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This paper continues our effort to generalize summation-by-parts (SBP) finite-difference
methods beyond tensor-products in multiple dimensions. In this work, we focus on the ac-
curate and stable coupling of elements in the context of discontinuous solution spaces. We
show how penalty terms — simultaneous approximation terms (SATs) — can be adapted
to discretizations based on multi-dimensional SBP operators. We show that the part of
the SBP operator corresponding to boundary integration can be decomposed into an inter-
polation/extrapolation operator and a boundary cubature. The SBP operators themselves
are independent of the boundary cubature, and no additional degrees of freedom are intro-
duced. The resulting decomposition facilitates the construction of SATs between arbitrary
elements, and we prove that the resulting SBP-SAT discretizations are conservative and sta-
ble for divergence-free linear advection. The SATs are illustrated using triangular-element
SBP operators with and without nodes that lie on the boundary. The solution accuracy
of the resulting SBP-SAT discretizations is verified, and functional accuracy is shown to
be superconvergent. The conservation and stability properties of the discretizations are
confirmed on a divergence-free linear advection problem.

I. Introduction

Classical summation-by-parts (SBP) operators [1, 2] are high-order finite-difference methods that mimic
integration by parts and, thereby, facilitate the construction of time-stable discretizations [3–9]. Like all
one-dimensional finite-difference methods, classical SBP operators are typically applied to multi-dimensional
problems using tensor-product operators defined on Cartesian reference domains. This approach, while
adequate for many applications, has limitations in the context of complex geometries and localized mesh
adaptation. This motivates our interest in generalizing SBP operators to more general multi-dimensional
subdomains, such as simplicial elements.

In [10], Del Rey Fernández et al. considered a generalization of classical SBP operators. Motivated by
this one-dimensional generalization, Ref. [11] proposed an SBP definition suitable for arbitrary (bounded)
subdomains with piecewise smooth boundaries (see also [12]). We refer to these finite-difference operators
as multi-dimensional SBP operators.

For diagonal-norm, multi-dimensional SBP operatorsa that are exact for polynomials of total degree p,
it was shown in [11] that the norm and corresponding nodes define a strong cubature rule that is exact
for polynomials of degree 2p − 1. This connection to cubature rules greatly simplifies the construction of
multi-dimensional SBP operators, since many suitable cubature rules have already been identified in the
literature [13].
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Multi-dimensional SBP operators, like their classical counterparts, provide a means of discretizing partial
differential equations (PDEs), but they do not incorporate boundary conditions. Most SBP-based discretiza-
tions rely on simultaneous approximation terms (SATs) [14, 15] to impose boundary conditions and, when
the solution space is discontinuous, couple elements. SATs are penalty terms that impose boundary data in a
weak sense, and they provide stability without adversely impacting the asymptotic order of the discretization.

One way to apply SATs to multi-dimensional SBP discretizations is to use boundary-integrated numerical
flux functions, similar to those used in the nodal discontinuous Galerkin method [16]. This was the approach
adopted for the discontinuous SBP discretizations presented in [11]. A drawback of these SATs is that they
rely on dense mass matrices over the faces where the penalty is applied. These face-based mass matrices are
either dense with respect to the nodes on the face, in the case of the SBP operators in [11], or dense with
respect to all of the nodes on an element, in the case of the multi-dimensional SBP operators presented in
Section IV.

While dense SATs of the type described above produce provably stable SBP-SAT schemes for constant-
coefficient advection, these schemes are not stable for more general advection velocities. The instability
arises because the face-based mass matrix does not commute with the nodal advection velocity, in general.
This is analogous to the issues experienced by dense norms and coordinate transformations [17].

Therefore, our primary objective in the present work is to address the stable and conservative implemen-
tation of SATs with multi-dimensional SBP operators for general, spatially varying advection velocities.

The remainder of the paper is organized as follows. After introducing some notation, Section II reviews
the definition of multi-dimensional SBP operators from [11] and shows how the symmetric part of those
operators can be related to auxiliary nodes on the boundary. Section III provides the theory for multi-
dimensional SATs, including conservation and stability theorems. To illustrate SATs on a concrete example,
Section IV presents two families of SBP operators for the triangle and describes how SATs are constructed
for these operators. Some numerical results are given in Section V to verify the theory, and conclusions are
provided in Section VI.

II. Some groundwork

A. Notation

Notation is consistent with that used in [11], and, as in that work, we focus on two-dimensional operators
to simplify the presentation. We also restrict the definitions and theorems to operators defined in the x
coordinate direction only, since operators defined in the other directions are analogous.

