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A novel gradient-based computational tool for efficient three-dimensional aerodynamic
shape optimization is presented. An integrated approach is applied to geometry parame-
terization and mesh movement based on B-spline surfaces and volumes. Grid refinement
and redistribution techniques are introduced to enable the fitting of B-spline volumes to
grids appropriate for computing turbulent flows. The three-dimensional Reynolds-averaged
Navier-Stokes equations are solved using a parallel Newton-Krylov-Schur flow analysis algo-
rithm that makes use of Summation-by-Parts (SBP) operators and Simultaneous Approx-
imation Terms (SATs) at block interfaces and boundaries. Gradients are evaluated using
the discrete-adjoint method. The performance of the algorithm is demonstrated through
a series of optimization studies, including a pitching moment coefficient optimization in
subsonic flow and lift-constrained drag minimizations in transonic flow.

I. Introduction

In recent years, the airline industry has been facing financial pressure stemming from both increased
attention to the importance of environmental stewardship in regulation and policy development and the
rising cost of fuel. The latter has eclipsed labour costs to become the industry’s dominant operational
expense. The design of more efficient aerodynamic configurations can reduce the amount of fuel required for
a given flight, reducing both greenhouse gas emissions and fuel costs. An efficient, high-fidelity numerical
aerodynamic shape optimization algorithm would be a powerful tool for the designers of the next generation
of aircraft, particularly as part of a multi-disciplinary optimization capability.

There are a number of gradient-free and gradient-based numerical optimization tools in use today, each of
which comes with its own advantages and disadvantages. The choice of which type of method to implement
is generally problem-dependent. Gradient-free methods, such as genetic algorithms,1 are better at finding
global optima, but are often time-consuming, particularly when the optimization problem has a large number
of design variables. Gradient-based algorithms, such as the quasi-Newton method BFGS2 for unconstrained
optimization and SQP methods3, 4, 5 for constrained optimization, are more efficient at finding local optima,
although they may not find the global optimum. Chernukhin and Zingg6 address this issue by developing
two novel aerodynamic shape optimization strategies that make use of elements from genetic algorithms and
gradient-based algorithms, along with a Sobol sequence sampling method to explore the design space for
potential starting geometries for the optimizer.

Gradient-based optimization is not a new concept, but has evolved significantly to become a very popular
approach to aerodynamic shape optimization, due in large part to the development of innovative gradient
evaluation methods. Hicks et al.7 calculated the gradient using finite-difference approximations, which
placed limitations on the number of design variables that could be used. The introduction of adjoint-based
methods by Pironneau8 and Jameson9 allows the gradient to be evaluated at a cost virtually independent of
the number of design variables. In the discrete-adjoint approach, the adjoint equation is determined based
on the discretized governing equations. In the continuous approach, the adjoint equation is derived before
discretizing the governing equations and then discretized.

Jameson, Reuther, and colleagues applied the adjoint method to two-dimensional inviscid aerodynamic
design problems10 and then extended their work to three-dimensional constrained multi-point problems.11, 12, 13
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Jameson et al.14 used the continuous adjoint approach to optimize wings and wing-body configurations
based on the compressible Navier-Stokes equations. Anderson and Bonhaus15 performed airfoil optimiza-
tions on unstructured grids using a discrete-adjoint approach to the Navier-Stokes equations coupled with
the one-equation Spalart-Allmaras turbulence model. Nemec and Zingg16, 17 demonstrated the efficiency of a
Newton-Krylov scheme in performing two-dimensional aerodynamic shape optimization based on the Navier-
Stokes equations and the Spalart-Allmaras turbulence model. Laminar-turbulent transition prediction was
incorporated into a gradient-based Newton-Krylov optimization algorithm by Driver and Zingg18 and was
used to design a series of high-lift airfoils.

We use an integrated geometry parameterization and mesh movement scheme which fits the blocks of
the computational mesh with B-spline volumes.19 The B-spline control points are moved based on the
principles of linear elasticity, while the fine mesh is updated algebraically based on the B-spline volume
basis functions. Flow analysis is carried out using a parallel Newton-Krylov algorithm with approximate-
Schur preconditioning.20 Gradients are evaluated using the discrete-adjoint approach. The gradient-based
SQP optimization algorithm SNOPT3 is used to update the design variables subject to linear or nonlinear
constraints. The objective of the present work is to extend the Euler-based aerodynamic shape optimization
algorithm of Hicken and Zingg19, 21 to handle turbulent flows governed by the Reynolds-Averaged Navier-
Stokes equations and to characterize the resulting algorithm.

