
An investigation of induced drag minimization

using a Newton-Krylov algorithm

Jason E. Hicken∗ and David W. Zingg †

Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, M3H 5T6, Canada

We present an optimization algorithm for the study of induced drag minimization, with

applications to unconventional aircraft design. The algorithm is based on a discrete-adjoint

formulation and uses an efficient parallel-Newton-Krylov solution strategy. We validate the

optimizer by recovering an elliptical lift distribution using twist optimization; we believe

this an important, and under-appreciated, benchmark for aerodynamic optimization. The

algorithm is further illustrated using several design examples, including planform, spanwise

vertical shape, and box-wing optimization.

I. Introduction

The aircraft industry faces two challenges in the twenty-first century: climate change and peak oil
production. These problems may eventually be solved by alternative fuels such as hydrogen, bio-kerosene,
and coal-based kerosene (provided that carbon from the coal is sequestered); however, when production
emissions are included, these alternative fuels presently produce more greenhouse gases than traditional
kerosene.1 Alternative fuels must, therefore, be considered a long term solution.

In the near term, reduced emissions and improved fuel efficiency may be possible by considering un-
conventional configurations, such as the often cited blended-wing-body; see, for example, Liebeck.2 The
evolution of the blended-wing-body concept and advent of aerodynamic shape optimization motivate the fol-
lowing question: can we use numerical optimization to “discover” radically new concepts in aircraft design?
In this paper we present an algorithm which we hope can begin addressing this question.

Our preliminary goal is to develop an Euler-based optimization code capable of minimizing induced drag.
While viscous and turbulence effects cannot be neglected in practical applications, it is important that the
optimizer accurately minimize drag due to lift. This requirement can be motivated by considering a typical
commercial aircraft, where induced drag represents 40% of the total drag.3

In addition to presenting the optimization algorithm, we hope to shed some light on a useful, but over-
looked, benchmark for aerodynamic optimization. An elliptical lift distribution is known to minimize induced
drag for planar configurations at low Mach numbers. Recovering an elliptical distribution as a (local) opti-
mum should be a reasonable validation for any aerodynamic optimization algorithm; nevertheless, we have
found no evidence in the literature that such a benchmark has ever been used explicitly for Euler-based
optimizations.

Broadly, the paper is divided into a description of the algorithm and its illustration with examples. The
algorithm description, Sections II–IV, follows the sequence of operations as they would be encountered in a
typical design iteration. In particular, Section II describes the design space parametrization and integrated
mesh movement algorithm. Subsequently, Section III reviews the Euler flow solver used for analysis. Gradient
evaluation is covered in Section IV, including details regarding the flow and mesh adjoint equations. The
second half of the paper includes verification and validation, presented in Section V, and design examples,
provided in Section VI. A summary and our conclusions are given in Section VII

∗PhD Candidate, AIAA Student Member
†Professor and Director, Tier 1 Canada Research Chair in Computational Aerodynamics, Associate Fellow AIAA

1 of 19

American Institute of Aeronautics and Astronautics

II. Design Parametrization and Mesh Movement

The choice of parametrization places implicit constraints on the design space. The design variables should
be sufficiently powerful, in the sense of approximation theory, to minimize the effects of these constraints.
In turn, the mesh movement algorithm should be capable of accepting any geometrically physical design
produced by the parametrization. For the present work, we use the control points from B-spline meshes for
both parametrization and mesh movement. The complete details of the this integrated approach are given
in a companion paper.4 We provide only a brief outline of the method below.

A. B-spline Meshes

Consider a B-spline tensor product volume mapping the cubic computational domain D = {ξ = (ξ, η, ζ) ∈
R

3|ξ, η, ζ ∈ [0, 1]} to the physical domain P ∈ R
3:

x(ξ) =

Ni
∑

i=1

Nj
∑

j=1

Nk
∑

k=1

BijkNi(ξ; η, ζ)Nj(η; ζ, ξ)Nk(ζ; ξ, η). (1)

The set of points {Bijk} defines the control mesh which can be used to manipulate the volume. The functions
Ni, Nj , and Nk, described below, are the modified B-spline basis functions. A B-spline mesh is obtained by
discretizing the cubic domain D.

The basis functions Ni, Nj , and Nk are modified versions of the standard B-spline basis; for definitions
of the standard basis see de Boor.5 The modified bases differ in that they use spatially varying knot vectors,
also called curved knot lines.6 For example, the knots defining Ni(ξ; η, ζ) are bilinear functions of η and
ζ; hence, for fixed (η, ζ) the function Ni(ξ; η, ζ) reduces to the standard basis. The spatially varying knot
vectors permit better approximations of the initial grid and geometry.

Suppose an initial design surface is given, together with a conforming computational mesh. A prepro-
cessing stage approximates each block of the grid using B-spline volumes. The approximation algorithm
is based on the parameter correction method proposed by Hoschek.7 The initial (ξ, η, ζ) parameters and
knot vectors are given a chord length spacing, which produces a control mesh that mimics a coarse grid.
Thus, the control points corresponding to the surface patches provide a low dimensional approximation of
the design. Bézier or B-spline control points have been used as design variables by many authors; see, for
example, Burgreen and Baysal8 or Nemec et al.;9 the difference here is that the design variables are a subset
of a volume control mesh.

To formalize the design variable definition, let b be a block column vector of all control points. Further-
more, let b be ordered such that all internal control points are first, then non-surface boundary points, and
finally the Ns surface control points. The vector of (geometric) design variables is defined by the restriction
operation

v ≡
[

0 0 I
]

b (2)

where I is the 3Ns × 3Ns identity matrix.

B. Semi-Algebraic Mesh Movement

When the geometric design variables change, the mesh must be updated to conform to the new surface.
Here, the surface control points are the design variables, so the surface mesh automatically conforms to the
design. Moreover, by moving the internal control points in response to the surface control points, we can
maintain the quality of the volume grid.

As noted above, the control mesh obtained by fitting the initial grid is a coarse approximation of the
actual mesh. By applying different mesh movement algorithms to the control points, rather than the grid, a
family of mesh movement algorithms is possible. For example, we use a linear elasticity algorithm, described
by Truong et al.,10 to perturb the internal control mesh based on the surface control points. Subsequently,
the fine grid is regenerated algebraically using equation (1).

We briefly describe the mesh movement algorithm of Truong et al.10 to help elucidate the details of the
gradient calculation in Section IV. The algorithm breaks the movement into m equal increments to improve
robustness — the linear elasticity equation assumes small displacements. The residual vectors, obtained

2 of 19

American Institute of Aeronautics and Astronautics

from a trilinear finite-element discretization of the governing equations, are

M
(i)
(

b(i),b(i−1)
)

= K(i)
(

b(i−1)
) [

b(i) − b(i−1)
]

− f (i) = 0, i = 1, . . . , m. (3)

In the above equation, b(i) is the vector of B-spline control points at increment stage i, and f (i) is the vector
of forces. The forces are defined implicitly to account for the boundary movement. The stiffness matrix K(i)

is symmetric positive definite with respect to the unknown degrees of freedom; thus, we use the conjugate
gradient method with ILU(p)11 preconditioning to solve (3) for each increment i. These equations can be
expensive to solve when applied to the actual computational mesh; however, since the control mesh has 2 to
3 orders fewer degrees of freedom, solutions to (3) are obtained in negligible time relative to the flow solver.
For example, consider a 12 block mesh fitted using 9×9×9 control points per block. Then solving equations
(3) with m = 5, to a relative tolerance of 10−12, requires 128 seconds on a 1500 MHz Itanium 2 processor.

