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1 Introduction

In this paper, shape optimization is applied to a blunt trailing edge airfoil
in an unsteady turbulent flow environment to minimize the radiated far-field
noise using a novel hybrid Unsteady Reynolds-Averaged Navier-Stokes/Ffowcs
Williams and Hawkings (URANS/FW-H) optimization algorithm. Airframe-
generated noise is an important component of the total noise radiated from
commercial aircraft, especially during aircraft approach and landing, when
engines operate at reduced thrust, and airframe components (such as high-lift
devices) are in the deployed state [SLL03]. Future Federal Aviation Adminis-
tration noise regulations, the projected growth in air travel, and the increase in
population density near airports will require future civil aircraft to be substan-
tially quieter than the current ones. Consequently, the attempt to understand
and reduce airframe noise has become an important research topic [SG04].

A typical approach to tackle airframe-generated noise computations is to
represent the CFD solution on a reasonable computational mesh that does not
extend too far from the aircraft. A near-field plane or surface within the com-
putational mesh can then serve as an interface between the CFD solution and
a wave propagation program based on principles of geometrical acoustics and
nonlinear wave propagation [SLL03]. The two-dimensional Ffowcs Williams
and Hawkings (FW-H) equation in the frequency-domain [Loc00] is the wave
propagation formulation of choice in this work.

This paper employs a general framework to derive a discrete adjoint
method for the optimal control of unsteady flows [RZ07, RZ08] together with
a Newton-Krylov approach to optimization [NZ02, NZ04]. We present several
design problems using the novel hybrid URANS/FW-H optimization algo-
rithm after validating the FW-H wave propagation code in the next section.

2 Noise Prediction Validation

A direct comparison between the pressure fluctuations calculated via the
FW-H approach and those obtained from a CFD simulation is performed at
three distinct locations with increasing distance from an airfoil. The laminar
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flow over the single-element NACA 0012 airfoil with a Reynolds number of 800,
a free stream Mach number of 0.2 and an angle of attack of 20◦ is considered.
At these conditions the airfoil experiences vortex shedding. A C-mesh with
848 × 395 nodes and a non-dimensional time step ∆t = 0.03 is used. After the
flow solver has reached a periodic steady state, 1800 time steps are taken,
which cover about five vortex shedding cycles, and the solution is recorded.
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Fig. 1: Comparison of pressure fluctuations calculated by CFD (solid) and FW-H (dashed).

The extracted CFD pressure fluctuations and those computed using the
FW-H solver are plotted in Figure 1 for the three probe locations. In two
dimensions one expects that the sound intensity, which itself is proportional
to the square of the sound pressure, is inversely proportional to the distance
of an acoustic point source. This distance law is almost perfectly fulfilled by
the pressure fluctuations which are calculated with the FW-H approach.

Comparing the pressure fluctuations probe location by probe location one
can make the following observations: At probe location 2, which is about 2c

below the airfoil, the two pressure records are almost identical, except for the
beginning and end of the data, where the necessary window function [Loc00]
tarnishes the result from the FW-H approach. The agreement in the first probe
location (less than 1c below) is also fairly good, except for the overprediction
of the amplitude by the CFD calculation. The CFD results at probe location
3 (30c below) are basically useless due to the coarser grid this far away.

3 Results

A NACA 0012 airfoil with a 0.03c thick blunt trailing edge in a turbulent
flow is investigated. The free-stream flow conditions are given by M∞ = 0.2,
Re = 2 × 106, α = 0◦, and the mesh consists of about 36, 000 nodes. As dis-
played in Figure 2, the comparison of pressure fluctuations calculated by CFD
and FW-H for the initial airfoil show good agreement at a location about 1

3c

below the trailing edge of the initial airfoil.
First, a remote inverse shape design problem is studied with a discrete

cost function J given by
J =

1

2
∆t

∑

timesteps

(pn
obs − p∗n

obs)
2. (1)
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Fig. 2: Comparison of pressure fluctuations calculated by CFD (solid) and FW-H (dashed) about
1

3
c below the trailing edge of initial airfoil.

Here, pn
obs is the pressure at some far-field observer location at time step n

obtained from a current airfoil shape, and p∗n
obs is the target pressure at the

same location and time step obtained from the target airfoil shape, which
is given through a perturbation in two shape design variables of the initial
blunt NACA 0012 airfoil. Both airfoils are shown in Figure 3 and the far-field
observer location is 40c below the trailing edge.
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Fig. 3: The initial (solid) and target (dotted) airfoil shapes.

In order to reduce the computational costs in the actual optimization runs
a bigger non-dimensionalized time step of ∆tc = 0.01 is utilized for the first
Nc = 300 steps for the adjustment period after a shape modification has taken
place, which can be seen in Figure 8. Once the interval where the pressures are
compared is reached, a smaller time step ∆t = 0.005 is used for another 700
steps, leading to N = 1000 time steps in total for each flow solve covering a
time interval of [0, 6.5]. The corresponding adjoint equations for this situation
are given in Rumpfkeil and Zingg [RZ07, RZ08].