The main components of the algorithm are discussed in Sections II to V. More specifically, the geometry
parameterization and mesh movement are described in Section II. Section III discusses some issues related
to the fitting and movement of finely-spaced meshes suitable for modelling turbulent flow and how they
can be overcome. Section IV reviews the Newton-Krylov flow solver used to solve the three-dimensional
Reynolds-Averaged Navier-Stokes equations. The process used to compute the gradients is broken down in
Section V. Sample optimization results are presented in Section VI, followed by our conclusions in Section
VII.

II. Geometry Parameterization and Mesh Movement

Using the integrated parameterization and mesh movement approach developed by Hicken and Zingg,19

an initial multi-block volume mesh is mapped with B-spline volumes. These mappings are defined by a
tensor product of the control points, Bijk, and their pth-order basis functions, N (p), and are of the form

x(ξ) =

Ni
∑

i=1

Nj
∑

j=1

Nk
∑

k=1

BijkN
(p)
i (ξ)N

(p)
j (η)N

(p)
k (ζ) , (1)

where x (ξ) represents the set of Cartesian coordinates of the B-spline volume as a function of the set of
curvilinear coordinates ξ = (ξ, η, ζ) ∈ R

3|ξ, η, ζ ∈ [0, 1]. The basis functions in the ξ-direction are expressed
as

N
(1)
i (ξ; η, ζ) =

{

1 if Ti (η, ζ) ≤ ξ < Ti+1 (η, ζ) ,

0 otherwise

N
(p)
i (ξ; η, ζ) =

(

ξ − Ti(η, ζ)

Ti+p−1(η, ζ) − Ti(η, ζ)

)

N
(p−1)
i (ξ; η, ζ)

+

(

Ti+p(η, ζ)− ξ

Ti+p(η, ζ)− Ti+1(η, ζ)

)

N
(p−1)
i+1 (ξ; η, ζ). (2)

Similar expressions exist for the basis functions in the η- and ζ-directions, N
(p)
j (η; ζ, ξ) and N

(p)
k (ζ; ξ, η),

respectively. The knot values, Ti(η, ζ), in the interior of the B-spline volume are given by

Ti(η, ζ) = [(1− η)(1 − ζ)]Ti,(0,0) + [η(1− ζ)]Ti,(1,0) + [(1 − η)ζ]Ti,(0,1) + [ηζ]Ti,(1,1). (3)

Again, similar expressions denote the knot values in the η- and ζ-directions, Ti(ζ, ξ) and Ti(ξ, η). The
first p and last p knot values for a given B-spline curve are set to 0 and 1, respectively; the edge knot
values, Ti,(0,0), Ti,(1,0), Ti,(0,1), and Ti,(1,1) are constants. Given the edge knot values, we can bilinearly
interpolate the interior knots from (3). We then use a least-squares fitting routine to determine the locations
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of the B-spline control points. This is done in a sequential manner, first fitting the block edges, then the
sides, and finally the internal volumes. Since the parameter values ξ, η, and ζ are based on a chord-length
parameterization, the knot values are inherently chord-length-based as well. It is this property which results
in a coarse B-spline volume mesh that mimics the spacing of the original computational mesh.

In an aerodynamic optimization, the control points corresponding to the surface of the geometry are
used as design variables. When the coordinates of the surface control points are changed by the optimizer,
the remaining internal control points in the B-spline volume are updated based on the principles of linear
elasticity:19, 22

M
(i)(b(i−1),b(i)) = K(i)[b(i) − b(i−1)]− f (i) = 0, i = 1, ...,m (4)

where M
(i) is the mesh movement residual, b(i) the set of B-spline control point coordinates, K the global

stiffness matrix at increment i, and m the number of increments. We typically perform the control mesh
updates of (4) in five increments, which strikes a balance between speed and robustness in accommodating
large changes in the geometry.19 Note that Bijk in (1) represents a set of coordinates for a single control
point, whereas b(i) is a block-column vector of the coordinates for all control points in the B-spline volume.
The force vector f (i) is defined implicitly by the surface control point coordinates. We solve (4) using the
conjugate gradient method preconditioned with ILU(p), where the fill level, p, is 1.