Functions of space are denoted with capital letters with a script type; e.g., U(x) ∈ L2(Ω) denotes a
function on the domain Ω that is square-integrable. Functions and operators are discretized on a set of n
nodes, S = {(xi, yi)}ni=1. The restriction of a function to the nodes is a column vector, which is represented
using lower-case bold font; in the case of U , we would write

u = [U(x1, y1), . . . ,U(xn, yn)]
T
.

A basis for polynomials of total degree p has a cardinality of

n∗p ≡
(
p+ d

d

)
,

where d is the spatial dimension; for d = 2 we have n∗p = (p+ 1)(p+ 2)/2. Several definitions and theorems
rely on the monomial basis, defined below in (partial) order of nondecreasing degree.

Pk(x, y) ≡ xiyj−i, k = j(j + 1)/2 + i+ 1, ∀ j ∈ {0, 1, . . . , p}, i ∈ {0, 1, . . . , j}.

The monomials and their derivatives evaluated at the nodes are represented by

pk ≡ [Pk(x1, y1), . . . ,Pk(xn, yn)]
T
,

and p′k ≡
[
∂Pk
∂x

(x1, y1), . . . ,
∂Pk
∂x

(xn, yn)

]T

.
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B. Review of multi-dimensional summation-by-parts operators

To keep the presentation self-contained, we include the definition of a multi-dimensional SBP operator that
was proposed in [11].

Definition 1. Two-dimensional summation-by-parts operator: Consider an open and bounded do-
main Ω ⊂ R2 with a piecewise-smooth boundary Γ. The matrix Dx is a degree p SBP approximation to the
first derivative ∂

∂x on the nodes SΩ = {(xi, yi)}ni=1 if

I. Dxpk = p′k, ∀ k ∈ {1, 2, . . . , n∗p};

II. Dx = H−1Qx, where H is symmetric positive-definite; and

III. Qx = Sx + 1
2Ex, where ST

x = −Sx, ET
x = Ex, and Ex satisfies

pT
k Expm =

∮
Γ

PkPmnxdΓ, ∀ k,m ∈ {1, 2, . . . , n∗τ},

where τ ≥ p, and nx is the x component of n = [nx, ny]
T

, the outward pointing unit normal on Γ.

As mentioned in the introduction, SBP operators are closely linked to cubature rules. Under mild
assumptions on a generalized Vandermonde matrix, the existence of a cubature implies the existence of a
diagonal-norm SBP operator, and vice versa [11]. In particular,

pT
kHpm =

∫
Ω

PkPmdΩ,

for PkPm at most degree 2p− 1. Thus, the norm ‖u‖2H ≡ uTHu is a 2p-order approximation to the integral
L2 norm over Ω. In addition, the matrices Qx and Sx satisfy

pT
kQxpm =

∫
Ω

Pk
∂Pm
∂x

dΩ,

and pT
k Sxpm =

∫
Ω

Pk
∂Pm
∂x

dΩ− 1

2

∮
Γ

PkPmnxdΓ,

where k,m ≤ n∗τ and PkPm is at most degree 2p.

C. Decomposing Ex

Recall that the symmetric matrix Ex = 2(Qx − Sx) approximates boundary integration in the multi-
dimensional SBP definition:

vTExu =

∮
Γ

VUnxdΓ + O(h2p),

where h is the nominal element size. Not surprisingly, Ex has an important role to play in the weak imposition
of boundary conditions. For example, in [11] Ex was decomposed into three matrices, one for each face on the
triangle, and simultaneous approximation terms (SATs) were constructed using these face-based matrices;
such SATs are equivalent to the approach used in the nodal DG method [16].

With the approach described above, the SATs for enforcing homogeneous boundary conditions in constant-
coefficient advection are propoortional to

H−1(Ex)νλνu

where (Ex)ν is Ex restricted to the face with index ν, and the scalar λν is the normal component of the
advection velocity along face ν. Now, consider how this SAT changes for a spatially varying advection:

H−1(Ex)νΛu

where Λ = diag(λν) is the matrix containing the spatially varying advection velocity evaluated at the SBP
nodes. Whereas (Ex)νλ is symmetric, (Ex)νΛ is not symmetric, in general. This loss of symmetry presents
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a significant challenge to stability analysis. We address it here by considering a more general decomposition
of Ex.

Before we proceed further, we need to introduce some assumptions regarding the boundary, Γ, of the
element domain Ω. The most restrictive of these is the requirement that Γ be piecewise linear. While this
assumption holds for most reference elements (right triangle, right tetrahedron, etc.), it does not hold for
more general curvilinear elements; future efforts will seek to remove this assumption.

