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An efficient Newton-Krylov algorithm for high-fidelity aerodynamic shape optimization
is used to design low-sweep wings for maximum range at transonic speeds. In this approach,
the steady flow solution is obtained using the Newton method with pseudo-transient con-
tinuation. The objective function gradient is computed using the discrete-adjoint method.
Linear systems from both the flow and adjoint systems are solved using a preconditioned
Krylov method. A quasi-Newton optimizer is used to find the search direction. It is coupled
with a line-search algorithm. Our single-point optimization results show that it is possible
to design shock-free unswept wings at Mach numbers and lift coefficients comparable to
the operating conditions of modern transonic transport aircraft. Robust wing designs for
low-sweep and unswept wings under the same operating conditions are obtained through
multi-point optimization.

I. Introduction

In the design of future generations of civil transport aircraft, optimizing the wing configuration to maxi-
mize range is of particular interest to designers. The range maximization problem is analogous to minimizing
fuel burn at a fixed range. The amount of fuel consumed in flight has a profound impact on the operat-
ing cost for the operator (airline), as fuel cost is currently the largest single expense for airlines globally.1

Fuel burn also has significant environmental impact, through the production of greenhouse gas emissions,
particularly carbon dioxide (CO2) and nitrogen oxides (NOx). In the 1990s, when jet fuel was substantially
less expensive, designs favoured operating at higher speeds for passenger comfort, and to reduce labour cost
during flight. However, given the rising cost of fuel and increasing environmental regulations in recent years,
this philosophy is being revisited.

Advances in high-fidelity computational fluid dynamics (CFD) techniques over the past decades, as well
as the development of CFD-based aerodynamic shape optimization techniques in the design process, have
allowed engineers to examine the range maximization problem more closely. We are particularly interested
in the aerodynamic optimization of unswept and low-sweep wings that can operate within a flight envelope
similar to the highly-swept wings currently used by civil transport aircraft. Low-sweep wings are appealing
because they can have reduced structural weight, which is another important factor in maximizing range,
and the potential for natural laminar flow. The goal is to optimize for robust, shock-free designs at transonic
Mach numbers.

Our study is motivated by the work of Jameson et al.2 Their primary results show that even with
aerodynamic shape optimization alone, the range of a low-sweep wing operating at lower Mach number
is comparable to a highly-swept wing at higher Mach number. In our current work, we revisit the range
maximization problem using the Newton-Krylov algorithm based on Nemec and Zingg3 and Leung and
Zingg.4 Our study includes an improved curve fit to account for the engine’s thrust specific fuel consumption
as a function of Mach number, as well as using a flexible geometry parameterization method using basis-
splines (B-splines). We also examine the effect of robust design. The objective is to assess potential benefits
of unswept and low-sweep wings and to find the maximum Mach numbers for robust shock-free operation as
a function of sweep angle under a particular set of geometric constraints.
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II. Optimization Problem

A. Problem Formulation

The goal of aerodynamic shape optimization is to find a set of design variables X and state variables Q such
that a scalar objective function J minimized:

min
X
J (X ,Q) (1)

The optimization is subject to both geometric constraints:

Cj(X ) ≤ 0 (2)

as well as the flow constraint:
R(X ,Q) = 0 (3)

In the present study, the flow constraint is defined by the discrete steady Euler equations governing com-
pressible inviscid flow.

B. Objective Function

We formulate the objective function J based on the Breguet range equation, which specifies the range R of
an aircraft under a cruise-climb flight profile:

R =
V

TSFC
L

D
ln
(
Wi

Wf

)
(4)

where V is the speed of the aircraft, L/D is the aircraft’s lift-to-drag ratio (aerodynamic efficiency), TSFC
is the engine’s thrust specific fuel consumption, and Wi and Wf are initial and final weights of the aircraft.
For high-bypass-ratio turbofan engines used on commercial transport aircraft, TSFC varies roughly linearly
with M at transonic speeds. We use the relationship by Mattingly:5

TSFC ∝ 0.45M + 0.40 (5)

The exact relationship between TSFC and M depends on the specific engine configuration. Under the cruise-
climb flight profile, the aircraft operates at a constant speed V and lift coefficient CL. As weight decreases
during flight, the altitude increases such that the lift L generated is always equal to the weight. For an
aerodynamic shape optimization, the effects of weights Wi and Wf are ignored for now. It should be noted
that these weights are important factors for a full aero-structural optimization.