While the linear-elasticity approach to mesh movement is a robust one, applying it to the actual compu-
tational mesh is time-consuming. We instead apply the linear-elasticity method to the coarse mesh made up
of the B-spline control points, which is typically 2-3 orders of magnitude smaller than the fine computational
mesh. The fine mesh is updated using an algebraic approach based on the B-spline volume basis functions.
This integrated approach allows us to perform accurate and efficient mesh updates that maintain good mesh
quality and require negligible CPU time compared to the time required to obtain a converged flow solution.
It also greatly reduces the cost of solving the mesh adjoint system (see Section V).

The mesh movement algorithm is illustrated in Figure 1, where the control point and fine computational
meshes are shown for the case of an ONERA M6 wing transforming into a rectangular wing with NACA0012
sections. Each of the 12 blocks of the initial mesh contain 45×65×33 nodes, while the corresponding control
mesh volumes are made up of 9× 9× 9 nodes each.

III. Fitting B-Spline Volume Meshes

The main differences between a mesh used for an inviscid optimization and one used for a turbulent case
are in the node spacings in various regions of the grid, particularly in the off-wall direction. Inviscid meshes
typically have an off-wall spacing of approximately 10−3 chord units; this spacing would be inappropriate for
a turbulent flow analysis, as it would not resolve the flow features close to the aerodynamic surfaces. A more
appropriate off-wall spacing for a turbulent analysis is approximately 10−6 chord units. Unfortunately, the
RMS error for a mesh obtained from the B-spline volume fitting is of the order of 10−3 chord units. When
we attempt to fit meshes with spacings that are of a lower magnitude than the fitting error, the B-spline
control points bunch together and overlap.

Figure 2a shows the control point distribution and fitted mesh at the symmetry plane of the inviscid
mesh, focusing on the leading edge. The mesh used in this example is a 12-block ONERA M6 mesh with
2.47 million nodes and an off-wall distance of 10−3 chord units. The B-spline volumes are fit with 9× 9× 5
control points. The red control points correspond to the block containing the wing surface, while the black
control points correspond to the neighbouring block. Figures 2b and 2c show two views of the deteriorating
quality of the B-spline volume mesh near the leading edge when we attempt to fit a 12-block ONERA M6
mesh with same number of nodes as the inviscid grid, but with an off-wall spacing of 10−4 chord units, which
is only one order of magnitude finer than that of the inviscid mesh. Even though the off-wall, leading edge,
and wing tip spacing are only up to an order of magnitude finer compared to the inviscid mesh, we see that
the control points from the two blocks overlap near the leading edge. The problem only intensifies as the
off-wall distance decreases. The ideal solution would be to obtain a B-spline fit for an inviscid mesh and
subsequently achieve a refined computational mesh spacing appropriate for turbulent analysis.

To this end, we introduce a dual-option mesh refinement process that can be applied to coarse meshes;
the B-spline control point distribution is obtained from the original coarse mesh and is unaffected by the
subsequent refinement strategy. At the beginning of any optimization, each block of the computational
mesh is fit with B-spline volumes using the least-squares fitting routine described in Section II. After the
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Figure 1: Example of B-spline mesh movement
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Figure 2: Symmetry plane control point distribution for inviscid and viscous meshes

5 of 17

American Institute of Aeronautics and Astronautics



Table 1: 12-block ONERA M6 mesh spacing data

Refine option Grid size Spacing

(Nodes) Off-wall LE and TE Spanwise tip

None 2 470 500 1.97× 10−3 1.98× 10−3 9.70× 10−4

Resize 4 132 092 1.80× 10−3 1.75× 10−3 8.42× 10−4

Refine 2 470 500 4.88× 10−7 2.34× 10−5 1.08× 10−5

Combination 4 132 092 3.99× 10−7 1.90× 10−5 8.89× 10−6

B-spline volume mesh has been generated, we can choose to refine the mesh using a node-insertion, or grid
refinement, method. The grid refinement option increases the number of nodes in each coordinate direction
by a scaling factor (1.2 is used for the examples presented in this paper). The entire set of parameter values
is re-evaluated using the chord-length based parameterization so that the existing nodes are redistributed to
account for the additional nodes.