Assumption 1. Γ =
⋃
ν Γν is orientable,

⋂
ν Γν = ∅, and each face Γν is smooth, i.e. Γ is piecewise smooth.

Furthermore, for each Γν there is a linear bijective mapping M : Γ̂ν → Γν , where the reference domains
satisfy Γ̂ν ⊂ Rd−1 and have piecewise linear boundaries. Finally, for each reference face Γ̂ν and for each
degree p ≥ 0, there exists a strong cubature rule of degree q ≥ 2p.

Assumption 1 ensures that we can evaluate boundary fluxes with sufficient accuracy. For example, in
two-dimensions and for each Γν , we have a linear mapping M(ξ) and cubature nodes SΓ̂ν

= {ξi}nνi=1 and
weights {bi}nνi=1 such that ∫

Γν

U(x, y)nx dΓ =

∫
Γ̂ν

U(ξ)
∂y

∂ξ
dΓ̂ =

∂y

∂ξ

nν∑
i=1

biU(ξi)

for all polynomials U(ξ) of degree q ≥ 2p or less. A similar expression holds for fluxes in the y direction.
Note that, becauseM is linear, the term ∂y/∂ξ is constant over Γ̂ν , which is necessary for the face cubature
to remain exact for degree 2p polynomials. IfM is not linear, but still polynomial, then the accuracy of the
face cubature can be increased accordingly.

We are now in a position to show that Ex can be expressed in terms of auxiliary nodes that lie on the
boundary Γ.

Theorem 1. Let Assumption 1 hold and let Dx be a degree p SBP approximation of the first derivative on
the domain Ω. Then the symmetric part of Qx can be written as

1

2
Ex =

1

2

∑
ν

[
∂y

∂ξ

]
ν

RT
ν BνRν , (1)

where Bν ∈ Rnν×nν is a diagonal matrix with the cubature weights of the reference domain Γ̂ν along the
main diagonal, and Rν ∈ Rnν×n is a degree r ≥ p interpolation/extrapolation operator from the nodes of the
reference volume domain, SΩ̂, to the nodes of the reference boundary domain, SΓ̂ν

. That is,

(Rνpk)i = Pk(ξi), ∀ k ∈ {1, 2, . . . , n∗r}, ∀ ξi ∈ SΓ̂ν
.

Proof. The terms RT
ν BνRν are clearly symmetric by construction, as is Ex. Therefore, we need only show

that the accuracy conditions of Property III hold. Since the Rν are exact for degree r ≥ p polynomials, we
have, ∀k,m ∈ {1, 2, . . . , n∗p},

pT
k Expm =

∑
ν

[
∂y

∂ξ

]
ν

pT
k R

T
ν BνRνpm

=
∑
ν

[
∂y

∂ξ

]
ν

nν∑
i=1

biPk (x(ξi), y(ξi))Pm (x(ξi), y(ξi))

=
∑
ν

∫
Γ̂ν

Pk(ξ)Pm(ξ)
∂y

∂ξ
dΓ̂,

where we have used the linearity of the mappings (see Assumption 1) and the fact that the product
Pk(ξ)Pm(ξ) has total degree less than or equal to 2p. The result follows by the additive property of in-
tegrals.

III. Multi-dimensional simultaneous approximation terms

In this section, we show how multi-dimensional SBP elements can be coupled in an accurate, conservative,
and stable manner using simultaneous approximation terms (SATs). The same approach can be used to
impose boundary conditions weakly. We consider upwind SATs, since they are the most widely used;
however, Ref. [18] includes an analysis of more general, parameterized SATs.
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Figure 1. Illustration of two generic SBP elements and their common interface used for the analysis of SATs.

A. SBP-SAT discretization of the linear advection equation with a divergence-free velocity

By making use of the decomposition (1), we can derive a conservative and stable SBP discretization based on
simultaneous approximation terms (SATs). To illustrate the process, we consider a scalar advection equation
with a spatially-varying, divergence-free velocity λ = (λx, λy):

∂U
∂t

+
1

2
∇ · (λU) +

1

2
λ · ∇U = 0, (2)

where ∇ · λ = 0. (3)

Note that we have written the PDE in skew-symmetric form. Our subsequent analysis focuses on coupling
adjacent elements, so we ignore boundary conditions and discretize (2) on two elements with a common
face (see Figure 1). Subscripts L and R denote quantities associated with the “left” and “right” domains,
respectively. For example, uL and uR denote the discrete solutions on the left and right elements. To keep
the notation simple, we assume that both SBP elements have the same number of nodes, i.e. nL = nR = n,
but this is not necessary in general.