Notice that the stiffness matrix in (3) is a function of the B-spline control points at the previous increment.
This functional dependence arises because the Young’s modulus is assumed to depend on the control mesh
cell volumes and quality. In other words, for each control mesh element E we have

E
(i)
E

= E
(i)
E

(b(i−1)).

This (nonlinear) dependence on the previous increment is important to consider when differentiating the
mesh movement algorithm.

We now summarize the design parametrization and mesh movement. The grid around an initial design
is approximated using B-spline volumes. The coordinates of the surface control points become the design
variables. When the design changes, the internal control points are updated using linear elasticity, and the
grid is regenerated algebraically.

III. Flow Analysis

The flow solver incorporated into the optimization algorithm uses a second-order accurate finite-difference
discretization and a Newton-Krylov solution strategy. The solver is described briefly below, and in detail in
reference 12.

A. Governing Equations and Discretization

In this study we consider the 3-dimensional Euler equations on multi-block structured grids. Applying a
diffeomorphism from physical to computational space, the Euler equations become

∂tQ̂ + ∂ξi
Êi = 0, (4)

where ξ = (ξ1, ξ2, ξ3) = (ξ, η, ζ),

Q̂ =
1

J

ρ

ρu1

ρu2

ρu3

e

, and Êi =
1

J

ρUi

ρu1Ui + p∂xξi

ρu2Ui + p∂yξi

ρu3Ui + p∂zξi

(e + p)Ui

.

The scalar J denotes the Jacobian of the mapping, and the Ui are the contravariant velocities defined by
Ui = uj∂xj

ξi.
The convective fluxes in (4) are discretized using second-order accurate summation-by-parts (SBP) oper-

ators.13 Boundary conditions are imposed and blocks are coupled using simultaneous approximation terms
(SATs).14 The SBP-SAT discretization is linearly time-stable, requires only C0 mesh continuity at block
interfaces, accommodates arbitrary block topologies, and has low inter-block communication overhead. To
suppress high frequency modes, the discretization is augmented with scalar dissipation,15, 16 and, in some
cases, with matrix dissipation.17 The resulting nonlinear set of algebraic equations is represented by the
vector equation

F(q) = 0, (5)

where q is a block column vector of the conservative flow variables.

3 of 19

American Institute of Aeronautics and Astronautics

B. Inexact-Newton Algorithm

We solve the discretized Euler equations using a Newton-Krylov strategy. Applying Newton’s method to (5)
produces the following linear update for each Newton (outer) iteration n:

A(n)∆q(n) = −F
(n), (6)

where F
(n) = F(qn), ∆q(n) = q(n+1) − q(n), and

A
(n)
ij =

∂Fi

∂qj

(

q(n)
)

.

Successful convergence of Newton’s method depends on the initial iterate, q(0), which must be sufficiently
close to the solution of (5).18 For this reason, our solution algorithm is broken into two phases: 1) a start-up
phase to find a suitable “initial” iterate, and; 2) an inexact-Newton phase. We describe these phases below,
starting with the second.

The inexact-Newton phase gets its name from solving (6) inexactly with, for example, a Krylov linear
solver. This strategy is useful, because an inexpensive inexact-Newton update may reduce the nonlinear
residual by the same magnitude as the exact update. In addition, Krylov solvers do not need the Jacobian
matrix explicitly; they only need Jacobian-vector products of the form A(n)z. This matrix-vector product
can be calculated to first-order with the forward-difference equation

A(n)z ≈
F(qn + ǫz) − F(qn)

ǫ
. (7)

The perturbation parameter must be chosen carefully to minimize truncation error and avoid round-off
errors.19 We use a perturbation suggested by Nielsen et al.:20

ǫ =

√

Nδ

zT z
,

where δ = 10−13 and N is the number of unknowns.
The start-up phase is invoked to find an initial iterate for the inexact-Newton phase. The start-up phase

is similar to the implicit Euler method with some important modifications which we now describe. The
time step varies spatially with mesh spacing to roughly approximate a constant CFL.16 The Jacobian A(n)

is replaced with a first-order approximation obtained by lumping the fourth-difference dissipation into the
second-difference dissipation. This lumping reduces the stencil size and improves diagonal dominance. During
the start-up phase the approximate Jacobian is updated and incompletely factored every four iterations21 —
factorization is used in preconditioning the linear update equation, see below. This lagged update strategy
reduces factorization time while maintaining robustness.12

C. Parallel Krylov Linear System Solution

At each outer iteration of the inexact-Newton algorithm, we must solve a linear equation of the form

Ax = r. (8)

While the matrix A is different during the start-up and inexact-Newton phases, the solution strategy for the
linear equation remains the same. Specifically, we solve (8) in parallel using a preconditioned Krylov iterative
method. Experience suggests that the generalized minimal residual method (GMRES)22 is an efficient Krylov
method for aerodynamic applications. We use flexible GMRES (FGMRES)23 to accommodate iterative
preconditioners.

Krylov methods need to be preconditioned to be effective on ill-conditioned problems. Two parallel
preconditioners are implemented in the solver: an additive Schwarz preconditioner24, 25 with no overlap
(block Jacobi), and an approximate Schur preconditioner.26 Both preconditioners require an incomplete
lower-upper factorization of the approximate local Jacobian matrices Ak. The matrix Ak is local because it
contains only those columns and rows corresponding to variables assigned to processor k; it is approximate,
because it lumps the fourth-difference dissipation into the second-difference dissipation. ILU(p)11 with a
fill-level of 1 is used for the incomplete factorizations.

4 of 19

American Institute of Aeronautics and Astronautics

IV. Lagrangian Formulation and Gradient Evaluation

Let J denote an objective function that we wish to minimize; for example, drag or CD/CL. We require
that a valid optimal point satisfy the mesh movement and flow equations; therefore, the optimization problem
can be posed mathematically as follows:

min J
(

q,b(m),v
)

(9)

w.r.t. q,b(m),v,

s.t. M
(i)
(

b(i),b(i−1)
)

= 0, i ∈ {1, 2, . . . , m}

F

(

q,b(m)
)

= 0

Recall that v are the design variables, b(i) are the B-spline control points, and q are the flow variables.
Following the standard approach, we introduce the Lagrangian function, L, for the constrained optimiza-

tion problem (9):

L = J +

m
∑

i=1

λ
(i)T

M
(i) +ψT

F . (10)

The Lagrange multipliers λ(i) and ψ are the mesh and flow adjoint variables, respectively. The first-order
(necessary) optimality conditions for the problem (9) are obtained by setting the partial derivatives of L to
zero:27

∂L

∂λ(i)
= 0 = M

(i), i ∈ {1, 2, . . . , m} (11)

∂L

∂ψ
= 0 = F (12)

∂L

∂q
= 0 =

∂J

∂q
+ψT ∂F

∂q
(13)

∂L

∂b(m)
= 0 =

∂J

∂b(m)
+ λ(i)T ∂M

(m)

∂b(m)
+ψT ∂F

∂b(m)
(14)

∂L

∂b(i)
= 0 = λ(i)T ∂M

(i)

∂b(i)
+ λ(i+1)T ∂M

(i+1)

∂b(i)
, i ∈ {m − 1, m − 2, . . . , 1} (15)

∂L

∂v
= 0 =

∂J

∂v
+

m
∑

i=1

(

λ(i)T ∂M
(i)

∂b(i)

∂b(i)

∂v

)

+ψT ∂F

∂v
(16)

The optimality conditions are also called the Karush-Kuhn-Tucker (KKT) conditions.27 Note the use of a
bold-font notation for gradients and Jacobians; for example, (∂J/∂q)i = ∂J/∂qi. We hope this notation will
clarify which terms in the KKT conditions are vectors and which are matrices.