The second refinement option is grid redistribution, and involves the targeted refinement of the spacing-
control function parameters along specific grid edges. Starting with any fitted computational mesh (which
may or may not have already made use of the grid resizing option), the edge spacing parameters corresponding
to specific blocks can be refined by a set of user-defined scaling factors. The parameter values ξ = (ξ, η, ζ)
throughout the rest of the grid are re-evaluated based on the edge parameters so that we need only refine the
block edges in order to achieve a distributed refinement. The important point to note about using either or
both of these refinement options is that they are done after the B-spline volume mesh has been calculated,
so that any refinement that is performed to obtain finer mesh spacings from a coarse mesh has no effect on
the control mesh.

Examples are presented to show the effectiveness of the dual-option refinement scheme. All examples start
with the coarse 12-block ONERA M6 grid detailed in Table 1. The mesh spacing obtained using the various
options of the refinement scheme are shown in Figure 3, where we focus on the spacing at the root chord. The
same number of streamwise B-spline control points is is used for each example. Figure 3a shows the initial
spacing at the root chord of the coarse grid, with the leading edge detail shown in the inset image. Figures
3b and 3c shows the spacing resulting from the grid refinement and grid redistribution options, respectively,
and Figure 3d shows the spacing obtained from applying both the grid refinement and grid redistribution
options. This strategy provides a means of obtaining a well-spaced B-spline volume mesh while providing
the refined node spacing required for analyzing turbulent flows for the purpose of optimization. The spacings
of the coarse mesh and those of the refined meshes are shown in Table 1.

IV. Newton-Krylov-Schur Flow Solver

We solve the three-dimensional Reynolds-averaged Navier-Stokes equations, which, when transformed
into curvilinear coordinates, are given by

∂tQ̂+ ∂ξÊ+ ∂ηF̂+ ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (5)

where Q̂ represents the conservative flow variables, and Re is the Reynolds number. The inviscid fluxes are
given by Ê, F̂, and Ĝ, and the viscous fluxes by Êv, F̂v, and Ĝv. The flow solver is based on the Euler
solver developed by Hicken and Zingg,20 which was extended to include viscous and turbulent effects by
Osusky et al.23 Turbulence is modelled using the Spalart-Allmaras one-equation turbulence model,24 given
by

∂ν̃

∂t
= M(ν̃)ν̃ + P (ν̃)ν̃ −D(ν̃)ν̃ + T, (6)

where M(ν̃)ν̃ represents advection and diffusion, P (ν̃)ν̃ is a production source term, D(ν̃)ν̃ is a wall de-
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Figure 3: Root chord meshes for inviscid and refined grids
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struction source term, and T is a trip function representing the transition point at which the flow becomes
turbulent. The trip term is not used in the examples shown here; fully turbulent flow is assumed.

The governing equations are discretized using second-order-accurate summation-by-parts (SBP) opera-
tors25 with scalar artificial dissipation. Boundary conditions are enforced using Simultaneous Approximation
Terms (SATs).26 Additionally, SATs are used to enforce the coupling of adjoining blocks of the computa-
tional mesh,27, 28, 29 and are an attractive option in minimizing inter-processor communication, as solving
the governing equations on any given block requires less information from neighbouring blocks compared to
the more common approach using halo nodes. Moreover, with the SAT treatment, slope continuity of the
mesh is not needed at the mesh block interfaces, which simplifies mesh generation.

Discretizing the governing equations produces a system of nonlinear equations

R(v,b(m),q) = 0, (7)

where v is the set of design variables, which can include a subset of the surface B-spline control points, the
angle of attack, and planform design variables (e.g. sweep), b(m) contains the control point coordinates of
the B-spline volumes after the final increment of the mesh movement, and q is a block-column vector of
conservative flow variables.

We solve (7) using a parallel Newton-Krylov algorithm. At each Newton iteration, n, we solve the sparse
linear system given by

A(n)∆q(n) = −R
(n), (8)

where R
(n) = R(v,b(m),q(n)), ∆q(n) = q(n+1) − q(n), and the Jacobian matrix A(n) is

A
(n)
ij =

∂R
(n)
i

∂qj
. (9)

We solve (8) using flexible GMRES with approximate-Schur preconditioning. An approximate-Newton start-
up phase is used to determine a suitable initial iterate. Once the residual has been reduced by three orders
of magnitude, the Newton-Krylov algorithm enters the inexact-Newton phase, which converges the residual
norm to a relative tolerance of 10−10. Deep convergence of the flow solution aids in the convergence of the
optimizer.