The convergence history of this remote inverse shape design problem with
the adjoint approach in comparison to a second-order central finite-difference
approach with a step size of h = 10−5 is shown in Figure 4. The objective
function J is always scaled such that its initial value is unity. One can see
that the objective functions are driven to small values in about ten design
iterations and that the two approaches show a reasonable agreement, which
means that the adjoint approach for the gradient calculation is accurate. For
example, at the first design iteration the finite difference method (fd) and
adjoint method (ad) yield

(

∂J

∂Y

)

fd

= (−33.53, 34.18),

(

∂J

∂Y

)

ad

= (−34.36, 35.11).

The computational time of a gradient computation is about two to three times
the time of a flow solve, since the non-linear flow solve problem has a much
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better initial guess leading to less linear iterations per time step than the
linear adjoint problem.
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Fig. 4: Convergence history of remote inverse shape design problem.

Next, two more practically relevant optimizations are considered with the
same flow conditions but two different objective functions:

1. Mean drag JD = C̄D =
1

# time steps

∑

timesteps

Cn
D (2)

2. Pressure fluctuations JN =
∑

timesteps

(pn
obs − p̄obs)

2 =
∑

timesteps

(p
′n
obs)

2 (3)

where p̄obs is the mean pressure in the observer location, which is located 40c

below the trailing edge, p
′n
obs = pn

obs − p̄obs is the pressure fluctuation in the
observer location, and Cn

D is the drag coefficient both at time step n.
Eight B-spline control points are used as shape design variables which are

all located in the aft 15 percent of the chord length (four on the upper and
four on the lower surface). The unsteady shape optimizations are started from
three different initial shapes, which are shown in Figure 5 together with their
initial objective function values:

1. The initial airfoil (solid)
2. The airfoil that results from setting all eight design variables to their

specified upper bound (dashed)
3. The airfoil that results from setting all eight design variables to their

specified lower bound (dotted)
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Fig. 5: Initial shapes for the turbulent blunt trailing edge flow optimizations.

The time horizon and time step sizes are the same as used in the remote
inverse shape design presented earlier in this section. Figure 6 presents the
final optimized airfoil shapes together with their objective function values. All
three initial shapes converge for each objective function to the same respective
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final shapes shown in dotted and dashed lines for the mean drag and noise
minimizations, respectively. As indicated in the figure, the mean drag value
of the noise minimized airfoil is slightly higher than the mean drag value of
the mean drag minimized airfoil. Conversely, the pressure fluctuations of the
mean drag minimized airfoil are a factor of two higher than the ones from the
noise minimized airfoil. This shows that noise and drag improvements lead to
qualitatively similar results to a first approximation, but they definitely do
not yield the same optimized shapes.

X

Y

0.7 0.8 0.9 1

-0.04

-0.02

0

0.02

0.04

Original J_D=2.14E-2 J_N=5.43E-7
Lower and Upper bounds
Mean drag minimized J_D=1.31E-2 J_N=2.36E-9
Noise minimized J_D=1.35E-2 J_N=1.25E-9

Fig. 6: Final improved airfoil shapes of the turbulent blunt trailing edge flow optimizations.

The convergence histories of the mean drag minimizations are displayed in
Figure 7 (left). The objective function values are always scaled with the mean
drag value of the original airfoil JD = 2.14 · 10−2 to make comparisons easier.
Since all three initial shapes converge to the same final shape they have the
same minimized objective function value which translates into a reduction in
mean drag of about 39 percent from the original airfoil. The gradient norms
are reduced by three to four orders of magnitude indicating that the optimizer
has converged to a minimum in each case.
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Fig. 7: Convergence histories of the mean drag (left) and noise minimizations (right).

The convergence histories of the noise minimizations (Figure 7 right) show
that the sum of the squared pressure fluctuations for the optimized shape is
reduced to 0.23 percent of the original airfoil’s value JN = 5.43 · 10−7, which
is again used to scale all the objective function values to ease comparisons.
Starting from the lower bound leads to a failed line search in the first iteration
because all gradients indicate that it would be beneficial to “slim” the airfoil
even more which is not allowed by the box constraints imposed on the design
variables to avoid grid movement and flow convergence problems. The gradient
norms are reduced by two to three orders of magnitude.
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Fig. 8: Time histories of CL and CD before and after the optimizations vs. time (∆t = 0.005).

The time histories of CL and CD for the original blunt trailing edge airfoil
before and after the optimizations are shown in Figure 8. One can clearly
see the adjustment period for the improved airfoils in the time interval [0, 3]
before they reach their new somewhat periodic steady state. A reduced mean
drag for both optimized airfoils is also visible, and both objective functions
lead to reduced oscillation amplitudes in both lift and drag.

4 Conclusions
The results presented in this paper show that the novel hybrid URANS/FW-H
optimization algorithm, which uses a Newton-Krylov approach in combination
with a discrete adjoint method, is effective and efficient for practical applica-
tions. We proved that it is possible to recover far-field pressure fluctuations via
remote inverse shape designs in unsteady turbulent flows, and we were able
to minimize the pressure fluctuations at a given far-field observer position in
an efficient manner. Our future work will focus on the ability to modify a
high-lift airfoil configuration to reduce the radiated noise while maintaining
good aerodynamic performance.
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