We follow the approach outlined in Truong et al.,10 and drive the KKT conditions to zero using a
sequential approach. We begin with the design variables, v, which define the surface B-spline control points;
see equation (2). These control points are then used as boundary conditions to solve for the control mesh
equations (11). Once the control mesh is determined and the mesh is generated, the flow equations (12)
can be solved to find q. Subsequently, the adjoint variables can be determined using equations (13)–(15), in
that order. Finally, the gradient of the Lagrangian is calculated using (16). Using this sequential approach,
all of the KKT conditions are satisfied at each step, with the exception of ∂L/∂v = 0. The gradient of the
Lagrangian, ∂L/∂v, is driven to zero using the sequential quadratic programming (SQP) algorithm in the
software SNOPT.28

A. Flow Adjoint Equation

The flow adjoint variables are governed by the linear equation

ATψ = −

(

∂J

∂q

)T

. (17)

5 of 19

American Institute of Aeronautics and Astronautics

Step-size

R
M

S
E

rro
r

10-2010-1510-1010-5100
10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

complex-step

forward-difference

Figure 1. Verification of the analytical Jaco-

bian matrix using the complex-step method

Equivalent residual evaluations

R
es

id
ua

ln
or

m

0 1000 2000 3000 4000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

FGMRES(20)

GCROT(20,0.01)

FGMRES(50)

GCROT(50,0.01)

Figure 2. Comparison of CPU times for

FGMRES and GCROT applied to the flow

adjoint problem.

Recall that A = ∂F/∂q is the Jacobian matrix of the flow residual. Many strategies have been proposed for
the solution of equation (17), but most use algorithms based on the flow solver and take advantage of the
identical eigenvalues shared by A and AT . Indeed, this is the approach taken in the present work: we solve
(17) using a Krylov iterative solver.

One of the challenges presented by the adjoint equation is evaluating the transpose of the Jacobian matrix,
since the exact Jacobian is required. Nielsen and Kleb29 use the complex-step method30 with colouring to
efficiently and accurately evaluate the entries of the Jacobian matrix. Mader et al.31 construct the residual on
a node-by-node basis, and then evaluate each row of the transposed Jacobian by applying the reverse-mode
of automatic differentiation.

In the present work, we use a combination of hand-differentiation and complex-step to evaluate the
Jacobian matrix. The Euler fluxes and numerical dissipation are differentiated by hand; much of this work
was already completed for the approximate Jacobian, which is used to form the preconditioner required by
the flow solver. Following Nemec,9 the pressure switch used in the numerical dissipation is not differentiated.
This approximation introduces small errors,32 but helps to reduce the stencil size; moreover, the errors are
only present when second-difference dissipation is active for shock-capturing. The SAT operators that couple
blocks and impose boundary conditions have the following form:

ΣSAT = −
1

2
(|A| ± A)∆Q

where (|A| ±A) is the flux Jacobian for left- or right-traveling waves, and ∆Q is the flow variable difference
between nodes on a block interface or between a node and the boundary value. The SAT operators are
differentiated using the complex-step method.30 SAT terms appear only on block sides, so the application
of the complex-step method does not significantly affect the CPU time.

To verify the accuracy of the Jacobian matrix, a complex-variable version of the flow residual was devel-
oped. When applied to the flow residual, the complex-step method30 provides an accurate evaluation of the
matrix-vector product Az. Figure 1 shows the difference between matrix-vector products evaluated using
the Jacobian matrix and products evaluated using the complex-step method for various step sizes. Errors
between the Jacobian-vector product and products found using first-order forward differences, equation (7),
are also included in the figure. The same random vector, z, is used in each of the products, and second-
difference dissipation is removed. These results strongly suggest that the Jacobian matrix is accurate to
machine error.

Once the Jacobian is available, many linear solvers can be applied to the solution of the flow adjoints. To
ensure accurate gradients, the flow adjoint system is solved to a relative tolerance of 10−8. This tolerance
requires a considerable number of Krylov iterations, unlike the looser tolerance used for the linear systems of
the inexact-Newton flow solver. The memory requirements of GMRES — and its flexible variant FGMRES

6 of 19

American Institute of Aeronautics and Astronautics

— grow linearly with the number of iterations. This can cause problems when GMRES is applied to the
adjoint problem and memory is limited. One way to reduce the memory burden is to use restarted versions
of GMRES or FGMRES, denoted GMRES(m) and FGMRES(m). These solvers simply restart after every
m Krylov iterations, which keeps memory requirements proportional to m; unfortunately, restarted Krylov
solvers often exhibit degraded, and in some cases stalled, convergence.

For this work, we use a flexible variant of the Krylov method GCROT,33 preconditioned with the (trans-
posed) approximate Schur preconditioner used in the flow solver. Unlike FGMRES(m), GCROT does not
discard the entire Krylov subspace each time it restarts. Instead, it maintains a set of vectors from one outer
iteration to the next based on which subspace was most important to convergence. GCROT has been shown
to perform very well with respect to full GMRES while maintaining a Krylov subspace of fixed size, i.e. like
GMRES(m), memory requirements do not grow for GCROT.

We demonstrate the performance of GCROT relative to restarted FGMRES by solving the flow adjoint
equations for a rectangular planform at Mach 0.3 and angle of attack of four degrees. The grid for this
geometry is a 1 million node version of the one shown in Figure 3(a). We consider FGMRES(m) and
GCROT(m,δ) with m = 20 and m = 50. The parameter δ provides a threshold below which vectors are
discarded by our implementation of GCROT; we use δ = 0.01. Both Krylov solvers are preconditioned with
the approximate Schur preconditioner constructed using an ILU(2) factorization of the local block matrices.

Figure 2 plots the L2-norm of the relative residual versus equivalent residual evaluations. An equivalent
residual evaluation is the CPU time needed to compute the residual F . Typically, our flow solver requires
approximately 7000 equivalent residual evaluations to converge ten orders of magnitude. Figure 2 indicates
that the adjoint system is solved with GCROT in 35 % of the time needed for a flow solution. For the
low memory case, observe that FGMRES(20) stalls while GCROT(20,0.01) is able to recover. When more
memory is available, i.e. m = 50, the performance of the two solvers is similar. Our experience suggests
these results are typical: when FGMRES(m) converges, GCROT(m,δ) converges with similar CPU time;
when FGMRES(m) stalls, GCROT(m,δ) is able to recover.