V. Gradient Evaluation

We use the gradient-based sequential quadratic programming optimization algorithm SNOPT.3 As with
any gradient-based optimization method, an accurate and efficient means of calculating the gradient is
required in order for the method to be effective. Finite differencing7 is not a viable option for large-scale
problems with many design variables. The adjoint method used by Pironneau30 and Jameson et al.14 is a
better option, as the time required to complete one computation of the gradient is virtually independent of
the number of design variables. This is a major advantage for optimization problems with a large number
of design variables. The discrete approach to the adjoint method, developed based on the discretized form
of the governing equations, is used.

We wish to minimize an objective function, J , such as drag, which is a function of the design variables,
denoted by v, as well as the grid and flow properties. The problem is subject to the mesh and flow residual
equations, which we treat as constraints that are solved outside of SNOPT by minimizing the Lagrangian
function:

L(v,b(m),q,λ(i)|mi=1,ψ) = J (v,b(m),q) +

m
∑

i=1

λ(i)T
M

(i)(v,b(i−1),b(i)) +ψT
R(v,b(m),q), (10)

where the Lagrange multipliers λ(i)|mi=1 and ψ represent adjoint variables for the mesh movement and flow
residual equations, respectively.

The gradient evaluation is performed in a sequential manner. After solving (7) for the flow variables, q,
we solve the flow adjoint system, given by

(

∂R

∂q

)T

ψ = −

(

∂J

∂q

)T

, (11)
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for the vector of flow adjoint variables, ψ. In the Jacobian matrix of the flow residual ∂R
∂q

, the discrete Euler
and viscous fluxes, as well as the numerical dissipation, are linearized analytically, while the inviscid SATs
that enforce boundary conditions and block interface continuity are differentiated using the complex-step
method.31 The viscous and turbulent SATs are differentiated using both the complex-step and analytical
approaches.23 The flow adjoint system is solved using a simplified and flexible variant of GCROT (General-
ized Conjugate Residual with Orthogonalization and Truncation), a nested GMRES-type solver that recycles
Krylov subspaces in order to reduce memory requirements.32

We next obtain the mesh adjoint variables corresponding to the final increment of mesh movement, λ(m),
from

(

∂M(m)

∂b(m)

)T

λ(m) = −

(

∂J

∂b(m)

)T

−

(

∂R

∂b(m)

)T

ψ. (12)

We expand the right-hand side of (12) using the chain rule, which gives

−

(

∂J

∂b(m)

)T

−

(

∂R

∂b(m)

)T

ψ = −

(

∂g

∂b(m)

)T
[

∂J

∂g

∣

∣

∣

∣

m

+

(

∂J

∂m

∣

∣

∣

∣

g

+ψT ∂R

∂m

)

∂m

∂g

]T

. (13)

This reformulation gives us a system that is not difficult to solve and only requires the storage of vector-
matrix and matrix-vector products. The vectors g and b represent the Cartesian grid coordinates and
B-spline volume control point coordinates, respectively. The ∂J

∂g

∣

∣

m
term represents the partial derivative

of the objective function with respect to the grid points with the metric terms arising from the curvilinear
coordinate transformation frozen, while the ∂J

∂m

∣

∣

g
term represents the partial derivative of the objective

function with respect to the metrics with the grid coordinates frozen. The partial derivatives on the right-
hand side of (13) are obtained analytically, and the left-hand side can be expressed as the symmetric stiffness
matrix at increment m, K(m). The system is solved using the preconditioned conjugate gradient method.

Once the vector of mesh adjoint variables at the last mesh movement increment has been computed, the

mesh adjoint variables corresponding to the remaining increments, {λ(i)}
(m−1)
i=1 , can be obtained from

(

∂M(i)

∂b(i)

)T

λ(i) = −

(

∂M(i+1)

∂b(i)

)T

λ(i+1), i ∈ {m− 1,m− 2, . . . , 1}. (14)

The left-hand side of (14) can be expressed as the symmetric stiffness matrix at increment i, K(i). The
right-hand side matrix is obtained using the complex-step method, which requires little computational time,
as it is only applied to the coarse control mesh. The system is solved using the preconditioned conjugate
gradient method.

Following the computation of the adjoint variables from systems (11) - (14), the gradient of the Lagrangian
function with respect to the design variables is computed from

G =
∂J

∂v
+

m
∑

i=1

(

λ(i)T ∂M(i)

∂v

)

+ψT ∂R

∂v
. (15)

The sequential process of computing the gradient must be repeated for any non-linear constraints, such as
lift. This process is not necessary for linear constraints, as they are satisfied exactly by SNOPT.