The following matrices will be useful in the discretization of (2) and (3). Recall that n = [nx, ny] is the
unit normal on interface.

Λx ≡ diag(λx,1, λx,2, . . . , λx,n), Λy ≡ diag(λy,1, λy,2, . . . , λy,n)

Bx ≡ nx diag (b1, b2, . . . , bnν ) , By ≡ ny diag (b1, b2, . . . , bnν ) ,

Bλ ≡ diag (b1(λ · n)1, b2(λ · n)2, . . . , bnν (λ · n)nν ) ,

To be clear, the diagonal matrices Λx,Λy ∈ Rn×n hold the x and y components of the advection velocity,
respectively, evaluated at the nodes of the SBP operator. The matrices Bx and By are diagonal matrices
holding the face-cubature weights scaled by nx and ny, respectively. Finally, Bλ holds the product of the
face-cubature weights with the normal component of the velocity. In the subsequent analysis, Bλ uses the
outward normal with respect to the left domain in all cases, i.e. Bλ ≡ (Bλ)L = −(Bλ)R.

An SBP-SAT discretization of (2) on the two-element domain is given by

duL
dt

+ DLuL =
1

2
H−1
L RT

L(Bλ − |Bλ|) (RLuL − RRuR) ,

duR
dt

+ DRuR =
1

2
H−1
R RT

R(−Bλ − |Bλ|) (RRuR − RLuL) ,

(4)

where the matrix operators DL and DR are defined by

DL ≡
1

2
H−1
L

(
−QT

xLΛxL − QT
yLΛyL + RT

LBλRL + ΛxLQxL + ΛyLQyL
)
,

DR ≡
1

2
H−1
R

(
−QT

xRΛxR − QT
yRΛyR − RT

RBλRR + ΛxRQxR + ΛyRQyR
)
,

and the diagonal, positive-semidefinite matrix |Bλ| is given by

|Bλ| ≡ diag (b1|(λ · n)1|, b2|(λ · n)2|, . . . , bnν |(λ · n)nν |) .
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Notice that the divergence-free condition (3) can be obtained from (2) by setting U to the constant two.
Similarly, the discrete divergence-free condition can be obtained from (4) by setting the discrete solution to
a vector of twos. Doing this in the first equation of (4) produces the discrete divergence-free condition on
the left element:

(DxLΛxL + DyLΛyL) 1L = H−1
L

(
RT
LBxLRLΛxL + RT

LByLRLΛyL − RT
LBλRL

)
L

1L. (5)

The constant vectors 1L and 1R are composed of ones and have lengths equal to the number of nodes in
their respective elements. The left-hand side of (5) is a direct discretization of the divergence-free condition
using SBP operators; note that ΛxL1L and ΛyL1L are the x and y components of the advection velocity.
The right-hand side is a penalty term that vanishes for all velocity fields of polynomial degree p or less; for
such velocity fields RL is exact, i.e. (RLu)i = U(ξi), ∀ξi ∈ SΓ̂ν

, and we have

(
RT
LBxLRLΛxL + RT

LByLRLΛyL − RT
LBλRL

)
1L = RT

L


b1(λ · n− λ · n)1

...

bnν (λ · n− λ · n)nν


L

= 0.

Thus, the right-hand side term does not impact the asymptotic error; however, the right-hand side is neces-
sary to obtain conservation in the overall scheme.

The following useful identities follow from (5) and its variant for the right domain by left multiplying
by vTL/RHL/R and transposing the result; this operation has the effect of multiplying the divergence-free
equation by an arbitrary function and integrating the result. The identities relate the discretized volume
integral of divergence to the boundary integral of the flux.

1TL (ΛxLQxL + ΛyLQyL)vL = 1TL
(
RT
LBλRL

)
vL, ∀ vL ∈ Rn,

1TR (ΛxRQxR + ΛyRQyR)vR = −1TR
(
RT
RBλRR

)
vR, ∀ vR ∈ Rn.

(6)

The difference in sign between the two right-hand sides of (6) comes about because of the difference in
orientation of the outward-pointing normals.

B. Conservation analysis

Theorem 2. The discretization (4) is conservative in the sense that

d

dt

(
1T
LHLuL + 1T

RHRuR
)

= 0.