Substituting non-dimensional quantities into (4), the range of an aircraft scales with a range factor R:

R =
M

TSFC
CL

CD
(6)

For optimization at a fixed Mach number, R can be maximized by maximizing the lift-to-drag ratio at a
fixed CL. For this type of problem, we use the lift-constrained drag minimization objective function:

J0 = ωL

(
1− CL

C∗L

)2

+ ωD

(
1− CD

C∗D

)2

(7)

The targets in lift and drag (C∗L, C∗D) as well as the weights (ωL, ωD) are specified by the user. We find the
values ωL = 100 and ωD = 1.0 to be effective based on previous experience.4 If the target lift is attainable and
target drag is not, then the lift constraint appears as a penalty term. Therefore, C∗D should be a value that
is physically unattainable to ensure that the final drag is minimized. Once we have obtained the optimized
lift-to-drag ratio, we can compute the range factor R.
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C. Multi-Point Optimization

For multi-point optimization with Np operating conditions, the objective function is the weighted sum of all
operating points:6

JT =
Np∑
i=1

ωiJi (8)

This weighted sum is an approximation of a weighted integral I of the objective function over a range of
Mach numbers:

I =
∫ M2

M1

P (M)J [X ,Q(M)] dM (9)

where the user-specified weighting function P (M) reflects the relative importance attached by the designer
to each Mach number in this range. In (8), the weights ωi combine the weighting function P (M), as well as
the Newton-Cotes rule that is used to approximate (9). For P (M) = 1, if we select equally spaced operating
points between M1 and M2, with the first and last operating point at M1 and M2 respectively, and apply
the trapezoidal rule, we obtain the following weights:

ωi =


0.5 i = 1
1.0 i = 2 . . . Np − 1
0.5 i = Np

(10)

D. Geometric Constraints

We have implemented two geometric constraints: a volume constraint to limit the change in the volume
enclosed by the wing, and a thickness constraint to maintain minimum thickness at specified locations of the
wing. Both are expressed as penalty terms in the objective function:

J = J0 + Jp,V + Jp,T (11)

For volume constraint, the penalty term Jp,V is added when the volume V deviates from the initial volume
V0:

Jp,V = ωV

(
1− V

V0

)2

(12)

The penalty weight ωV is supplied by the user. We choose a value of ωV = 50.0. For thickness constraints,
we specify a minimum thickness at fixed relative positions along the chord (x/c) and semi-span (y/(b/2))
on the wing. The penalty term is added if thickness at the i-th constraint location ti is below the minimum
thickness t∗i . The contributions from all thickness constraints are summed and multiplied by a user supplied
weight ωT:

Jp,T = ωT

∑
i

(
1− ti

t∗i

)2

(13)

We use a penalty weight of ωT = 40.0.

III. Algorithm Description

A. Flow Analysis

The governing equations for the optimization are the Euler equations, which are discretized on multi-block
structured grids. In our parallel strategy, each block in the grid and the corresponding component of Q
is distributed to a separate processor. Second-order centred differencing is applied at interior nodes, while
first-order one-sided differencing is used at boundaries and block interfaces. For numerical stability, we use a
scalar dissipation model based on the JST scheme.7,8 Boundary conditions and the coupling between blocks
at the interfaces are enforced using simultaneous approximation terms (SATs).9

Discretization of the steady Euler equations produces a set of nonlinear algebraic equations, which can
be written as:

R(Q) = 0 (14)
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Beginning with an initial guess Q(0) based on free-stream properties, and applying the Newton method, we
solve a linear system in the form: (

∂R
∂Q

)(n)

∆Q(n) = −R(Q(n)) (15)

The left-hand-side matrix is the flow Jacobian. The flow vector Q is updated after each iteration, and
the linear system is solved again until ‖R(Q)‖2 is reduced by more than 10 orders of magnitude. At each
iteration, (15) is solved using the Krylov method Flexible Generalized Minimal Residual (FGMRES).10,11

Note that when using a Krylov method, only matrix-vector products with the flow Jacobian are required.
These can be approximated by one-sided differencing:(

∂R
∂Q

)
v ≈ R(Q + εv)−R(Q)

ε
(16)

leading to a Jacobian-free approach. The linear system is right-preconditioned using an approximate-Schur
preconditioner based on Refs. 9 and 12.