VI. Results

A. Inverse Design

To test the optimization algorithm, we perform a simple inverse optimization with the ONERA M6 wing.
The 3 coordinates of a control point on the upper surface of the wing serve as design variables, along with
the angle of attack, which is initially set to 2 degrees. A 12-block grid made up of 2.47 million nodes is used;
each block of the computational mesh is parameterized by 9 × 9 × 5 B-spline control points. The off-wall
mesh spacing is 2.35× 10−6 root chord units. The flow is fully turbulent, with a Mach number of 0.5 and a
Reynolds number of 3 million.
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Figure 4: Convergence history for inverse design case

The four design variables are randomly perturbed, and the target surface pressure distribution is obtained
from the perturbed geometry. The objective function to be minimized is given by

J =
1

2

Nsurf
∑

i=1

(pi − pi,targ)
2
∆Ai, (16)

where Nsurf is the number of surface nodes, ∆Ai is the surface area element calculated at node i, pi is
the pressure at node i and pi,targ is the target pressure at node i. The optimizer is given the unperturbed
geometry and attempts to recover the perturbed wing based on the target surface pressure distribution.

The convergence history for the inverse design case, shown in Figure 4, illustrates that the optimizer
successfully recovered the perturbed geometry. The optimality, which is a measure of the gradient, is
reduced by 10 orders of magnitude and the objective by 16 orders of magnitude in 40 objective function and
gradient evaluations. The solution required 67 hours on 12 processors.

B. Target Pitching Moment

The purpose of this optimization is to minimize the magnitude of the pitching moment for a given target
lift coefficient of a rectangular wing with an aspect ratio of 4.0 and a projected area of 2.0 at zero angle of
attack. The objective to be minimized is a quadratic penalty function applied to the quarter-chord pitching
moment coefficient CM and is of the form

J =
1

2
C2

M . (17)

The computational grid is made up of 12 blocks and contains a total of 2.47 million nodes. Each block is
fit with a B-spline volume of 9× 9× 5 control points. The off-wall distance is 1.12× 10−6 chord units. The
z-coordinates of the B-spline control points are used as design variables, with the exception of the control
points near the leading and trailing edges, which are fixed in order to prevent crossover. With the angle
of attack fixed at zero, the optimization has 85 design variables. A non-linear inequality constraint is used
to maintain a minimum volume equal to that of the original geometry. A non-linear equality constraint is
applied to the lift coefficient. The target lift coefficient is set at 0.20, based on the projected area. The
flow is fully turbulent at a free-stream Mach number of 0.5 and a Reynolds number of 3 million. The initial
geometry has symmetric NACA0012 sections and therefore produces no lift or pitching moment at zero angle
of attack.
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Figure 5: Convergence history for moment penalty optimization

The optimizer produces a final geometry that achieves the target lift coefficient with a quarter-chord
pitching moment coefficient of 0.2920×10−12. The convergence history is shown in Figure 5. The optimality
is reduced by 8 orders of magnitude in 37 objective function and gradient evaluations. The merit function is
reduced by 17 orders of magnitude to 10−25. The optimizer required 100 hours on 12 processors to achieve
these results.

The initial and optimized geometries are compared at six different locations along the span in Figure 6.
The pressure coefficient distribution is plotted for each of these sections in Figure 7. In order to reduce the
pitching moment to zero, the optimizer has produced reflexed airfoils as expected. This example provides a
good test of the algorithm, as the section shape changes are relatively large. As many different geometries
can produce finite lift and zero moment at zero angle of attack, the solution is not unique and depends on
the initial condition.

C. Lift-Constrained Drag Minimization in Transonic Flow

1. Sweep and Angle of Attack

We aim to optimize the leading edge sweep angle of the ONERA M6 wing to minimize the drag at a fixed lift
coefficient of 0.257 in a turbulent transonic flow at a free-stream Mach number of 0.8395, Reynolds number
of 11.72 million, and an initial angle of attack of 3.06 degrees. The angle of attack is free in order to meet
the lift constraint. The x -coordinates of the B-spline control points are all coupled to the sweep design
variable. The initial leading edge sweep angle of the ONERA M6 is 30 degrees. The computational mesh is
made up of 24 blocks and a total of 2.187 million nodes. From the grid redistribution technique discussed
in Section III, we obtain an off-wall spacing of 7.23× 10−7 chord units. Each block is parameterized with 9
control points in the stream-wise direction and 5 in the span-wise and off-wall directions. The lift coefficient
is constrained to a target value of 0.257 based on a projected area of 1.17.