Proof. Multiplying the equation for uL, i.e. the first equation of (4), by 1THL from the left, we find

1T
LHL

duL
dt

+ 1T
L

1

2

(
−QT

xLΛxL − QT
yLΛyL + RT

LBλRL + ΛxLQxL + ΛyLQyL
)
uL

=
1

2
1T
LR

T
L(Bλ − |Bλ|) (RLuL − RRuR)

⇒ d

dt

(
1T
LHLuL

)
+ 1T

LR
T
LBλRLuL =

1

2
1T
LR

T
L(Bλ − |Bλ|) (RLuL − RRuR)

where we have used identity (6) and the fact that SBP operators are exact for constants, i.e. 1TQT
x =

(Dx1)TH = 0T. Adding the above expression to the analogous one for uR we have (recall the difference in
sign in identity (6))

d

dt

(
1T
LHLuL + 1T

RHRuR
)

+ 1T
LR

T
LBλRLuL − 1T

RR
T
RBλRRuR

=
1

2
1T
LR

T
L(Bλ − |Bλ|) (RLuL − RRuR) +

1

2
1T
RR

T
R(−Bλ − |Bλ|) (RRuR − RLuL)
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Finally, we take advantage of the accuracy of the interpolation/extrapolation operator, namely that 1T
LR

T
L =

1T
RR

T
R = 1T

ν where 1ν ∈ Rnν is a vector of ones. Thus,

d

dt

(
1T
LHLuL + 1T

RHRuR
)

+ 1T
ν BλRLuL − 1T

ν BλRRuR

=
1

2
1T
ν (Bλ − |Bλ|) (RLuL − RRuR) +

1

2
1T
ν (−Bλ − |Bλ|) (RRuR − RLuL)

The result now follows after some algebra.

C. Stability analysis

Theorem 3. The discretization (4) satisfies

1

2

d

dt

(
uT
LHLuL + uT

RHRuR
)
≤ 0,

and is therefore time stable.

Proof. Multiplying the first equation in (4) by uT
LHL from the left, we find

uT
LHL

duL
dt

+ uT
L

1

2

(
−QT

xLΛxL − QT
yLΛyL + RT

LBλRL + ΛxLQxL + ΛyLQyL
)
uL

=
1

2
uT
LR

T
L(Bλ − |Bλ|) (RLuL − RRuR)

⇒ 1

2

d

dt

(
uT
LHLuL

)
+

1

2
uT
LR

T
LBλRLuL =

1

2
uT
LR

T
L(Bλ − |Bλ|) (RLuL − RRuR)

where we have used uT
LΛxLQxLuL = uT

LQ
T
xLΛxLuL and uT

LΛyLQyLuL = uT
LQ

T
yLΛyLuL. Adding the analo-

gous expression for the right domain to the above and simplifying, we obtain

1

2

d

dt

(
uT
LHLuL + uT

RHRuR
)

= −1

2
uT
LR

T
L|Bλ| (RLuL − RRuR)− 1

2
uT
RR

T
R|Bλ| (RRuR − RLuL)

= −1

2

[
uT
LR

T
L uT

RR
T
R

] [ |Bλ| −|Bλ|
−|Bλ| |Bλ|

][
RLuL
RRuR

]
.

The quadratic form on the right-hand side is negative semi-definite since the matrix composed of |Bλ| blocks
is positive semi-definite; its eigenvalues are {2bi|(λ · n̂)i|}nνi=1 together with 0, which has multiplicity nν . It
follows that the discretization is time stable.

IV. Example operators on the triangle

In this section, we describe the construction, for triangular elements, of multi-dimensional SBP operators
in conjunction with the matrices R and B that define the SATs.

As shown in [11], a multi-dimensional SBP operator of degree p exists for any domain that has 1)
a cubature rule of degree at least 2p − 1 with 2) strictly positive weights and 3) a full-rank generalized
Vandermonde matrix. In general, such cubature rules are not unique, so there exist many different SBP
operators for a given domain. To illustrate this fact, we present two families of SBP operators for the triangle.

The first family of SBP operators on the triangle was presented previously in [11]. This family consists
of operators with p+ 1 nodes on each face and will be referred to as the SBP-Γ family. Figure 2 shows the
p = 1 through p = 4 operators from this family. The second family of triangular-element SBP operators has
strictly interior nodes. This family will be referred to as the SBP-Ω family, and the first four operators in
this familyb are shown in Figure 3.

The algorithmic steps involved in constructing the operators are listed below. The process is similar to
that outlined in [11] for SBP-Γ, with a few minor changes that are highlighted.

bWe did not consider the p = 0 operator in this work
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p = 1 p = 2 p = 3 p = 4

Figure 2. Nodes of the SBP-Γ family of operators that include p + 1 nodes on each face. The open circles
denote the SBP operator nodes, while the black squares denote the face cubature points used for the SATs.

p = 1 p = 2 p = 3 p = 4

Figure 3. Nodes of the SBP-Ω family of operators whose nodes are strictly interior to Ω. The open circles
denote the SBP operator nodes, while the black squares denote the face cubature points used for the SATs.

