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A Newton-Krylov algorithm is presented for aerodynamic shape optimization in three

dimensions using the Euler equations. An inexact-Newton method is used in the flow

solver, a discrete-adjoint method to compute the gradient, and a quasi-Newton method

to find the optimum. The Krylov subspace method flexible generalized minimal residual

is used with approximate-Schur preconditioning to solve both the flow equation and the

adjoint equation in a parallel computing environment. The wing geometry is parameterized

by a B-spline control net, and a fast algebraic algorithm is used for grid movement. The

discrete-adjoint gradient can be obtained in approximately one-fourth the time required

for a converged flow solution. The accuracy of the gradient is compared against finite

differencing and is found to be comparably accurate. A single-point test case is presented

for a cruise configuration optimization at transonic speed. This example as well as an

inverse design demonstrate that the optimizer is able to decrease the objective function

and gradient by several orders of magnitude efficiently for problems with over 170 design

variables.

I. Introduction

Over the past several decades, computational fluid dynamics (CFD) has evolved to become an integral tool
in the design cycle. Constant improvements in computer technology, especially in parallel architectures, help
fuel interest in solving larger and more complex CFD problems. State-of-the-art flow solvers can accurately
find solutions for viscous turbulent flows in less than one minute for 2D problems on a desktop computer,
while 3D flows over an entire aircraft can be solved in a matter of hours using parallel computers.1,2

The development of CFD naturally leads to its incorporation into automated aerodynamic design opti-
mization tools. Such tools are useful in continuous refinement of the dominant “wing-fuselage” configuration.
But in the long term, they can also serve as an inexpensive numerical testbed for more unconventional con-
figurations where empirical data may be lacking. However, at the moment, the use of aerodynamic design
optimization in large-scale 3D problems is still limited. For a gradient-based optimizer, hundreds of flow
solves and gradient evaluations may be required. Difficulties may also arise from noise in the design space
due to the high number of design variables, and from defining and modifying complex shapes and meshes
during the optimization cycle.

For gradient-based optimization, the main focus has been on fast and accurate computation of the
gradient. Finite-difference gradients used in early research3,4 were too impractical to handle large numbers
of design variables, and suffer from round-off errors when step sizes are too small. One major advance in
this area is the development of the adjoint method, developed independently by Pironneau5 and Jameson.6

Adjoint methods are further divided into continuous7–12 and discrete13–21 approaches. Pros and cons of
the two approaches have been discussed extensively,22,23 and both have been implemented successfully in
aerodynamic design optimization. The main advantage of the adjoint method is that the time required
for each gradient computation is nearly independent of the number of design variables. A gradient-based
optimizer is now an inexpensive alternative to optimizers using genetic algorithms. For a comparison between
these two classes of optimizers, see Zingg et al .24
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In this paper, we present our work on a robust and efficient gradient-based algorithm for aerodynamic
design in 3D. Our algorithm is based on the Newton-Krylov approach of Nemec and Zingg.16,17 The steady-
state flow solution is computed using the inexact-Newton method, with the Krylov subspace method flexible
generalized minimal residual (FGMRES)25,26 solving the linear system at each outer iteration. The optimizer
is based on the quasi-Newton optimizer BFGS (Broyden-Fletcher-Goldfarb-Shanno),27 and the adjoint equa-
tion is again solved by FGMRES. The surface geometry is parameterized by a B-spline control net, which
provides the design variables. We present results on the accuracy of the adjoint gradient, as well as single-
point results for cruise configuration optimization at transonic speed. Our objective is to demonstrate the
viability and efficiency of the present approach for large-scale aerodynamic shape optimization.

II. Problem Formulation

The goal of aerodynamic design optimization is to find a set of design variables X such that a scalar
objective function J is minimized:

min
X

J (X,Q) (1)

In this case, Q represents the flow solution. To ensure that the optimizer yields a physically realistic shape, a
set of inequality constraints may be imposed. For this research, only geometric constraints that are functions
of design variables are considered, thus

Cj(X) ≤ 0 (2)

In addition, the discrete flow equation must also be satisfied:

R(X,Q) = 0 (3)

A. Objective Functions

For aerodynamic shape optimization problems, the objective functions are based on performance measures,
such as lift and drag coefficients (CL, CD). In our present work, we consider lift-constrained drag mini-
mization and maximization of lift-to-drag ratio as our objectives. For lift-constrained drag minimization
problems, we employ the equation:

J =











ωL

(

1 − CL

C∗

L

)2

+ ωD

(

1 − CD

C∗

D

)2

if CD > C∗

D

ωL

(

1 − CL

C∗

L

)2

otherwise
(4)

Target lift and drag coefficients C∗

L, C∗

D, and weights ωL, ωD are parameters supplied by the user.
For maximizing the lift-to-drag ratio, we use the objective function:

J =
CD

CL

(5)

Finally, we also consider inverse design as a validation tool. The objective function for an inverse design
problem is:

J =
1

2

Np
∑

1

[

(Cp)i − (C∗

p )i

]2
(6)

In this case, the user specifies a known target pressure distribution on each node (C∗

p )i, and the optimizer
recovers the shape that minimizes the least-square error. Inverse design is useful as a validation tool for the
optimizer.

B. Geometry Parameterization and Design Variables

The geometry of the wing is parameterized using a CAD-free geometry control system based on Fudge et al ,28

where the wing surface is represented by a B-spline control net. Fig. 1 shows the parameterization of the
top surface of a ONERA M6 wing. In this example, the wing is represented using fourth-order B-spline
control points, with 9 control points in the spanwise direction, and 17 in the chordwise direction. Control
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Figure 1. An example of B-spline parameterization of an ONERA M6 wing.

points can be grouped together so that they can be described by planform variables, such as span, chord,
sweep, dihedral and twist. Furthermore, the location of each individual B-spline control point can also be
a design variable. The latter is necessary to change the wing cross-section. For example, the control points
that are highlighted in red in Fig. 1 are selected as design variables for our test cases. Increasing the number
of control points improves the flexibility of the parameterization, and allows the designer more control over
changes in the geometry.

C. Governing Equation

The governing equation for the optimization is the Euler equations. In transformed coordinates (ξ1, ξ2, ξ3),
they can be expressed in the form:

∂tQ+ ∂ξi
Ei = 0 (7)

where

Q =
1

J
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The scalar J denotes the Jacobian of the mapping from physical space to computational space, and the
Ui = uj∂xj

ξi are contravariant velocities.
The flow equations are discretized for a multi-block structured grid. In our parallel strategy, each block

in the grid and the component of Q is distributed to separate processors. As such, the discretization of Eq. 7
is done in parallel in each block. Second-order centered differencing is used in interior nodes, and first-order
one-sided differencing is used at block boundaries. For numerical stability, we use the JST scalar dissipation
model,29,30 with second-difference dissipation near shocks and fourth-difference dissipation everywhere else.
The blocks are coupled using simultaneous approximation terms (SATs). Details of the implementation of
SATs can be found in Hicken and Zingg.31

D. Geometric Constraints

We have implemented two geometric constraints: the volume enclosed by the geometry, and its surface area.
The constraints are expressed as penalty terms in the objective function. The volume penalty term is added
when the current volume V deviates from the initial volume V0 by more than a prescribed factor vf :

|V − V0| > vfV0 (8)
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Then the volume penalty equation is specified as a quadratic function:

Jp =
1

2
ωV (|V − V0| − vfV0)

2
(9)

The penalty weight ωV is user-supplied. Surface area constraints are implemented in a similar way, when
the surface area A deviates from the initial surface A0 by more than a factor af :

Jp =
1

2
ωA (|A−A0| − afA0)

2
(10)

Again, ωA and af are supplied by the user. Both penalty terms are added to the objective function:

J = J0 +
∑

i

Jpi (11)

By casting the constraints as penalty terms, our original optimization problem (Eq. 1) becomes an uncon-
strained problem.

III. Numerical Method

A. Flow Solver

Discretization of the Euler equations produces a set of nonlinear algebraic equations. At steady-state, they
can be represented by the equation

R(Q) = 0 (12)

which is the same flow constraint equation in Eq. 3. In order to find this steady solution, we start with an
initial guess Q0 based on freestream properties and apply the Newton method, solving a linear system in
the form:

(

∂R

∂Q

)(n)

∆Q(n) = −R(Q(n)) (13)

and updating Q until the norm of R(Q) is reduced to machine zero. In practice, reduction of 10 orders
of magnitude is sufficient to achieve a converged solution. Eq. 13 is solved using the Krylov subspace
iterative method FGMRES.26 When a Krylov method is used to solve the linear system, only a matrix-
vector product with the flow Jacobian is required, and this can be approximated by a Frechet derivative
(one-sided differencing):