To improve the stability of the Newton method during the start-up phase, the flow solver uses an
approximate-Newton method, where a first-order Jacobian A1 replaces the flow Jacobian in (15). A pseudo-
transient time step is also added for globalization:

∆t(n)
i =

∆t(n)
ref

Ji(1 + 3
√
Ji)

(17)

where the reference time step for iteration n is defined as

∆t(n)
ref = A(B)n (18)

Values of A = 0.1 and B = 1.5 are used. In summary, during the approximate-Newton start-up phase, the
linear system solved at each iteration n is given by:[

T(n) + A(n)
1

]
∆Q(n) = R(n) (19)

where T(n) is a diagonal matrix containing the reciprocal of the local time steps. The flow solver switches
to the Newton method when the residual has been reduced by one order of magnitude:

‖R(n)‖2
‖R(0)‖2

< 0.10 (20)

During the Newton phase, the reference time step is based on Mulder and van Leer:13

∆t(n)
ref = max

[
α

(
‖R(n)‖2
‖R(0)‖2

)−β
,∆t(n−1)

ref

]
(21)

We find α = 1.0 and β = 1.75 found to be satisfactory values for a wide range of problems. As the residual
decreases, the time step approaches infinity, and the full Newton step is recovered.

B. Gradient Computation

A fast and accurate evaluation of the objective function gradient G is necessary for an effective gradient-based
optimizer. The gradient can be expressed in terms of the design variables X and adjoint variables Ψ:

G =
∂J
∂X
−ΨT ∂R

∂X
(22)

where Ψ is the solution to the discrete adjoint equation:(
∂R
∂Q

)T
Ψ =

∂J
∂Q

T

(23)
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The adjoint equation is solved using FGMRES, right-preconditioned using the approximate-Schur precondi-
tioner. To obtain an accurate gradient, we specify a linear tolerance of 10−8. We obtain the Jacobian matrix
on the left-hand-side of (23) by hand differentiation of the inviscid fluxes and dissipation terms. The complex
step method14 is used to linearize the SATs at block boundaries. In addition, the right-hand-side ∂J /∂Q
is hand differentiated. Finally, partial derivatives with respect to design variables (∂J /∂X , ∂R/∂X ) are
evaluated using second-order centred differencing. Note that evaluating the partial derivatives with respect
to design variables does not require additional flow solves.

C. Geometry Parameterization

We parameterize the geometry of the wing using B-spline control surfaces.4,15 In this method, the k-th order
B-spline representation of a surface in 3D space using M ×N control points and basis functions is given by:

~a(s, t) =
N∑
j=1

M∑
i=1

(XB)i,jMi,k(s)Nj,k(t) (24)

where ~a is the position vector along the curve at parametric distances s and t from the origin, (XB)i,j are
the locations of the control points, and Mi,k(s) and Nj,k(t) are the basis functions of order k, defined by
the Cox-deBoor relationships:16

Mi,1(t) =

{
1 if di ≤ t < di+1

0 otherwise
(25)

Mi,k(t) =
[

t− di
di+k−1 − di

]
Mi,k−1(t) +

[
di+k − t

di+k − di+1

]
Mi+1,k−1(t) (26)

where di represents the elements of a uniform open knot vector given by:

di =


0 1 ≤ i ≤ k
i− k k + 1 ≤ i ≤M
M − k + 1 M + 1 ≤ i ≤M + k

(27)

N is similarly defined. At the start of the optimization cycle, the surface grid is first parameterized using
B-spline control surfaces. For a structured surface grid with I and J nodes in the parametric directions s
and t, the B-spline surface can be described in discrete matrix form as:

GS = UD
D = XBV

(28)

where GS contains either the x, y or z coordinates for each surface grid node (j, k), U and V store the basis
function values at parametric distances s and t from the grid origin, D is an intermediate matrix of size
M × J , and XB is a matrix containing the x, y or z coordinates of the control points:

GS =


x11 · · · x1J

...
...

xI1 · · · xIJ

 U =


N1(s1) · · · NM (s1)

...
...

N1(sI) · · · NM (sI)



XB =


x11 · · · x1N

...
...

xM1 · · · xMN

 V =


M1(t1) · · · M1(tJ)

...
...

MN (t1) · · · MN (tJ)


(29)

The distances s and t are calculated based on the nodal indices:

si =
i− 1
I − 1

(m− k + 2) (30)

tj =
j − 1
J − 1

(n− k + 2)
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The control point locations are found by first solving for D, and then XB in the least-squares problems in
(28). This process is repeated for each of the three coordinates. To generate a new surface grid in response
to changes in the location of the control points, the intermediate matrix D in (28) is first generated based
on the new control point locations XB, and then the new surface grid GS is generated.

Using this parameterization strategy, we can use two levels of design variables. At the planform level,
control points are grouped into a reduced set of planform variables, such as semi-span (b/2), chord (c),
leading-edge and trailing-edge sweep (ΛLE, ΛTE), dihedral (Γ) and twist (Ω) angles. Other planform pa-
rameters such as taper ratio (λ) and aspect ratio (A) are extracted from the above planform variables. At
the wing section level, each individual control point may move vertically to adjust the wing section shape.
Increasing the number of control points improves the flexibility of the parameterization.

