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We propose an algorithm that integrates geometry parametrization and mesh move-

ment using the control points of a B-spline mesh. An initial mesh is created using B-spline

volumes in such a way that the control points mimic a coarse grid. The control points

corresponding to the surface nodes are adopted as the design variables. Mesh movement

is achieved by applying a standard movement algorithm to the coarse B-spline grid. For

example, we have developed a semi-algebraic scheme in which the B-spline control points

are updated using the equations of linear elasticity, and the new mesh is regenerated alge-

braically. We illustrate the approach with a few examples, including a flat plate morphing

into a blended-wing-body configuration.

I. Introduction

Climate change and increased oil prices have renewed interest in unconventional aircraft designs that
dramatically improve fuel efficiency — the blended-wing body is an example. Multi-disciplinary optimiza-
tions of these concepts typically start from a baseline design and make small shape and structural changes;
see, for example, Liebeck,1 Campbell et al.,2 and Le Moigne and Qin.3 Modifying a baseline design with
small changes is a sensible approach for refining a design; however, for unconventional designs it would be
preferable to make no assumptions regarding the shape and structure of the aircraft. In this case, both the
shape parametrization and mesh movement need to be highly flexible and robust.

Shape parametrizations fall into two broad categories: free-form and feature-based. Examples of free-
form parametrizations include the surface mesh points and Bézier or B-spline control points. Feature-based
parametrizations use conventional aircraft parameters such as span, twist, sweep, and taper. Many authors
combine the two approaches; for example, Le Moigne and Qin3 use a free-form Bézier parametrization for
the airfoil sections together with twist and sweep variables. However, for investigations of unconventional
designs, a strictly free-form parametrization is most flexible.

During the optimization process, the design variables are updated and change the shape of the aero-
dynamic surface. Consequently, the computational mesh must be adapted to conform to this new shape.
Several algebraic and computational approaches have been proposed to move the mesh in response to the
surface shape changes.

Algebraic grid movement can be applied to multi-block structured grids,4, 5 but this approach is limited
to relatively small shape changes and a particular type of grid. Liu et al.6 have proposed an algebraic mesh
movement based on mapping the mesh to a Delaunay graph. They demonstrate that the Delaunay graph
approach is robust to large shape changes, provided multiple increments are used; however, analysis of their
method suggests that, in general, using multiple increments produces a discontinuous objective function
gradient. This may limit the Delaunay graph approach to gradient-free optimizations.

Jakobsson and Amoignon7 developed a promising mesh movement algorithm based on radial basis func-
tions (RBFs); see also reference 8 where a similar approach is applied in the context of aeroelastic problems.
In RBF mesh movement, the surface geometry displacements are interpolated into the interior. The in-
terpolation coefficients are obtained by inverting a relatively large, dense system for each mesh movement.
After the coefficients are determined, applying the interpolation is equivalent to a sparse matrix-vector mul-
tiplication. Depending on whether this sparse matrix is stored or recomputed, the RBF approach can be
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computationally or memory intensive. In addition, the mesh may not interpolate the geometry unless the
geometry is also parametrized using radial basis functions.7

Batina9 introduced the spring analogy method, which models the mesh edges as springs; this method
was later modified to include torsional springs.10 While more robust than most algebraic algorithms, the
spring analogy method can produce negative cell volumes during large, 3-dimensional shape changes.11

Johnson and Tezduyar12 demonstrated that the equations of linear elasticity can be used to achieve robust
mesh movements, even for large shape changes. This approach has been used successfully for aeroelastic
problems13 and aerodynamic optimization.11 Unfortunately, the equations of linear elasticity are typically
less diagonally dominant than the spring analogy equations, so the elasticity approach tends to be more
computationally expensive.

Experience with algebraic and differential-equation based mesh movement algorithms suggests that effi-
ciency and robustness are mutually exclusive. We propose a compromise: apply a robust mesh movement
algorithm to a coarse grid and regenerate the fine grid algebraically from the coarse one. In addition, the
points on the surface of the coarse grid can be chosen as the design variables, integrating mesh movement
with geometry parametrization. We demonstrate this idea by using B-spline volume grids14, 15 with the
control points defining the coarse mesh.

Section II reviews B-spline concepts and their extension to volume grids. We apply linear elasticity
mesh movement to the coarse grid; this algorithm is outlined in Section III. The parametrization and mesh
movement are demonstrated in Section IV with several examples. Our conclusions are summarized in Section
V.

