to capture the real physics. More
work is needed to elucidate this dilemma.

This paper only marks the beginning in assessing the real potential of unconventional aircraft for com-
mercial aviation. It remains to be determined whether viscous effects negate savings in induced drag. For
instance, a 2011 NASA contractor report reveals that the only way to achieve a 30% reduction in induced
and parasitic drag (along with a 30% improvement in vehicle weight and engine fuel consumption) for the
2035 timeframe is to substantially reduce wetted area, such as could be achieved by a tailless airliner.51 This
report goes to show the unusually strong coupling between the many disciplines involved in the design of
unconventional aircraft; hence future work will not only address viscous effects but also include structural
models culminating in high-fidelity multi-point aerostructural optimizations.
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A. General Arrangement of the Initial Designs

(a) Conventional tube-wing (b) C-tip blended-wing-body

(c) Box-wing (d) Strut-braced wing

Figure 12: Overall dimensions (in meters) of the initial designs. Drawings are to scale relative to each other.
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