D. Grid Movement

We use a fast and robust algebraic grid movement method to generate a new volume grid after each iteration,
and to evaluate the partial derivatives ∂J /∂X and ∂R/∂X in (22). Our algorithm modifies the nodal
coordinates along a grid line using the algebraic equation:

~xnew
k = ~xold

k +
∆~x1

2
[1 + cos (πSk)] for k = 2 . . . kmax (31)

where ∆~x1 is the displacement of the surface node, kmax is the number of nodes along the grid line from the
surface to the far-field boundary, and

Sk =
∑k
i=2 |~xi − ~xi−1|∑kmax
i=2 |~xi − ~xi−1|

(32)

is the normalized arc-length distance along the grid line. Although this grid movement algorithm does not
explicitly guarantee the new grid to be of good quality, we have found it to be effective for most aerodynamic
shape optimization applications when the geometry change is relatively small, and also when the far-field
boundary is sufficiently far from the body surface.

IV. Results and Discussion

In order to find the maximum Mach number for robust shock-free operation, and to examine the trade-offs
between operating Mach number and sweep angle for a transonic wing, we perform both single-point and
multi-point optimization of untapered wings with various sweep angles. Our optimization results are obtained
on a distributed memory cluster. The cluster uses Intel Xeon 5500 (Nehalem) processors with a CPU speed
of 2.53GHz, with 16GB of shared memory per computation node (8 processors). The computational nodes
are connected by a non-blocking 4x-DDR Infiniband network. Communication between processors is done
using the message passing library MPICH.

A. Single-Point Wing Optimization

We perform single-point drag minimization on untapered wings at transonic speeds between M = 0.60 and
M = 0.86. Each optimization is performed at a fixed Mach number. Once the optimization has converged,
the range factor R is computed for each optimized wing. The initial geometries are untapered wings with
sweeps angles ranging from 0◦ to 25◦. The sweep angles of the wings are fixed during optimization. All the
wings have the section geometry of the NACA 0012 airfoil, with an aspect ratio of A = 8.0. The volume
grids are 96-block H-H topology grids with 2.77-million nodes. The surface grids are shown in Fig. 1. Off-wall
spacing is 2.0× 10−3c, and far-field boundaries are at least 22c from any point on the wing surface.

Our goal is to maximize the lift-to-drag ratio of this wing, while maintaining the same lift at each
operating Mach number. That is, target C∗L is set such that M2C∗L is constant. The target lift coefficients
C∗L are shown in Table 1. A constant drag coefficient of CD0 = 0.0150 is added to the computed CD as an
estimate of viscous effects and fuselage and engine interaction.2

The top and bottom surfaces of each wing are parameterized with a cubic B-spline surface with 13
control points in the spanwise direction and 11 in the chordwise direction. There are 200 B-spline control
point design variables, which include z-coordinates of every control point, except near the leading edge and
at the trailing edge, where the control points are fixed. The change in the twist angle (Ω) and the angle
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(a) Unswept

X

Y

Z

(b) 10◦ sweep

X
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(c) 15◦ sweep

X

Y

Z

(d) 20◦ sweep

X

Y

Z

(e) 25◦ sweep

Figure 1. H-H grids over the initial wings

of attack (α) are also design variables, for a total of 202 design variables. Note that the wing’s sweep
angle, taper ratio, aspect ratio and planform are fixed throughout the optimization. A volume constraint
(12) is implemented. In addition, to prevent grid crossover, thickness constraints (13) are also implemented
at x/c = 0.95 to maintain a 0.05% minimum thickness. In every optimization case, both the volume and
thickness constraints are active at the end of the optimization run.

As an example of optimizer convergence, Fig. 2 shows the convergence for the Λ = 10◦ case at M = 0.74.
In every case presented, the optimizer is able to reduce the gradient L2-norm (‖G‖2) by more than six orders
of magnitude. Furthermore, in the cases where we are able to completely eliminate wave drag, the objective
function is reduced to below 10−6, and the final drag coefficient is within 2% of the value predicted by
lifting-line theory for an elliptical lift distribution. About 85% of the the improvement in L/D ratio occurs
within the first 20 iterations, consistent with our previous results.4 Using 96 processors, each flow solve
requires about six minutes to complete, while the cost of a gradient evaluation is about 75% that of a flow
solve.