II. B-spline Mesh Concepts

A. B-Spline Curves and Basis Functions

A B-spline curve of order p is a weighted sum of basis functions;

C(ξ) =

N
∑

i=1

BiN
(p)
i (ξ), 0 ≤ ξ ≤ 1. (1)

The points {Bi ∈ R
d, i = 1, . . . , N} are called de Boor control points, or simply control points. The functions

N
(p)
i (ξ) are the B-spline basis functions of order p; they are p−1 degree spline polynomials. The polynomials

making up the splines are joined at non-decreasing knot locations, {Ti, i = 1, . . . , p+N}, such that the basis
is Cp−2 continuous at the knots. The parameter range for the curve is given by [0, 1] = [T1, Tp+N ]; other
ranges can be scaled to this domain. The basis functions can be defined recursively using the parameter
value and the knots:

N
(1)
i (ξ) =







1 if Ti ≤ ξ < Ti+1,

0 otherwise.

N
(p)
i (ξ) =

(

ξ − Ti

Ti+p−1 − Ti

)

N
(p−1)
i (ξ) +

(

Ti+p − ξ

Ti+p − Ti+1

)

N
(p−1)
i+1 (ξ). (2)

In general, a B-spline curve can be controlled using the order of its basis, the number and position of its
de Boor points, and its knot values and their multiplicity. Unless stated otherwise, we will use fourth-order

basis functions (cubic splines) and drop the superscript: Ni(ξ) ≡ N
(4)
i (ξ). This choice of basis is common,

and provides a good compromise between continuity and computational speed. We will also use open knot
vectors of the form {0, 0, 0, 0, T5, T6, . . . , TN−1, 1, 1, 1, 1}. The multiplicity of p = 4 at the ends of the knot
vector ensures that the curve passes through B1 and BN . Figure 1 plots the fourth order B-spline basis
functions for the knot vector {0, 0, 0, 0, 0.1, 0.2, 0.5, 1, 1, 1, 1}.

B. 1-Dimensional B-Spline Meshes

The B-spline curve equation (1) is typically used to define a mapping of the form C : [0, 1] → P where
P is a subset of R

2 or R
3. However, we can also use (1) to map one interval of the real line to another.

Such 1-dimensional B-spline curves provide a suitable analogy and introduction to our ultimate application:
volume mesh generation and movement.
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Figure 1. Example B-spline basis for the knot vector {0, 0, 0, 0, 0.1, 0.2, 0.5, 1, 1, 1, 1}; the knot locations are denoted
by the square symbols.

(a) initial B-spline mesh and control points (solid circles).

(b) mesh perturbed using control points.

Figure 2. Example showing influence of control points on the grid spacing of a 1-dimensional B-spline mesh.

Consider a set of uniformly spaced 1-dimensional control points {Bi, i = 1, N} and a uniform open knot
vector, i.e. a knot vector where the internal knots are evenly spaced between the end knots. The B-spline
“curve” constructed using these control points and knots produces a mapping C : [0, 1] → [B0, BN ]. If we
discretize the parameter space into L points, {ξ1, ξ2, . . . , ξL}, then the image of these points is a 1-dimensional
B-spline mesh. Figure 2(a) provides an example of a B-spline mesh and its control points. In this particular
example, the control points, knots, and parameter values are uniformly spaced. The resulting mesh itself
is not uniform because of the asymmetry of the basis functions. However, a uniform mesh can be obtained
from uniformly spaced control points by changing the parameter values.16

We can adapt the B-spline mesh by altering the positions of the control points. Such an adaptation is
shown in Figure 2(b) for illustrative purposes. Notice that the control points act like a coarse mesh; when
they move closer together, the spacing on the actual mesh also decreases.

The coarse-grid behaviour of the control points applies not only to mesh spacing but to space curves as
well. B-spline curves of order p are constrained to lie within the convex hull of p neighbouring control points,
and they also obey a variation diminishing property.17 Therefore, the B-spline control points approximate
the 2-dimensional or 3-dimensional space curves they define. Indeed, as more control points are added,
using knot insertion for example, the control points converge to the geometry they define. This coarse grid
property of the control points is particularly useful when moving B-spline volume meshes.
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C. B-Spline Volume Meshes and Modified Basis Functions

B-spline surfaces and volumes can be created using tensor products. We will focus on B-spline volumes since
surfaces can be considered a special case. Tensor product B-spline volumes are well suited to structured grid
generation;14, 15 however, B-spline volumes can also be generated by generalizing triangular Bézier patches,
which may be of interest to unstructured grid users.