We conclude this section by mentioning a Krylov-based adjoint approach suggested by Griewank,34 in
the general case, and by Martins,35 in the case of aerodynamic optimization. Krylov iterative methods
only require matrix-vector products of the form AT z. These products can be computed using reverse-mode
automatic differentiation, much in the same way the forward-difference equation (7) is used in the flow
solver. Preliminary investigations suggest that such an approach is not competitive with calculating and
storing the Jacobian explicitly; however, this approach is attractive from the perspective of memory and
implementation, and as reverse-mode algorithms become more efficient, the CPU-time disadvantage may
diminish.

B. Mesh Adjoint Equations

There are two types of B-spline mesh adjoint equations, given by (14) and (15), which we restate here in a
transposed form:

(

∂M
(m)

∂b(m)

)T

λ(m) = −

(

∂J

∂b(m)

)T

−

(

∂F

∂b(m)

)T

ψ (18)

(

∂M
(i)

∂b(i)

)T

λ(i) = −

(

∂M
(i+1)

∂b(i)

)T

λ(i+1), i ∈ {m − 1, m − 2, . . . , 1} (19)

We will begin by discussing the left-hand side of the linear systems (18) and (19). The system matrix
appearing in these equations can be found by differentiating the control mesh movement equation (3) with
respect to b(i):

(

∂M
(i)

∂b(i)

)T

= K(i)T = K(i), i ∈ {m, m − 1, . . . , 1}

where we have used the symmetry of the stiffness matrix K(i). The symmetry of the stiffness matrices
allows us to reuse the solution strategy applied to equation (3), i.e. we use the conjugate gradient method
preconditioned with ILU(p).

7 of 19

American Institute of Aeronautics and Astronautics

Unlike the left-hand sides, the right-hand sides of equations (18) and (19) are very different. To evaluate
the right-hand side of the adjoint equation (18) we make liberal use of the chain rule:

−

(

∂J

∂b(m)

)T

−

(

∂F

∂b(m)

)T

ψ = −

(

∂x

∂b(m)

)T [
∂J

∂x

∣

∣

∣

∣

m

+

(

∂J

∂m

∣

∣

∣

∣

x

+ψT ∂F

∂m

)

∂m

∂x

]T

(20)

where x are the grid coordinates, defined by equation (1), and m are the grid metrics. The term ∂J /∂x|
m

denotes the partial derivative of the objective with respect to the grid coordinates while freezing the metric
terms; similarly for ∂J /∂m|

x
. Equation (20) provides a right-hand-side reformulation that is significantly

easier to implement. Note that none of the matrices appearing in (20) need to be stored, only the resulting
vector-matrix and matrix-vector products.

When the number of increments is greater than one, we must solve the additional adjoint equations
(19). As mentioned above, these equations have identical system matrices to their corresponding movement
equation. Again, the difficulty presented by these equations is evaluating their right-hand sides. The
movement residual M

(i+1) has a complicated non-linear dependence on the control points b(i); therefore,
in the present work, we evaluate the right-hand sides of (19) using the complex-step method. Evaluating
the right-hand sides in this way requires approximately the same CPU time as solving the linear system.
However, the relatively small control mesh implies only a small penalty in total CPU time. Clearly, we would
not recommend using the complex-step method to evaluate the right-hand side of (19) when the equations
of linear elasticity are applied to the individual grid points.

C. Gradient Accuracy

Given the complexity of the algorithm and the use of hand differentiation, verifying gradient accuracy is
important. Consider a 12 block mesh around a generic wing with no sweep; see Figure 3(a). Each block
consists of 23× 33× 17 nodes and is fit with B-spline volumes. The wing is parametrized using the B-spline
control points corresponding to the surface; these control points are depicted as white markers in Figure
3(a). In total, there are 297 geometric design variables. This total excludes the y-coordinate of control points
on the symmetry plane and all coordinates of one control point on the symmetry plane, which is fixed to
prevent translation.

Including the angle of attack, there are 298 design variables. Checking each computed gradient component
against a finite-difference approximation would be time consuming and unnecessary. We use a directional
derivative to check all the gradient components simultaneously. For a given direction w the analytical
directional derivative is given by

DwJ =
∂J

∂v
w

while the second-order finite-difference approximation is

J (v + ǫw) − J (v − ǫw)

2ǫ
= DwJ + O(ǫ2)

where ǫ is the perturbation parameter.
Individual components of the gradient can differ in magnitude by 2–4 orders. It is tempting, therefore, to

choose a direction w such that each element of the gradient makes an equal contribution to DwJ ; however,
this tends to increase the step-size range over which round-off errors affect the finite-difference approximation.
Instead, we use the direction

(w)i = sign

[(

∂J

∂v

)

i

]

,

which gives a directional derivative equal to the L1 norm of the gradient. This direction may help reduce
subtractive cancellation between gradient components.

Figure 3(b) plots the relative error between the analytical and finite-difference values of DwJ , where the
objective is either lift or drag. For each objective, the free-stream Mach number was fixed at 0.5 and the
angle of attack at four degrees. The plot shows the expected second-order convergence of the finite-difference
approximation, and its eventual contamination by round-off errors. These results suggest that the analytical
gradients are at least as accurate as their finite-difference approximations with optimal step sizes.

8 of 19

American Institute of Aeronautics and Astronautics

(a) Generic wing with parametrizing
control points (white spheres).

Step-size

E
rro

r

10-1210-1010-810-610-410-2
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

lift derivative
drag derivative

(b) Relative error between the analytical and second-order accurate finite-
difference values of the directional derivative DwJ .

Figure 3. Mesh, design variables, and results for gradient verification.

D. Optimization Algorithm

For the optimization, we use the software package SNOPT28 developed for nonlinear problems with general
constraints. SNOPT uses a sequential quadratic programing algorithm, and is capable of handling both
linear and nonlinear constraints. The Hessian of the Lagrangiana is approximated using the quasi-Newton
method BFGS (see, for example, reference 27). We use the full memory BFGS update rather than the
limited memory option since the storage requirements are modest relative to the flow solver.

Convergence histories presented in this paper use an optimality measure defined by the SNOPT algo-
rithm; the measure is closely related to the KKT conditions. For some results we also report the merit
function history. The merit function used in SNOPT is an augmented Lagrangian merit function. When the
constraints are satisfied, the merit function is equal to the objective. For all constrained examples presented
in this paper, the objective function is drag, so the merit function is equal to the drag at convergence.

We make liberal use of SNOPT’s linear-equality-constraint implementation to couple the B-spline control
points. To illustrate, consider the twist optimization presented in section V.B. In this example, the design
variables consist of the z-coordinates of all surface control points, 79 geometric variables in total; however,
linear constraints are imposed such that each spanwise section moves according to the leading edge control
point. The number of geometric degrees of freedom is reduced to 6. The linear constraints are satisfied
exactly by SNOPT, so this effectively redefines the set of design variables.

If a lift constraint is imposed, then the sequential gradient evaluation must be repeated, including addi-
tional flow and mesh adjoint solutions for lift. As shown above, the adjoint solution process is very efficient,
and adding this constraint represents an approximately 25% increase in CPU time per optimization cycle.
In the future, we may consider imposing the lift constraint as an equation in the flow solver as implemented
in our 2-dimensional optimizer, Optima2D.32, 36

As mentioned above, the optimization algorithm uses drag and lift for the objective and constraint,
respectively. Choosing the dimensional variables over their non-dimensional versions, CL and CD, was
motivated by the relationship between induced drag and lift:

D =
L2

qπb2e
(21)

where q = 1
2ρ∞U2

∞ is the free-stream dynamic pressure, and b is the span. The efficiency factor e accounts
for non-optimal loading. By fixing lift and span, equation (21) implies that the only means of reducing drag

aNote that the Lagrangian in SNOPT is not the same as the one defined in (10). Here, the Lagrangian is based on the
objective and the constraints provided to SNOPT; the flow and mesh constraints are satisfied externally by the sequential
approach.