1. For a given design accuracy p, a symmetric cubature rule is selected or constructed that is exact for
polynomials of total degree 2p− 1 and has at least (p+ 1)(p+ 2)/2 nodes. The nodes for the SBP-Ω
family are required to be strictly interior, and the SBP-Γ family is required to have p+1 nodes on each
face, including the vertices. For all SBP-Ω operators considered here (p = 1, . . . , 4), there are exactly
(p+ 1)(p+ 2)/2 cubature nodes, whereas the SBP-Γ operators generally have more nodes for the same
value of p.

2. A Legendre-Gauss quadrature rule with p + 1 nodes is used to define B on all faces, i.e. the same
quadrature rule is used for all three sides, although this is not strictly necessary.

3. Let Γ̂ν denote one of the faces of the triangle. Then the volume-to-face interpolation/extrapolation
operator for this face is defined by R = VΓ̂ν

(VΩ̂)†, where VΓ̂ν
denotes an orthogonal polynomial

basis evaluated at the quadrature nodes of Γ̂ν , and the superscript † denotes the Moore-Penrose
pseudoinverse. The definition of VΩ̂ depends on whether we are constructing the SBP-Γ or SBP-Ω
family. For the latter, VΩ̂ is an orthogonal polynomial basis evaluated at all of the nodes in the volume
cubature. In contrast, for the SBP-Γ family, VΩ̂ is the basis evaluated at the p + 1 volume cubature

nodes that lie on the face of Γ̂ν .

Although we have considered only the face Γ̂ν , symmetry allows the same R matrix to be used on all
three faces simply by permuting indices of the volume nodes.

4. The boundary operator Ex is constructed from the face cubature B and interpolation/extrapolation
operator R using equation (1). An analogous equation is used for Ey.

5. The skew-symmetric operators Sx and Sy are determined using the accuracy conditions, Property I of
Definition 1. For the SBP-Ω operators considered here, the Sx and Sy operators are fully determined
by the accuracy conditions; in contrast, the SBP-Γ operators are underdetermined by the accuracy
conditions, so the minimum-norm solution is used for those operators.
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Table 1. Summary of cubature accuracy, node counts, and operator dimensions for the two different families
of SBP operators on the triangle.

family degree (p) # nodes (n) H degree R matrix size

SBP-Γ 1 3 1 2× 2

SBP-Ω 1 3 2 2× 3

SBP-Γ 2 7 3 3× 3

SBP-Ω 2 6 4 3× 6

SBP-Γ 3 12 5 4× 4

SBP-Ω 3 10 5 4× 10

SBP-Γ 4 18 7 5× 5

SBP-Ω 4 15 7 5× 15

Table 1 summarizes the accuracy and node-set properties of both the SBP-Ω and SBP-Γ families. Beyond
the fact that SBP-Γ includes boundary nodes and SBP-Ω excludes boundary nodes, a few other differences
between the families are worth highlighting. First, the SBP-Γ family generally requires more nodes than the
SBP-Ω family for the same design accuracy p; this translates into Dx and Dy operators that require more
storage and computation. Second, the cubature accuracy is higher for the SBP-Ω family; the p = 1 and p = 2
operators have cubatures that are more accurate than 2p− 1, and the p = 3 and p = 4 operators appear to
have smaller error constants. Finally, the volume-to-face interpolation/extrapolation operators used by the
SBP-Γ operators are smaller, giving them a computational advantage when it comes to evaluating the SATs.

V. Results

A. Steady, constant-coefficient advection

The steady, constant-coefficient advection equation was chosen to verify the accuracy of the SATs and the
newly derived SBP-Ω operators. The SBP-Γ operators were previously verified in [11], but we repeat their
verification here, because the SAT implementation has changed. We also use this test case to investigate the
convergence rate of boundary functionals.

The specific PDE and boundary conditions are given by

∂U
∂x

+
∂U
∂y

= S, ∀ (x, y) ∈ Ω = [0, 1]2,

U(x, 0) = 1, and U(0, y) = 1,

where S(x, y) = yexy + xexy. The exact solution to this PDE is U(x, y) = exy.
To verify order of accuracy, we conduct a mesh refinement study using uniform grid refinement. Let N

denote the number of element edges along the x and y coordinates. The vertices of the elements are located
at (xi, yj) = (ih, jh), ∀i, j = 0, 1, . . . , N , where h = 1/N . For each of the N2 quadrilaterals, two triangles
are generated from the vertices {(xi, yj), (xi+1, yj), (xi, yj+1)} and {(xi+1, yj+1), (xi, yj+1), (xi+1, yj)}. For
the solution- and functional-accuracy studies below we use N ∈ {2, 4, 6, 8, 10, 12}. We also use the N = 12
grid in the subsequent conservation and stability studies.