A B-spline tensor product volume is a mapping from the cubic domain D = {ξ = (ξ, η, ζ) ∈ R
3|ξ, η, ζ ∈

[0, 1]} to P ∈ R
3 and is defined by

x(ξ) =

Ni
∑

i=1

Nj
∑

j=1

Nk
∑

k=1

BijkNi(ξ)Nj(η)Nk(ζ). (3)

A B-spline volume mesh is produced by simply discretizing the domain D. The parameters ξ, η, and ζ do
not need to be discretized in a uniform way. Indeed, nonuniform parameter spacing is usually necessary
for precise control of mesh spacing in physical space. If a flow solver requires uniform meshing spacing in
parameter space, an intermediate mapping is implied.a

The basis functions appearing in (3) can be generalized to permit spatially varying knot functions, also
called curved knot lines.18 The usefulness of such knot functions will be explained below. Consider the
basis functions in the ξ-direction, and suppose the knots are functions of η and ζ. Then, the modified basis
functions are given by

N
(1)
i (ξ; η, ζ) =







1 if Ti(η, ζ) ≤ ξ < Ti+1(η, ζ),

0 otherwise.

N
(p)
i (ξ; η, ζ) =

(

ξ − Ti(η, ζ)

Ti+p−1(η, ζ) − Ti(η, ζ)

)

N
(p−1)
i (ξ; η, ζ)

+

(

Ti+p(η, ζ) − ξ

Ti+p(η, ζ) − Ti+1(η, ζ)

)

N
(p−1)
i+1 (ξ; η, ζ).

(4)

Analogous definitions apply to the basis functions N
(p)
j (η; ζ, ξ) and N

(p)
k (ζ; ξ, η).

For fixed (η, ζ), the modified basis function (4) reduces to the standard definition (2); hence, the modified
basis retains Cp−2 continuity at the knots in the ξ direction. Although less obvious, the modified basis is
also Cp−2 in the η- and ζ-directions, provided Ti(η, ζ) ∈ Cp−2 and the internal knots have a multiplicity at
most one. This result is a consequence of the chain rule and the smoothness of the derivative of a B-spline
with respect to its knots.19–21

The internal knots of the modified basis functions must be strictly increasing and sufficiently smooth,
but the user is otherwise free to choose the functional form. For simplicity, we use bilinear knots of the form

Ti(η, ζ) = Ti,(0,0)(1 − η)(1 − ζ) + Ti,(1,0)η(1 − ζ) + Ti,(0,1)(1 − η)ζ + Ti,(1,1)ηζ. (5)

The four constants Ti,(0,0), Ti,(1,0), Ti,(0,1), and Ti,(1,1) denote the knot values at the (η, ζ) edges of the
parameter space. Again, similar knot definitions are used for Ti(ζ, ξ) and Ti(ξ, η). Figure 3 shows an
example modified basis function. The salient feature is the changing basis location.

D. Approximating Grids Using B-spline Volume Meshes

We have described how B-spline volumes can be used, in theory, to define mappings from computational
space to physical space. Many practical issues remain unanswered. For example, how do we choose the
surface control points such that the mappings conform to the geometry of interest? This is certainly an
important question when a mesh is generated for analysis, but it is less important in preliminary design
where the geometry of interest is the optimized one. Nevertheless, an initial geometry can be approximated
to engineering tolerances using B-spline meshes.

aIn practice, finite-difference and other mapping-based solvers use the grid coordinates only, so the details of the B-spline
parameters are not important; however, the smoothness of the mapping must be consistent with the order of the scheme being
used.
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Figure 3. Example 2-dimensional modified basis, or, equivalently, a 3-dimensional modified basis for fixed ζ.

Issues related to mesh generation also need to be addressed. How should the volume control points and
parameter values be determined to obtain a high quality mesh? Should the domain be broken into multiple
mappings using a semi-structured approach? These are open-ended questions, and to provide thorough and
exhaustive answers would go beyond the scope of this paper. For the purposes of demonstrating the B-spline
parametrization and mesh movement, we propose fitting existing, canonical grids to determine the initial
control point positions and the (ξ, η, ζ) parameter values.