The convergence history for this optimization is shown in Figure 8. The drag coefficient has been reduced
by 11%. The optimality has been decreased by 3 orders of magnitude in 37 function evaluations. The wing
was swept back by 14.2 degrees, as shown in Figure 9, resulting in a final leading edge sweep angle of 44.2
degrees. The angle of attack was increased to 3.59 degrees. The final result was obtained in 36 hours on 24
processors. This case demonstrates the ability of the mesh movement algorithm to handle large changes in
the sweep angle.
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Figure 6: Section shape comparison for moment coefficient optimization
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Figure 7: Coefficient of pressure for moment coefficient optimization
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Figure 10: Coefficient of pressure for transonic optimization with varying z -coordinates

2. B-spline Control Point z-Coordinates and Angle of Attack

To test the optimizer’s ability to handle more complex cases with more design variables, we aim to minimize
the drag of an ONERA M6 wing at a fixed lift coefficient of 0.259 at transonic speed by varying the vertical
positions of 225 B-spline control points and the angle of attack. The control points near the leading and
trailing edges are fixed to avoid crossover. The free-stream Mach number is 0.8395, the Reynolds number is
11.72 million, and the initial angle of attack is 3.06 degrees. The 24-block, 2.187-million node mesh described
in the previous example is used in this case as well. We apply the grid redistribution technique to obtain an
off-wall spacing of 1.2 × 10−6. The control volumes are each made up of 7 × 7 × 5 control points. The lift
coefficient, calculated based on the projected area, is constrained to maintain the initial value of 0.259. A
minimum volume constraint based on the original geometry is also used.

From the plots of the coefficient of pressure in Figure 10, we can see that the initial geometry has two
shocks present on the upper surface. Over the course of 72 function evaluations, the optimizer has virtually
eliminated the shocks by altering the section shapes and decreasing the angle of attack to 1.91 degrees. The
section shape changes are shown in Figure 11. The drag has been reduced by 17.1%. The optimality, shown
in the convergence plot in Figure 12, has been reduced by one order of magnitude, but work is underway to
obtain deeper convergence.

VII. Conclusions

We have presented an efficient algorithm for aerodynamic shape optimization in the turbulent flow regime.
The use of an integrated geometry parameterization and mesh movement scheme balances the robustness of a
linear elasticity-based mesh movement algorithm with the speed of an algebraic method. The computational
mesh is approximated by a coarse mesh made up of B-spline volumes. The nodes of this mesh are the B-
spline control points and are moved using a method based on the principles of linear elasticity; subsequently,
the fine mesh is updated based on the B-spline volume basis functions. Because the size of the control
mesh is relatively small compared to the fine one, mesh movement and the evaluation of the mesh adjoint

14 of 17

American Institute of Aeronautics and Astronautics



X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Initial
Optimized

X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(a) 20% span (b) 44% span (c) 65% span

X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

X/c

Z
/c

0 0.2 0.4 0.6 0.8 1
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(d) 80% span (e) 90% span (f) 95% span

Figure 11: Section shape comparison for transonic optimization with varying z -coordinates
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equations can be executed at a low computational cost. Grid refinement and grid redistribution strategies
are discussed for obtaining meshes suitable for turbulent flows from coarser meshes in order to address
difficulties arising in fitting B-spline volumes to finely spaced meshes. A Newton-Krylov flow solver with
approximate-Schur preconditioning is used for flow analysis. We apply the discrete-adjoint method to the
evaluation of the gradient. The SQP optimizer SNOPT is used to perform constrained optimizations. We
have successfully tested the algorithm using an inverse design case based on surface pressure and further
demonstrated the performance of the algorithm through the design of a wing with a zero pitching moment
and two lift-constrained drag minimizations in transonic flow. The algorithm is able to exhibit excellent
convergence when dealing with large shape changes. The results show the overall methodology to be an
efficient and reliable approach to aerodynamic shape optimization. Future work will include planar and
non-planar designs in subsonic and transonic flow, as well as multi-point optimizations, and extension to
aerostructural optimization.
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