The range factors for single-point optimization of all the cases are shown in Fig. 3. Each data point along
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M C∗L

0.60 0.802
0.64 0.705
0.68 0.625
0.72 0.557
0.74 0.527
0.76 0.500
0.78 0.475
0.82 0.430
0.84 0.409

Table 1. Target lift coefficients for optimization cases
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Figure 2. Convergence history for single-point optimization at M = 0.74

the curves represents the optimal shape from a single-point optimization, at the given sweep angle and Mach
number. The range factors shown are at each optimized wing’s design operating condition. The maximum
Mach numbers for which shock-free flow solutions exist are shown in Table 2 for each sweep angle. It is
important to recognize that these results are specific to the particular value of CL and geometric constraints
used.

B. Multi-Point Wing Optimization

Fig. 3 shows that with a single-point optimization, an unswept wing optimized for M = 0.78 has a perfor-
mance comparable to a wing with higher sweep at this Mach number. However, Fig. 4 shows that at Mach
numbers slightly lower or higher than M = 0.78, the optimized wing’s performance deteriorates significantly,
i.e. the design is not robust. In comparison, the wings optimized for the same Mach number with Λ = 15◦

and Λ = 25◦ are robust against changes in operating Mach number. Multi-point optimization is used to
prevent this “point optimization” phenomenon in the unswept wing, and to ensure a robust design.

In the multi-point optimization, we consider a range of Mach numbers at the same lift. We consider
three-point optimization cases using (8). In these cases, we introduce two additional operating points at
Mach numbers that are ±0.015 from the design operating point. For example, the wing designed to operate
at M = 0.78 will also include operating conditions at M = 0.765 and M = 0.795. The weighting on these
operating conditions is based on approximating the integral (9) with P (M) = 1 using the trapezoidal rule.
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o

Figure 3. Range factors for single-point optimized unswept wings

Sweep angle (Λ) Max M for shock-free flow

0◦ 0.78
10◦ 0.80
15◦ 0.82
20◦ 0.82
25◦ 0.84

Table 2. Maximum Mach number for shock-free flow solution for each wing

Mach Number (M)

R
a
n
g
e
F
a
c
to
r
(R
)

0.74 0.76 0.78 0.8 0.82
16

17

18

19

20

21

Unswept Wing Optimized for M=0.78

Λ=15
o
Wing Optimized for M=0.78

Λ=25
o
Wing Optimized for M=0.78

Figure 4. Range factors for wings optimized for M = 0.78

In these three-point cases, therefore, ωi = 0.5 is used for the lower and higher operating Mach numbers, and
ωi = 1.0 for the design Mach number. The same geometric design variables and constraints are used, and
the angles of attack at the two new operating points are also considered as design variables. The multi-point
optimization begins with the optimized geometry from the single-point case. The targets and weights in lift
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Mach Number (M)
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Figure 5. Range factors for three-point optimized unswept wings
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Figure 6. Range factors for an unswept wing optimized for M = 0.76

and drag (ωL, C∗L, ωD, C∗D) are selected in the same way as as the single-point cases, i.e. the lift generated
at these Mach numbers is the same as a wing operating at M = 0.76 with CL = 0.50.

The resulting range plot is shown in Fig. 5. Each data point represents the range factorR of the optimized
wing at its design operating Mach number. We see that the unswept wing is still competitive against swept
wings up to M = 0.76, while the wing with Λ = 10◦ remains competitive up to M = 0.78, with only a
slight decrease in R compared to wings with higher sweep angles. Efficient operation at M = 0.82 or above
requires a sweep angle of greater than 10◦. The performance of the wings shown in Fig. 5 is more robust
against perturbations in Mach number compared to those shown in Fig 3. An example for the unswept wing
found based on a multi-point optimization with a design Mach number of 0.76 is shown in Fig 6. For these
robust designs, the maximum Mach numbers for which a shock-free flow exists are shown for each sweep
angle in Table 3.
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Sweep angle (Λ) Max M for shock-free flow

0◦ 0.76
10◦ 0.78
15◦ 0.78
20◦ 0.82
25◦ 0.84

Table 3. Maximum Mach number for shock-free flow and robust design at each sweep angle

V. Conclusion

We have applied a Newton-Krylov algorithm for aerodynamic shape optimization to the design of low-
sweep wings for maximum range. An improved curve fitting for thrust-specific fuel consumption is used to
approximate engine performance and its effect on range. The point optimization phenomenon is observed for
unswept wings at higher Mach numbers, and a multi-point optimization is used to obtain a robust design.
Our results show that an optimized unswept or low-sweep wing can have a competitive range factor against
highly-swept wings at transonic speeds, but at the cost of operating at slightly slower speeds. However, the
results presented are specific to the lift coefficient and geometric constraints used. Future work will include
further examine the potential of low-sweep wings by performing aero-structural optimization incorporating
laminar-turbulent transition prediction.
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