A least-squares fit with parameter correction16 is often used to find spline curve and surface approxima-
tions to data points. This algorithm can easily be extended to B-spline volume approximations of a grid, as
we now demonstrate.

Each block of the structured grid is associated with a B-spline volume. For each B-spline volume, the
user chooses the number of control points and the B-spline order in the parameter directions (ξ, η, ζ); at
interfaces where blocks meet, the number of control points and order must be consistent to ensure continuity.

First, parameter values ξq,r,s are calculated for each point in the grid G = {xq,r,s|q = 1, . . . , Lq, r =
1, . . . , Lr, s = 1, . . . , Ls}. We use a chord-length parametrization to be consistent with the choice of knot
vectors (see below), but other parametrizations are possible.22 To illustrate the chord length parametrization,
consider the parameter ξq,r,s along the grid line {q = 1, . . . , Lq, r = r0, s = s0}:

ξ1,r0,s0
= 0

ξq,r0,s0
=

1

Ξ

q−1
∑

t=1

‖xq+1,r0,s0
− xq,r0,s0

‖, q = 2, . . . , Lq,

where the total arc length is approximated by

Ξ =

Lq−1
∑

t=1

‖xq+1,r0,s0
− xq,r0,s0

‖.

Next, the spatially varying knot vectors must be determined. The importance of the knot vector in
fitting B-spline curves is well documented.22, 23 When fitting surface or volume data points with conventional
algorithms, there are an infinite number of curves being fit with the same knot vector. By allowing the knots
to vary, it should be possible to improve the B-spline approximation of surface and volume data. We use
the spatially varying bilinear knots defined by (5), with the knots on each parameter edge defined by a
chord length parametrization. We have found that chord-length-based knots produce control meshes that
approximate the mesh spacing of a coarse grid, a feature that is important for the mesh movement algorithm.
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The specific formula for the edge knots will be demonstrated using the edge {(ξ, 0, 0)|ξ ∈ [0, 1]}. For this
edge we have

Ti,(0,0) = (ξq+1,1,1 − ξq,1,1)[q̄i − (q − 1)] + ξq,1,1, q − 1 ≤ q̄i ≤ q

where

q̄i =

(

Lq − 1

Ni + 1 − p

)

(i − p).

These edge knots are constructed to have approximately the same number of parameter values in each knot
interval, [Ti+1, Ti], i = p, Ni − 1. Consequently, the knots obtained using the above formula have a chord
length parametrization because the parameters use a chord length parametrization.

Finally, least-squares systems are solved to determine the control points that best approximate the grid;
see reference 22, for example. Least-squares systems are solved sequentially for the edge, face, and internal
grid points. This ordering ensures that adjacent blocks have consistent grid point locations. If necessary,
the iterative parameter correction algorithm of Hoschek16 can be applied to improve the fit by adjusting the
parameter values.

E. Applications of B-Spline Meshes

The control mesh is designed to mimic a coarse grid, so the surface control points provide a low dimensional
approximation of the surface. This makes the surface control points a suitable choice for the design variables
in shape optimization. The use of Bézier or B-spline control points in design optimization is not new;24 the
difference here is that the design variables are a subset of a volume control mesh.

In this paper, our focus is on B-spline parametrization and mesh movement as it pertains to design
optimization; however, we would like to mention other possible uses of B-spline meshes:

• the surface control points can be used to control the shape of the wing in studies of unsteady aerody-
namics;

• the volume control points can be used for mesh adaptation, rather than the individual grid points;

• the parameter space can be refined in a smooth way to achieve rigorous mesh convergence studies;

• hierarchical grids can easily be constructed for multigrid, and;

• grids and geometries suitable for high-order discretizations can be obtained with a suitable choice of
B-spline basis order.

III. B-spline Grid Movement

A. Possible Grid Movement Algorithms

Once fitted using B-spline volumes, the grid can be manipulated using the control mesh of points {Bijk}.
Suppose that a subset of control points on the surface, denoted by {Bijk|(i, j, k) ∈ S}, have been chosen as
design variables. A very simple mesh movement algorithm is obtained by fixing the control points that are
not in this subset. Although this fixes the internal control points, the grid points near the surface still move
because the boundary B-spline basis functions extend into the interior. Such a mesh movement strategy may
be useful if only small shape changes are necessary.