9 of 19

American Institute of Aeronautics and Astronautics

Function evaluations
0 5 10 15 20 25 30

10-30

10-25

10-20

10-15

10-10

10-5

100

objective function

optimality

Figure 4. Convergence history for the inverse

design verification.

Function evaluations
0 5 10 15 20 25

10-12

10-10

10-8

10-6

10-4

10-2

optimality

constraint violation

Figure 5. Convergence history for the twist

optimization case.

is through the efficiency factor.

V. Verification and Validation

In this section, we verify and validate the optimizer using inverse design and twist optimization. Inverse
design is a common verification for aerodynamic optimization. The intention with twist optimization is to
recover the elliptical lift distribution predicted by linear theory. To our knowledge, twist optimization has
not been used as a validation case in the literature.

The lift, drag, and area values reported in this section and the next are based on the half-span geometry.
Unless otherwise indicated, the reference area is the projected area of the initial shape. In all examples
the reference area is fixed, so we can report coefficients of lift and drag, rather than lift and drag, without
ambiguity.

A. Inverse Design

As a simple verification, we consider an inverse design based on surface pressure. The design variables
consist of the angle of attack and the 3 coordinates of a control point on the upper surface of the wing
shown in Figure 3(a). The initial angle of attack is four degrees. The target design is produced by randomly
perturbing the 4 design variables. The optimizer is given the unperturbed wing and angle of attack as the
initial design; the goal is to recover the perturbed shape and angle of attack based on a target pressure
distribution.

To obtain the target pressure distribution, we solve for the flow around the perturbed wing and angle of
attack at a Mach number of 0.5. For the inverse design problem, the objective is defined by

J =
1

2

Nsurf
∑

i=1

(pi − pi,targ)
2∆Ai

where Nsurf is the total number of surface nodes, and ∆Ai is the surface area element at node i. The pressure
and target pressure at node i are denoted by pi and pi,targ respectively.

Figure 4 shows the convergence history for the inverse design problem. The gradient converges 10 orders
and the objective converges 20 orders in 25 objective function and gradient evaluations.

B. Twist Optimization

According to linear aerodynamic theory, induced drag for a planar wake is minimized by an elliptical span-
wise lift distribution; thus, linear theory provides a useful benchmark for optimization algorithms. This

10 of 19

American Institute of Aeronautics and Astronautics

X

Z

Y

(a) Initial untwisted wing

X

Z

Y

(b) Optimized twist

y

Li
ft(

y)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

untwisted distribution
elliptical distribution

(c) Initial distribution

y
Li

ft(
y)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

optimized distribution
elliptical distribution

(d) Optimized distribution

Figure 6. Initial and optimized designs and their lift distributions.

is also a challenging benchmark: the analysis in Appendix A shows that a perturbation of order ǫ in the
lift distribution produces an order ǫ2 perturbation in the induced drag. Hence, obtaining an optimal lift
distribution close to elliptical requires sufficient accuracy in the drag prediction.

As is well known, elliptic lift distributions are not unique. The same distribution can be obtained using
changes in planform, twist, sectional lift, or some combination of these. For this validation, we vary the
twist. The design examples, presented below, will illustrate why planform is a poor choice for recovering the
optimal distribution predicted by linear theory.

The initial geometry consists of a rectangular wing with NACA 0012 sections, a chord length of 2/3 and
a semi-span of 2. The reference area is 4/3. The grid has a 12 block topology with approximately 1.158×106

nodes. The blocks are fit with B-spline volumes such that the wing surface is parametrized with 9×7 control
points on the upper and lower patches; the parametrization is similar to the one in Figure 3(a). The Mach
number is 0.5 and the angle of attack is fixed at 4.2416◦ to avoid non-unique designs. This particular angle
of attack ensures that the initial design meets the CL constraint of 0.375.

The trailing edge control points are fixed, and linear constraints are applied such that the twist of each
spanwise station is a function of the z-coordinate of the leading edge control point. Fixing the trailing edge
helps reduce non-planar effects, although, side-edge separation37 makes a completely planar wake difficult
to achieve in practice. Finally, the twist of the wingtip edge is constrained to be the same as the twist at
the neighbouring control point section; this constraint is necessary to prevent mini-winglets.

The convergence history for the twist optimization is shown in Figure 5. After 21 function evaluations
the optimality measure has been reduced 4 orders of magnitude and the absolute constraint violation has
been reduced below 10−12. The coefficient of drag has been reduced approximately 2.1% from 0.00755 to
0.00739. The optimal induced drag predicted by lifting line theory, based on CL = 0.375, is CD,i = 0.00746;
numerical errors may be responsible for the slightly lower drag produced by the algorithm.

Figure 6 shows the geometry and lift distribution for the initial and optimized designs. In contrast to the
initial shape, the optimized shape exhibits a lift distribution close to elliptical. A small discrepancy between
the elliptical and optimized distribution is visible at the wing tip. The increased sectional lift is caused by
the tip vortex. The side-edge separation induces a non-planar wake which implies that the elliptical lift

11 of 19

American Institute of Aeronautics and Astronautics

-0.4

-0.2

0

0.2

Y
00.511.52

X

initial planform
optimized planform

Figure 7. Initial and optimal planform

shapes.

y

Li
ft(

y)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

optimized distribution
elliptical distribution

Figure 8. Elliptical lift distribution and dis-

tribution for optimal shape.

distribution is no-longer optimal.37 In Section VI.A the influence of side-edge separation is discussed further
in the context of planform optimization.

VI. Design Examples

A. Planform Optimization

An elliptical planform should also produce an elliptical lift distribution; therefore, according to linear theory
for planar wakes, optimizing planform should produce an elliptical shape. By including the effects of wake
geometry, Smith and Kroo38 have shown that the optimal planform may not be elliptical depending on the
shape of the trailing edge. Their results suggest we should expect some deviation from linear theory in terms
of planform shape, but not necessarily lift distribution.

The initial geometry is a rectangular planform with a root chord of 2/3, semi-span of 2, and NACA
0012 sections. In this example, we use the surface area as the reference area, and its value is fixed using
a constraint; see below. The upper and lower surfaces of the wing are parametrized using 9 nodes in the
streamwise direction and 6 nodes in the spanwise direction. Again, the trailing edge control points are fixed
to reduce the effects of a non-planar wake. The leading edge control points are free to move in the x-direction,
and the remaining control points in each section are scaled based on the chord length; hence, the effective
design variables are the chord lengths at six spanwise stations.

For this problem, it is necessary to use some form of root chord or area constraint to prevent non-unique
optima: for each angle of attack, there is an optimal planform. For this example we adopt a surface area
constraint of S = 1.36176, the area of the initial planform shape.