1. Solution Accuracy

To assess the accuracy of the discrete solutions, we evaluate the SBP-based L2 norm of the difference between
the numerical and exact solutions. We then normalize by the exact solution’s norm; that is,

Normalized L2 Error =

√
(u− ue)

T H (u− ue)√
uT

e Hue

,

where u is the discrete solution and ue the exact solution at the element nodes. Figure 4 and 5 shows this
error for the SBP-Γ the SBP-Ω families, respectively.
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From the perspective of accuracy alone, we see a significant difference between the two p = 1 schemes.
On the finest grid, the second-order SBP-Ω scheme is more than 7.8 times more accurate than the second-
order SBP-Γ scheme. This difference in accuracy is also present in the higher order schemes, but it is less
pronounced. For example, the third-, fourth-, and fifth-order SBP-Ω schemes are 4.1, 1.4, and 2.0 times
more accurate, respectively, than their corresponding SBP-Γ schemes on the finest grid. This difference in
accuracy is also observed in spectral-element schemes based on Legendre-Gauss nodes (interior-only nodes)
versus Legendre-Gauss-Lobbato nodes (boundary nodes included).

Figure 4. L2 error in the steady-advection solution
for different mesh spacing using the SBP-Γ family
of operators.

Figure 5. L2 error in the steady-advection solution
for different mesh spacing using the SBP-Ω family
of operators.

2. Functional Accuracy

Classical and generalized SBP-SAT finite-difference methods have been shown to produce superconvergent
functionals if the discretizations are dual consistent [19–21]. In this section, we verify that superconvergent
functionals are also produced by multi-dimensional SBP operators using the proposed SATs.

We use the total flux over the outflow boundary as the functional of interest. For the problem at hand,
the analytical value of the total outflow flux is given by

J (U) =

∫
Γ+

U(x, y) (λ · n) dΓ =

∫ 1

x=0

U(x, 1) dΓ +

∫ 1

y=0

U(1, y) dΓ = 2(e− 1),

where Γ+ = {(x, y) ∈ Γ | nx + ny > 0}. To ensure dual consistency, the discretized functional is evaluated
using the volume-to-face interpolation/extrapolation operators, R, and face cubature points. Thus, the
discrete function is defined by

Jh(u) =
∑
ν∈Γ+

h

1TBνRνuν ,

where Γ+
h is the set of element edges lying on the outflow, and uν is the discrete solution at the nodes of the

element associated with boundary face ν.
Figures 6 and 7 plot the relative functional error, |J − Jh|/J , for the SBP-Γ and SBP-Ω families,

respectively. All schemes exhibit superconvergent functional estimates with rates of at least 2p. Note that
some of the higher-order schemes experience round-off errors as the mesh is refined, limiting their error to
O(10−14).

The difference between the two families is even more striking than it was for solution error. For example,
on the finest grid, the SBP-Ω p = 1 and p = 2 schemes are almost four orders more accurate than the
corresponding SBP-Γ schemes. The difference in accuracy for the higher order schemes is not as dramatic,
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but it remains significant. We are currently investigating the superior functional accuracy of the SBP-Ω
p = 1 and p = 2 schemes, which have convergence rates of 2p+2, but the likely source is the 2p versus 2p−1
exactness of the SBP norm H; see Table 1.

Figure 6. Normalized functional error for different
mesh spacing using the SBP-Γ family of operators.

Figure 7. Normalized functional error for different
mesh spacing using the SBP-Ω family of operators.

B. Linear advection with a divergence-free velocity

In this section, we verify the theory developed in Section III by investigating the SBP-SAT discretization
of a scalar advection PDE with a divergence-free velocity. This experiment verifies the conservation and
stability properties of SBP-SAT discretizations in the context of a spatially varying velocity field.

The continuous PDE is (2) with the advection velocity satisfying the divergence-free condition (3). The
domain is the unit square, Ω = [0, 1]2, and the velocity field is

λ =

[
λx

λy

]
=

[
π sin(πx) cos(πy)

−π cos(πx) sin(πy)

]
. (7)

In addition to being divergence-free, this velocity field produces zero flux over the boundary; therefore, no
boundary condition is imposed on the solution. For the initial condition we take U(x, y, 0) = exy.