If larger shape changes are expected, then an algorithm is needed that moves the internal control points
based on the surface control points. Essentially, any grid movement algorithm can be applied to the control
points; algebraic, spring analogy, linear elasticity, radial basis functions, etc. For B-spline volume meshes,
there are typically three orders of magnitude fewer control points than grid points, so the CPU time of the
mesh movement becomes insignificant relative to the flow solution. For this reason we have chosen to use a
robust, linear elasticity-based mesh movement.
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B. Control Point Movement Based on Linear Elasticity

We model the control mesh as a linear elastic solid with stiffness controlled using a non-constant Young’s
modulus, E. The algorithm is very similar to the one used in Truong et al.;25 only a brief outline of the
method is given here.

The control points are updated according to the equilibrium equation

∂ (τij)

∂xj

+ fi = 0, (6)

where the stress tensor, τij , is assumed to be linearly related to the Cauchy strain tensor, eij . We also
assume the solid is isotropic and symmetric, and that displacements are small. Under these assumptions we
have

τij =
E

1 + ν

(

eij +
νekkδij

1 − 2ν

)

eij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

.

Note, when the small displacement assumption is not valid, the problem can be broken into a sequence of
mesh movement problems by moving the surface in increments. We elaborate on this below.

The governing equation (6) is discretized on the control mesh using the finite element method with
trilinear elements. The force vector fi is defined implicitly based on the displacement of known degrees of
freedom, such as the surface and far-field control points. The resulting system of algebraic equations is of
the form

M = K(b− b(0)) − f = 0 (7)

where b is a block column vector of control point coordinates, f is the discrete force, and the stiffness matrix
K is sparse, symmetric, and positive-definite. The initial control point coordinates are denoted by b(0). We
solve the linear system (7) using the conjugate gradient method preconditioned with ILU(p).26 The system
is solved to a relative tolerance of 10−12 with respect to the L2 norm of the residual.

As noted above, when large shape changes are expected, the mesh movement can be applied in increments.

Suppose m increments are used, with b
(0)
srf and b

(m)
srf denoting the initial and final locations of the surface

control points, respectively. Then the intermediate values of the surface control points are determined by
the linear interpolation

b
(i)
srf =

i

m

(

b
(m)
srf − b

(0)
srf

)

+ b
(0)
srf , i = 1, . . . , m.

In addition, when increments are used, the stiffness matrix becomes a function of the control point
coordinates at the previous level through the spatially varying Young’s modulus (explained below). Thus,
the linear equation for the control points at increment i has the form

M
(i) = K(i)

(

b(i−1)
) [

b(i) − b(i−1)
]

− f (i) = 0, i = 1, . . . , m. (8)

Using increments helps improve the robustness of the mesh movement while maintaining linearity; note,
however, this approach does have implications for gradient-based optimization,25, 27 since K(i) is a function
of b(i−1).

Element stiffness is controlled using a spatially varying Young’s modulus. The Young’s modulus is
calculated at the beginning of the mesh movement, or the beginning of each increment if the movement
is broken into smaller steps. The goal is to vary the element stiffness in such a way that mesh quality is
maintained in critical regions of the grid, e.g. the boundary layer. First, we assume that EE ∝ V −1

E
, where

VE is the element volume; this ensures that small elements are stiffer than large elements. In regions where
element volumes have similar magnitudes, we need an additional stiffening mechanism to maintain quality.
Here we have chosen to use an orthogonality measure; hence, elements that are at risk of becoming more
skewed have their stiffness increased. The orthogonality measure for an arbitrary element E is given by

ΦE =

(

8
∏

ν=1

1

(uν × vν) · wν

)2
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where the index ν denotes the vertices of the element. The vectors uν , vν , and wν are unit vectors parallel
to the element edges that meet at vertex ν, and they form a right-handed system. Hence, the triple product
(uν × vν) · wν is positive for valid elements, equal to 1 for orthogonal vectors, and tends to zero as the
vectors become coplanar. Following Bar-Yoseph,28 the orthogonality measure is normalized by its value on
the initial mesh. In summary, the Young’s modulus for element E at increment i is given by

E
(i)
E

=
Φ

(i)
E

Φ
(0)
E

V
(i)
E

IV. Examples

In this section, we demonstrate the proposed mesh movement and parametrization scheme with two
examples. In the first example, we parametrize an existing shape — the ONERA M6 wing29 — to test the
algorithm in a typical design optimization setting. The second example is intended to mimic a conceptual
design optimization and involves morphing a flat plate into a blended-wing body with winglets. In both cases
the proposed mesh movement is compared with a node-based-linear-elasticity approach, i.e. the algorithm
described in Section III.B is applied to individual nodes rather than control points. In all cases, the mesh
movement is broken into m = 5 increments, and Poisson’s ratio is fixed at −0.2.