The Mach number is fixed at 0.5. The target lift coefficient is 0.36717, and the initial angle of attack is
set such that this lift constraint is satisfied at the first iteration. Plots showing the optimality, constraint
violation, and merit function history can be found in Figure 11 in the appendix.

The outline of the optimal planform is plotted in Figure 7. This planform is clearly not elliptical.
More importantly, as Figure 8 demonstrates, the lift distribution is not elliptical. There are two possible
explanations for this result: either this is the optimal planform, or numerical errors are overwhelming the
physics. The grid is the same as the one used for the twist optimization: a 12 block topology with 1.158×106

nodes. This resolution usually provides sufficient accuracy for subsonic inviscid flows.
If numerical errors are not responsible for the non-elliptical lift distribution, there must be a physical

explanation. We propose two possible mechanisms. First, the tip vortex releases close to the leading edge
and creates a non-planar wake. In particular, the high-speed flow in the vortex lowers the pressure on the
upper surface near the tip, similar to the vortices on a delta-wing. There may be a compromise between
maintaining this vortex-induced low pressure region and establishing an elliptic lift distribution. A second
explanation is that the tip spike creates secondary counter-rotating vorticity on its inboard side that interferes

12 of 19

American Institute of Aeronautics and Astronautics

Y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

Z

(a) Initial flat wing: CD = 0.00752

Y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

Z

(b) Optimized spanwise vertical shape: CD = 0.0069

Y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

Z

(c) Local optimum of spanwise vertical shape: CD = 0.00723

Figure 9. Initial and optimized designs for spanwise vertical shape.

with the primary tip vortex.
Whatever mechanism is responsible for the optimal planform, the improvement over an elliptically loaded

wing is small; see Figure 11(b). This is consistent with the analysis in Appendix A. Consequently, induced
drag would likely have a negligible influence in a more realistic planform optimization including viscous and
wave drag, and non-aerodynamic disciplines.

B. Spanwise Vertical Shape Optimization: Winglet Generation

For a fixed span, non-planar configurations can produce much lower induced drag than those with planar
wakes. In this section and the next we consider examples that exploit non-planar wakes.

Again, the initial geometry is a rectangular wing with NACA 0012 sections, a semi-span of 2, and chord
length of 2/3. The grid is fit using B-spline volumes, with 9×5 control points on the upper and lower surfaces
of the wing, in the streamwise and spanwise direction, respectively. The 5 spanwise control point sections
are free to move in the vertical direction provided no control point exceeds the bounds −0.2 ≤ z ≤ 0.2.
Permitting all spanwise stations to move introduces non-uniqueness in the design space, since many designs
can be translated within the box constraints; however, the final designs are unique, because the upper and
lower bound constraints are active.

The Mach number is fixed at 0.5 and a CL constraint of 0.375 is imposed, based on a reference area of
4/3. The initial angle of attack is set to satisfy the lift constraint. Convergence plots of optimality, constraint
violation, and merit function are provided in the appendix, Figure 12.

The initial and optimized designs are shown in Figures 9(a) and 9(b), respectively. The optimized design
has maximized the vertical extent near the tip, which Kroo has remarked is the “critical parameter” for non-
planar systems.3 The initial design has an induced drag of CD = 0.00752, while the final design produces

13 of 19

American Institute of Aeronautics and Astronautics

CD = 0.0069, a reduction of approximately 8.2%. Note that further reductions would be possible if twist or
planform changes were permitted to optimally load the configuration.

To identify possible local optima for this problem, we reran the optimization with the control points at the
tip of the initial shape positioned at z = −0.2, thus creating a negative dihedral winglet. Indeed, this initial
shape did lead to the distinct optimum shown in Figure 9(c); however, this configuration produces a drag
reduction of only 3.9% (CD = 0.00723). Eppler,39 using lifting surface theory with induced lift contributions,
also concluded that “winglets up are much better than winglets down, whereas classical theories with rigid
wake yield exactly the same (drag).” He attributed this difference to the horizontal component of the bound
vortex increasing (decreasing) the distance between the tip vortices for the winglet-up (-down) case, thus
increasing (decreasing) the effective span. Another possible mechanism is the vertical distance that the
vortex is moved by the free-stream as the vortex is shed from the tip. In the winglet-up case, the free-stream
tends to increase the distance between the vortex and the wing. In contrast, the vortex shed from the
winglet-down shape is swept closer to the wing in the vertical direction.

There is some evidence that the optimal winglet dihedral is strongly influenced by viscous effects. For
example, Gerontakos and Lee40 varied wingtip dihedral in an experimental investigation and found that
the winglet-down case produced lower induced drag than the corresponding winglet-up case; however, they
noted that there was an order of magnitude discrepancy between the induced drag predicted by lifting-line
theory and the experimental results obtained using the Maskell wake survey method.41

C. Box-Wing Optimization

In this final example we optimize the loading for a box-wing configuration. For closed systems, like the
box-wing, the optimal loading is not unique.3 For this reason, box-wing configurations offer considerable
design flexibility.

The initial box-wing geometry has a semi-span of 3.065 and chord length of 1. The initial height to
span ratio is 0.1. A 6 block grid surrounds the box-wing geometry with approximately 6.02 × 105 nodes.
The surface is parametrized using 9 control points in the streamwise direction and 5 control points in the
spanwise and vertical directions. The vertical surfaces are linearly constrained by the upper and lower
horizontal surfaces. Along the horizontal surfaces, the leading and trailing edge control points are free to
move vertically within the box constraint |z| ≤ 0.315. A translation constraint is imposed by forcing the
upper and lower leading edges at the root to have an average z-coordinate of 0.

Based on the above constraints, the effective design variables are the twist and vertical position of the 5
spanwise sections along the upper and lower surfaces. Accounting for the translation constraint, this provides
19 degrees of freedom; however, the gradient tends to push the sections to their upper and lower bounds, so
only about half of these degrees of freedom are useful in practice.

The lift coefficient constraint is 0.5, based on a reference area of 3; this constraint is satisfied initially
using an angle of attack of 4.13486 degrees. The free-stream Mach number is 0.5.

The convergence history for this problem is provided in Figure 13 in the appendix. SNOPT has converged
the optimality conditions by approximately 3.5 orders over 53 function evaluations. However, the optimizer
was unable to reduce the optimality below the requested tolerance of 10−7, despite decreasing the flow adjoint
tolerance to 10−9. This convergence difficulty may be related to the non-unique design space producing a
singular Hessian.

Figure 10 shows the pressure contours around the final design. The drag coefficient has been reduced
7% from 0.0125 to 0.0116. For a planar configuration with the same lift, linear theory predicts an optimal
drag coefficient of 0.0133; hence, relative to a planar system, the optimized box-wing has reduced the drag
by 12.6%.

VII. Summary and Conclusions

We have described a gradient-based algorithm for induced drag minimization. Parametrization and mesh
movement are integrated using a B-spline volume mesh approach. Flow solutions are obtained using an
efficient parallel Newton-Krylov algorithm and SBP-SAT discretization. A Lagrangian formulation is used
to enforce the mesh movement and flow solution at each optimization design cycle. The objective gradient is
calculated using a discrete adjoint approach. We have shown that the Krylov solver GCROT is an efficient
and robust alternative to restarted GMRES when solving the flow adjoints. In the present implementation,

14 of 19

American Institute of Aeronautics and Astronautics

Figure 10. Optimized box-wing configuration with pressure contours on x = 0 slice. Inset: tip detail

showing trailing edge shape.

the optimization is performed using the SNOPT package.
We have applied the optimization algorithm to a number of cases to verify, validate, and investigate its

behaviour. The results of these cases are summarized below.