1. Discretization

In general, the continuous velocity (7) does not satisfy the discretized divergence-free condition (5). There-
fore, we seek a discrete vector field that satisfies the discrete divergence-free condition and is as close as
possible, in an appropriate norm, to the continuous field. To find such a λ, we solve a pair of convex
quadratic optimization problems, which we now describe.

First we solve for the face-normal velocities λn = λ ·n, i.e. the elements in the Bλ matrices. A constraint
on the λn for each element is obtained by substituting vL = 1 in the first equation of (6) (or vR = 1 in the
second equation): ∑

ν

1TRT
LBλRL1 =

∑
ν

nν∑
i=1

b1(λ · n)i = 0,

where ν indexes the faces of the element. This constraint is simply a discretization of
∫

Γ
λ ·ndΓ̂ = 0 on each

element. There are fewer elements than face-normal velocities, so we solve a quadratic optimization problem
that minimizes the Cartesian norm between the discrete and continuous values of λn, subject to the above
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Table 2. Conservation metric at time tf = 10 for the SBP-Γ and SBP-Ω discretizations applied to the divergence-
free advection problem with 288 elements.

degree

family p = 1 p = 2 p = 3 p = 4

SBP-Γ 2.22× 10−16 2.00× 10−15 3.55× 10−15 2.00× 10−15

SBP-Ω 3.33× 10−15 4.44× 10−16 7.99× 10−15 1.11× 10−14

identity on the Bλ matrices. In practice, we include scaling due to the coordinate transformations in the λn
values.

Once the Bλ matrices are determined, we solve for the λx and λy. We follow a procedure analogous to
the one used for Bλ, except that (5) becomes the constraint, and the optimization problems on each element
are decoupled.

With the discrete velocity field defined, the semi-discretization given by (4) is fully defined for a given
mesh. We adopt the mesh with N = 12 that was used in the constant-coefficient advection case; see
Section V.A for the details. Finally, the time derivative is discretized using the standard fourth-order
Runge-Kutta method. For the following results, the time-step was kept at 50% its maximally stable value
for linear advection.

2. Conservation and Stability

For the given problem, the integral of the analytical solution of (2) is constant in time, because the PDE is
conservative and there is no boundary flux. Based on the analysis in Section III, the SBP-SAT discretization
should mimic this property, and the conservation error should be zero to machine precision.

Table 2 lists the conservation error for the SBP-Γ and SBP-Ω discretizations using N = 12 faces along
each edge of the domain (288 triangular elements). The conservation metric is defined by

Conservation Metric ≡ |1THu0 − 1THuf |,

where uf is the discrete solution at t = 10 and u0 is the initial condition evaluated at the nodes. The results
in Table 2 provide strong evidence that the SBP-SAT discretizations are conservative.

To demonstrate that the SBP-SAT discretizations are energy stable, Figure 8 shows the change in nor-
malized energy as the discrete solutions evolve from t = 0 to t = 10. The normalized change in energy is
given by

uTHu− uT0 Hu0

uT0 Hu0
=
‖u‖2H
‖u0‖2H

− 1

where u denotes the discrete solution. As with the conservation metric, we consider a uniform triangulation
with N = 12 edges in each direction and 288 elements total. The plots show that the SBP-SAT discretizations
have nonincreasing energies, as expected from the analysis.

VI. Conclusions

We have shown how simultaneous approximation terms (SATs) can be applied to discretizations based
on multi-dimensional summation-by-parts (SBP) operators. Our key observation is that the symmetric part
of SBP operators, which corresponds to integration over the element boundary, can be written in terms of a
face cubature and an interpolation/extrapolation operator. Using this decomposition, it is straightforward
to construct conservative and stable SATs that couple arbitrary SBP elements.

The SAT methodology was illustrated using SBP operators on triangular elements. We considered two
SBP families; the SBP-Γ family with p + 1 nodes on each face and the SBP-Ω family with strictly interior
nodes. The accuracy of the SBP-SAT discretizations was verified using solution and functional errors for
a constant-coefficient advection equation. Both families were shown to produce design-accuracy solutions
and superconvergent functionals, but the SBP-Ω family was found to outperform the SBP-Γ family in terms
of accuracy. Conservation and stability of the SBP-SAT discretizations were verified using linear advection
with a nontrivial, divergence-free advection velocity.
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(a) SBP-Γ family

(b) SBP-Ω family

Figure 8. Normalized change in energy versus time. Every 100th time-step is marked with a symbol.
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