To assess the mesh movement algorithms, we adopt an orthogonality measure similar to the one used to
stiffen elements in the linear elasticity algorithm. Specifically, the quality for an element E is given by

QE =

√

1

ΦE

=
8
∏

ν=1

(uν × vν) · wν . (9)

It follows from this definition that elements with perfect orthogonality have QE = 1 while highly skewed
elements have QE ≈ 0. In the case of the B-spline mesh movement algorithm, QE is measured for elements
on the interpolated mesh and not the control mesh.

The fitting process used to determine the B-spline control mesh and parameter spacing produces an
approximation to the initial mesh. To quantify the quality of the fit of the initial mesh, we evaluate the root-
mean-square (RMS) and L∞ norm errors. The RMS error is based on the distances between corresponding
nodes in the initial and fitted grids:

RMSerror =

√

∑

q,r,s ‖xq,r,s − x(ξq,r,s)‖
2
2

∑

q,r,s 1
.

To be clear, the sum in the RMS error is over all nodes and all blocks. For the infinity norm errors, we
report the maximum absolute error for each coordinate. The RMS and L∞ norm errors for the two cases
are listed in Table 1. These errors are acceptable for most engineering analyses. If tighter tolerances are
required, more control points can be added or parameter correction — which was not used here — can be
invoked.

Table 1. Errors between initial and B-spline grids

case RMSerror ‖∆x‖∞ ‖∆y‖∞ ‖∆z‖∞

ONERA M6 4.04 × 10−4 2.01 × 10−3 1.52 × 10−3 1.54 × 10−3

blended-wing body 7.11 × 10−5 1.35 × 10−4 5.21 × 10−4 2.41 × 10−4

A. ONERA M6 wing

In this example, we parametrize the ONERA M6 wing and transform it into a rectangular wing with NACA
0012 airfoil sections. The root chord of the M6 wing is normalized to 1.0, and the rectangular wing has a
root chord of 0.49664. The shape transformation involves sweep, scaling, and section modifications.

The parametrization is obtained from the surface control points of a B-spline mesh fitted to an initial 12
block, HH-topology grid. Each block in the grid consists of Lq × Lr × Ls = 45 × 65 × 33 nodes, producing
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Figure 4. Orthogonality distribution of cells for the initial ONERA M6 grid and grids for the rectangular
wing obtained using the B-spline mesh movement and node-based mesh movement.

approximately 1.158× 106 nodes in total. The mesh spacing is typical for an inviscid flow analysis with the
off-wall, leading edge, trailing edge, and tip spacing set at 0.001. The B-spline volumes for each block use
Ni × Nj × Nk = 13 × 13 × 9 control points: the B-spline grid is approximately 60 times smaller than the
computational grid. Figure 7, in Appendix A, provides visualizations of the initial and final B-spline control
meshes and their corresponding computational grids.

The final computational grid is compared to the initial grid using the orthogonality measure (9). The
measure is calculated for each element, and then grouped into bins which uniformly divide the range of
possible values, namely [0, 1]. These bins are then used to produce a distribution of orthogonality. Integrating
the distribution over the orthogonality range [a, b] gives the ratio of elements that lie in this range. In
particular, integrating the distribution over [0, 1] gives 1.

Figure 4 plots the orthogonality distribution for the initial ONERA M6 grid and the grid for the rect-
angular wing. For comparison, the figure also includes the distribution for the grid obtained using the
node-based-linear-elasticity approach. The final grids have distributions which are qualitatively similar to
the initial distribution, which we would expect for a mesh movement based on linear elasticity. More notable
are the similarities between the B-spline and node-based mesh-quality distributions. Indeed, in some cases
the B-spline distribution is better; consider the first peak, near the low end of the quality range, which is
smaller for B-spline mesh. This can be attributed to the smoothing properties of the B-spline volumes.

For this problem, the B-spline and node-based mesh movement required 227 seconds and 27.79 hours,
respectively, on a single 1500 MHz Itanium 2 processor. For the B-spline mesh movement we found that a fill
level of 1 was optimal in the ILU(p) preconditioner, while a fill level of 2 was better for the larger node-based
problem. While better preconditioners may exist, the relative CPU time between the two approaches is
likely to remain the same.