• Twist optimization provides a simple yet important validation case for aerodynamic optimization.
Using twist to recover an elliptical lift distribution should be considered an essential benchmark.

• Unlike twist, planform is less suited to recovering an elliptical lift distribution. Planform design appears
to exploit the non-planar characteristics of the tip vortex; this leads to a trade-off between the elliptical
lift distribution and the strength of the tip vortex.

• Induced drag is not as sensitive to planform changes as it is to twist changes. This implies that numer-
ical error must be carefully controlled to obtain a grid-converged planform shape. The insensitivity
of induced drag to planform shape allows for greater flexibility in the design for viscous effects and
non-aero disciplines.

• Optimization of spanwise vertical position lead to a winglet-up configuration. While the winglet-down
configuration is a local optimum, it is not as efficient.

The present algorithm represents the first step toward a tool for optimization of unconventional configura-
tions. Future work will include the addition of viscous and turbulence effects, and high-order discretizations.

Acknowledgments

The authors gratefully acknowledge financial assistance from the Natural Sciences and Engineering Re-
search Council (NSERC), the Canada Research Chairs program, Mathematics of Information Technology
and Complex systems (MITACS), and the University of Toronto.

References

1Committee on Aviation Environmental Protection (CAEP): seventh meeting, The potential use of alternative fuels for
aviation, Montréal, Canada, Feb. 2007, International Civil Aviation Organization, CAEP/7-IP/28.

2Liebeck, R., “Design of the blended wing body subsonic transport,” Journal of Aircraft , Vol. 41, No. 1, 2004, pp. 10–25.
3Kroo, I., “Drag due to lift: concepts for prediction and reduction,” Annual Review of Fluid Mechanics, Vol. 33, 2001,

pp. 587–617.
4Hicken, J. E. and Zingg, D. W., “Integrated parametrization and grid movement using B-spline meshes,” The 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No. AIAA–2008–6079, Victoria, British Columbia,
Canada, 2008.

15 of 19

American Institute of Aeronautics and Astronautics

5de Boor, C., A practical guide to splines, Springer–Verlag, Berlin, Germany, revised ed., 2001.
6Hayes, J. G., Numerical Analysis, chap. Curved knot lines and surfaces with ruled segments, Springer Berlin/ Heidelberg,

1982, pp. 140–156.
7Hoschek, J., “Intrinsic parametrization for approximation,” Computer Aided Geometric Design, Vol. 5, No. 1, 1988,

pp. 27–31.
8Burgreen, G. W. and Baysal, O., “Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis,”

AIAA Journal , Vol. 34, No. 9, Sept. 1996, pp. 1761–1770.
9Nemec, M., Zingg, D. W., and Pulliam, T. H., “Multipoint and multi-objective aerodynamic shape optimization,” AIAA

Journal , Vol. 42, No. 6, 2004, pp. 1057–1065.
10Truong, A. H., Oldfield, C. A., and Zingg, D. W., “Mesh movement for a discrete-adjoint Newton-Krylov algorithm for

aerodynamic optimization,” AIAA Journal , Vol. 46, No. 7, July 2008, pp. 1695–1704.
11Meijerink, J. A. and van der Vorst, H. A., “An iterative solution method for linear systems of which the coefficient matrix

is a symmetric M-matrix,” Mathematics of Computation, Vol. 31, No. 137, Jan. 1977, pp. 148–162.
12Hicken, J. E. and Zingg, D. W., “A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids,”

18th AIAA Computational Fluid Dynamics Conference, No. AIAA–2007–4333, Miami, Florida, United States, June 2007.
13Strand, B., “Summation by parts for finite difference approximations for d/dx,” Journal of Computational Physics, , No.

110, 1994, pp. 47–67.
14Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-stable boundary conditions for finite-difference schemes solving

hyperbolic systems: methodology and application to high-order compact schemes,” Journal of Computational Physics, , No.
111, 1994, pp. 220–236.

15Jameson, A., Schmidt, W., and Turkel, E., “Numerical solution of the Euler equations by finite volume methods using
Runge-Kutta time-stepping schemes,” 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, 1981, AIAA Paper 81–
1259.

16Pulliam, T. H., “Efficient solution methods for the Navier-Stokes equations,” Tech. rep., Lecture Notes for the von
Kármán Inst. for Fluid Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation in Turbomachinery
Bladings, Brussels, Belgium, Jan. 1986.

17Swanson, R. C. and Turkel, E., “On central-difference and upwind schemes,” Journal of Computational Physics, , No.
101, 1992, pp. 292–306.

18Kelley, C. T., Solving Nonlinear Equations With Newton’s Method , Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2003.

19Zingg, D. W. and Chisholm, T. T., “Jacobian-free Newton-Krylov methods: issues and solutions,” Proceedings of The
Fourth International Conference on Computational Fluid Dynamics, Ghent, Belgium, July 2006.

20Nielsen, E. J., Walters, R. W., Anderson, W. K., and Keyes, D. E., “Application of Newton-Krylov methodology to a
three-dimensional unstructured Euler code,” 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 1995,
AIAA Paper 95–1733.

21Kim, D. B. and Orkwis, P. D., “Jacobian update strategies for quadratic and near-quadratic convergence of Newton and
Newton-like implicit schemes,” 31st AIAA Aerospace Sciences Meeting and Exhibit, No. AIAA–93–0878, Reno, Nevada, 1993.

22Saad, Y. and Schultz, M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear sys-
tems,” SIAM Journal on Scientific and Statistical Computing , Vol. 7, No. 3, July 1986, pp. 856–869.

23Saad, Y., “A flexible inner-outer preconditioned GMRES algorithm,” SIAM Journal on Scientific and Statistical Com-
puting , Vol. 14, No. 2, 1993, pp. 461–469.

24Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2nd ed., 2003.
25Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F., “High-performance parallel implicit CFD,” Parallel

Computing , , No. 27, 2001, pp. 337–362.
26Saad, Y. and Sosonkina, M., “Distributed Schur complement techniques for general sparse linear systems,” SIAM Journal

of Scientific Computing , Vol. 21, No. 4, 1999, pp. 1337–1357.
27Nocedal, J. and Wright, S. J., Numerical Optimization, Springer–Verlag, Berlin, Germany, 1999.
28Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: an SQP algorithm for large-scale constrained optimization,”

SIAM Journal on Optimization, Vol. 12, No. 4, 2002, pp. 979–1006.
29Nielsen, E. J. and Kleb, B., “Efficient construction of discrete adjoint operators on unstructured grids by using complex

variables,” The 43rd AIAA Aerospace Sciences Meeting and Exhibit, No. AIAA–2005–0324, Reno, Nevada, 2005.
30Squire, W. and Trapp, G., “Using complex variables to estimate derivatives of real functions,” SIAM Review , Vol. 40,

No. 1, 1998, pp. 110–112.
31Mader, C. A., Martins, J. R. R. A., and Marta, A. C., “Towards Aircraft Design Using an Automatic Discrete Adjoint

Solver,” 18th AIAA Computational Fluid Dynamics Conference, No. AIAA–2007–3953, Miami, Florida, United States, June
2007.