B. Blended-Wing Body

The initial shape is a flat plate with unit chord and a semi-span of 2. As in the previous example, the mesh
consists of 12 blocks in an H-H topology. Each block has 45 × 45 × 45 nodes. The off-wall spacing is 0.001,
while the leading edge, trailing edge, and tip spacing are 0.005.

The initial mesh is fit using 12 B-spline volumes, with 9 × 9 × 9 control points per volume; the control
mesh reduces the number of degrees of freedom by a factor of 125 relative to the fine mesh. The fitted mesh
for the flat plate is shown in Figure 8(b), together with its control mesh in Figure 8(a).

The control points on the surface of the plate are chosen as design variables. In this example, we set the
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Figure 5. Orthogonality distribution of cells for blended-wing-body grids obtained using the B-spline mesh
movement and node-based mesh movement. Note the use of a log-scale for the ordinates.

design variables to obtain a generic blended-wing geometry with winglets. The perturbed surface control
points and control mesh are shown in Figure 8(c). The resulting mesh for the blended-wing-body shape is
shown in figure 8(d).

The orthogonality measure distribution for the initial grid is plotted in Figure 5, together with the
distributions for the grids obtained using the B-spline and node-based mesh movement algorithms. The initial
grid is almost Cartesian and its distribution reflects this: all the elements have orthogonality measures greater
than 0.74. In transforming from the flat plate to the blended-wing body, some loss of element orthogonality
is unavoidable. As in the ONERA M6 example, the important observation is that the B-spline and node-
based mesh movements produce very similar quality distributions, despite the significant difference in CPU
time: the B-spline mesh movement required 128 seconds while the node-based mesh movement required 32.4
hours.

Finally, we solve for the flow around the blended-wing body to demonstrate the B-spline mesh movement
in an analysis type application. Figure 6 shows the surface mesh and Cp distribution for the blended-
wing-body grid obtained using the B-spline algorithm. The inviscid flow is defined by an angle of attack
of 4 degrees and Mach number of 0.3. The flow solution was obtained using the algorithm described in
reference 30.

V. Conclusions

A B-spline mesh can be used to integrate a CAD-free geometry parametrization with a semi-algebraic
mesh movement algorithm. As a result, mesh movement can be made more efficient by reducing the number
of degrees of freedom associated with the grid. Specifically, a coarse grid is perturbed using a robust mesh
movement algorithm, and, subsequently, a fine mesh is obtained algebraically from the coarse one. We have
demonstrated that B-spline mesh movement produces grids with quality comparable to those obtained using
a node-based mesh movement while requiring two to three order of magnitude less CPU time.

B-spline volume mappings have many potential applications beyond parametrization and mesh movement.
For example, they may be of use in mesh adaptation and refinement. The control points can be moved
according to error estimates; this approach should be faster and more robust than moving individual points,
given the properties of B-splines. When applied to convergence studies, these mappings provide an explicit
transformation from parameter space to computational space, permitting a smooth refinement strategy.
Using the same strategy, hierarchical grids can be constructed for multigrid. Finally, by adjusting the order
of the B-spline basis functions, we can produce grids with sufficient smoothness for high-order discretizations.
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A. Visualization of control and computational grids
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Figure 7. Control mesh (left) for the initial shape (top) and final shape (bottom). The surface control points
are marked with red spheres. The figures on the right show the grid corresponding to the control mesh on the
left.
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Figure 8. Control mesh (left) for the initial shape (top) and final blended-wing-body shape (bottom). The
surface control points are marked with red spheres. The figures on the right show the grid corresponding to
the control mesh on the left.

14 of 14

American Institute of Aeronautics and Astronautics


	Introduction
	B-spline Mesh Concepts
	B-Spline Curves and Basis Functions
	1-Dimensional B-Spline Meshes
	B-Spline Volume Meshes and Modified Basis Functions
	Approximating Grids Using B-spline Volume Meshes 
	Applications of B-Spline Meshes 

	B-spline Grid Movement
	Possible Grid Movement Algorithms
	Control Point Movement Based on Linear Elasticity

	Examples
	ONERA M6 wing
	Blended-Wing Body

	Conclusions
	Visualization of control and computational grids