32Nemec, M., Optimal Shape Design of Aerodynamic Configurations: A Newton-Krylov Approach, Ph.D. thesis, University
of Toronto, 2003.

33de Sturler, E., “Truncation strategies for optimal Krylov subspace methods,” SIAM Journal of Numerical Analysis,
Vol. 36, No. 3, 1999, pp. 864–889.

34Griewank, A., Evaluating derivatives, SIAM, Philadelphia, PA, 2000.
35Martins, J. R. R. A., personal communication, Feb. 2007.
36Zingg, D. W. and Billing, L., “Toward practical aerodynamic design through numerical optimization,” 18th AIAA

Computational Fluid Dynamics Conference, No. AIAA–2007–3950, Miami, Florida, United States, June 2007.
37Smith, S. C., “A computational and experimental study of nonlinear aspects of induced drag,” Tech. Rep. NASA TP

3598, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA, 94035–1000, 1996.

16 of 19

American Institute of Aeronautics and Astronautics

38Smith, S. C. and Kroo, I. M., “Computation of induced drag for elliptical and crescent-shaped wings,” Journal of Aircraft ,
Vol. 30, No. 4, 1993, pp. 446–452.

39Eppler, R., “Induced drag and winglets,” Aerospace Science and Technology , Vol. 1, No. 1, 1997, pp. 3–15.
40Gerontakos, P. and Lee, T., “Effects of winglet dihedral on a tip vortex,” Journal of Aircraft , Vol. 43, No. 1, 2006,

pp. 117–124.
41Maskell, E., “Progress towards a method for the measurement of the components of the drag of a wing of finite span,”

Tech. Rep. RAE 72232, Royal Aircraft Establishment, 1973.
42Anderson, J. D., Fundamentals of aerodynamics, McGraw–Hill, Inc., New York, NY, 3rd ed., 2001.
43Vretblad, A., Fourier analysis and its applications, Springer–Verlag, New York, NY, 2003.

A. Effect of Perturbations on the Lift Distribution and Induced Drag

Consider a planar wing with an elliptical lift distribution, defined by its circulation Γ(y), where y is the
spanwise coordinate. Using the transformation y = − b

2 cos(θ), where 0 ≤ θ ≤ π and b is the span, the
elliptical distribution can be expressed as (see, for example, reference 42)

Γellip(θ) = 2bV A1 sin(θ).

V denotes the free-stream velocity magnitude. The lift coefficient is determined by the coefficient A1;

specifically, CL = A1π
b2

S
, where S is the reference area.

Next, consider an arbitrary C2 perturbation of the elliptical lift distribution. This smoothness assumption
is reasonable for a subsonic steady flow. Using a Fourier sine series, the perturbed lift distribution can be
written as

Γ(θ) = 2bV A1 sin(θ) + ǫ

[

2bV
∞
∑

n=2

An sin(nθ)

]

,

where ǫ controls the magnitude of the perturbation. The elliptical and perturbed distributions produce the
same lift, since the leading coefficient A1 is the same. In addition, it is easy to show that the L2 norm of
the perturbation is bounded by ǫ:

‖Γ − Γellip‖2 = O(ǫ) (22)

We are interested in the relationship between ǫ and the induced drag of the perturbed lift distribution.
For the subsequent analysis, we need the following bound on the coefficients An, which is a consequence of
Γ ∈ C2 and Fourier theory (see, for example, theorem 4.4 from Vretblad43):

|An| ≤
c

n2
(23)

for some constant c ∈ R. Now, the induced drag for the elliptical lift distribution is simply

CD,i,ellip =
πb2A2

1

S
,

and for the perturbed distribution we have,42

CD,i =

(

πb2A2
1

S

)

[

1 + ǫ2
∞
∑

n=2

n

(

An

A1

)2
]

≤

(

πb2A2
1

S

)

[

1 +

(

ǫc

A1

)2 ∞
∑

n=2

1

n3

]

(using inequality (23))

≤

(

πb2A2
1

S

)

[

1 +

(

ǫc

A1

)2(
π2

6
− 1

)

]

(sum of bounding p-series, p = 2)

Thus, we have shown that the difference between the induced drags of the perturbed and elliptical distribu-
tions has the following asymptotic behaviour:

|CD,i − CD,i,ellip| = O(ǫ2) (24)

On the one hand, equations (22) and (24) suggest that a fairly large perturbation of the elliptical lift
distribution will have a small effect on the induced drag. On the other hand, these equations underscore
the difficulty of recovering the elliptical lift distribution through optimization: if we want to obtain a lift
distribution that is within ǫ of the elliptical distribution, the induced drag must be accurate to within ǫ2.

17 of 19

American Institute of Aeronautics and Astronautics

B. Optimization Convergence Histories

A. Planform Optimization

Function evaluations
0 5 10 15 20 25 30

10-12

10-10

10-8

10-6

10-4

10-2

100

constraint violation

optimality

(a) optimality and constraint violation

Function evaluations
0 5 10 15 20 25 30

0.00714

0.00716

0.00718

0.0072

0.00722

0.00724

0.00726
merit function

(b) merit function

Figure 11. Convergence history for the planform shape optimization. Note that the merit function becomes
the objective (drag) as the constraint violation goes to zero.

B. Spanwise Vertical Shape Optimization

Function evaluations
0 5 10 15 20

10-12

10-10

10-8

10-6

10-4

10-2

100

constraint violation

optimality

(a) optimality and constraint violation

Function evaluations
0 5 10 15 20

0.0068

0.0069

0.007

0.0071

0.0072

0.0073

0.0074

0.0075

0.0076
merit function

(b) merit function

Figure 12. Convergence history for the spanwise vertical shape optimization. Note that the merit function
becomes the objective (drag) as the constraint violation goes to zero.

18 of 19

American Institute of Aeronautics and Astronautics

C. Box-Wing Optimization

Function evaluations
0 10 20 30 40 50 60

10-13

10-11

10-9

10-7

10-5

10-3

10-1

constraint violation

optimality

(a) optimality and constraint violation

Function evaluations
0 10 20 30 40 50 60

0.0114

0.0116

0.0118

0.012

0.0122

0.0124

0.0126
merit function

(b) merit function

Figure 13. Convergence history for the box-wing configuration shape optimization. Note that the merit
function becomes the objective (drag) as the constraint violation goes to zero.

19 of 19

American Institute of Aeronautics and Astronautics

	Introduction
	Design Parametrization and Mesh Movement
	B-spline Meshes
	Semi-Algebraic Mesh Movement

	Flow Analysis
	Governing Equations and Discretization
	Inexact-Newton Algorithm
	Parallel Krylov Linear System Solution

	Lagrangian Formulation and Gradient Evaluation
	Flow Adjoint Equation
	Mesh Adjoint Equations
	Gradient Accuracy
	Optimization Algorithm

	Verification and Validation
	Inverse Design
	Twist Optimization

	Design Examples
	Planform Optimization
	Spanwise Vertical Shape Optimization: Winglet Generation
	Box-Wing Optimization

	Summary and Conclusions
	Effect of Perturbations on the Lift Distribution and Induced Drag
	Optimization Convergence Histories
	Planform Optimization
	Spanwise Vertical Shape Optimization
	Box-Wing Optimization