∂R

∂Q
v ≈ R(Q+ ǫv) −R(Q)

ǫ
(14)

leading to a Jacobian-free approach for the flow solver. The flow Jacobian–or more accurately, its transpose–
is therefore only needed for the adjoint equation (see Section B) in the optimizer. The matrix is derived
by hand linearization of R(Q). The linearization of the artificial dissipation is performed by freezing the
coefficients. A complex step is used to linearize the SATs at block boundaries. Our approach is similar to
Nielsen and Kleb,32 but our application of the complex step method is limited to the SATs. To improve
the convergence of FGMRES, the linear system in Eq. 13 is right-preconditioned. The preconditioner uses a
first-order Jacobian matrix that combines the second- and fourth-difference dissipation terms:

κ̂2 = κ2 + σκ4 (15)

A value of 4 ≤ σ ≤ 6 is recommended based on previous work.33 An approximate-Schur procedure based
on Saad and Sosonkina34 is applied to the first-order Jacobian to form the preconditioner. Details of the
implementation can be found in Hicken and Zingg.31

The Newton method converges quadratically when Q is sufficiently close to the solution. However, during
the start-up phase, when the iterate is far from the solution, convergence may not be possible. Therefore,
for stability during the start-up period, the flow solver uses an approximate-Newton method, where the
first-order Jacobian replaces the full Jacobian in Eq 13. A spatially varying ime step is also added in during
the start-up phase to add diagonal dominance:

∆t
(n)
i =

∆t
(n)
ref

Ji(1 + 3
√
Ji)

(16)
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where the reference time step for iteration n is defined as

∆t
(n)
ref = A(B)n (17)

Values of A = 0.1 and B = 1.5 are used in the present work.
The flow solver switches to the Newton method when the normalized residual has dropped below a

threshold τ , ie:
||R(n)||2
||R(0)||2

≡ R(n) < τ (18)

For inviscid flows, τ = 0.1 is usually sufficient. During the Newton phase, the reference time step is based
on Mulder and van Leer:35

∆t
(n)
ref = max

[

α
(

R(n)
)

−β

,∆t
(n−1)
ref

]

(19)

with α = 1.0 and β = 1.75. As the residual decreases, the time step approaches infinity, and the full Newton
step is recovered.

B. Adjoint Solver

At the heart of any gradient-based optimization is the fast and accurate evaluation of the objective function
gradient G = dJ/dX. The gradient can be expressed as:

G =
∂J
∂X

− ψT ∂R

∂X
(20)

where the vector ψ is the adjoint variable. The adjoint variables are obtained from solving the adjoint
equation:

(

∂R

∂Q

)T

ψ =
∂J
∂Q

T

(21)

It should be noted that Eq. 21 is independent of the design variables. The adjoint system is solved by
adapting the strategy used for the flow solution. The adjoint system is solved using the Krylov subspace
method FGMRES as the iterative solver. The system is right-preconditioned using the approximate-Schur
preconditioner. We specify a linear tolerance of 10−8 for the adjoint system. Note that the left-hand-side of
the adjoint equation differs from Eq. 13 by a transpose. As a result, the matrix-free approach used in the
flow solver cannot be used, and the matrix must be formed explicitly. However, the matrix is not explicitly
transposed in the parallel environment. Instead, transpose operations on the Jacobian and preconditioner
in FGMRES are computed in parallel. The right-hand-side term ∂J /∂Q is evaluated analytically for each
objective function. Finally, the partial derivatives with respect to design variables ∂J /∂X, ∂R/∂X are
evaluated using second-order centered differencing.

C. Optimizer

When the geometric constraints are implemented as quadratic penalty terms, we can now consider the
optimization as an unconstrained problem. The BFGS quasi-Newton optimizer27 is used. In BFGS, the
inverse of the Hessian matrix is approximated to get the search direction. BFGS guarantees that the search
direction is a descent direction. A line-search algorithm with backtracking is used to satisfy the strong Wolfe
conditions. In the line-search algorithm, a cubic interpolant is constructed for the function

φ(α) ≡ J (Xn + αpn) (22)

where pn is the search direction, and α is the step size along that direction. The minimum of the interpolant
is either at its endpoint or in the interior, which can be found by the line-search iteration until the strong
Wolfe conditions are satisfied:

αk+1 = αk − (αk − αk−1)

[

φ′(αk) + r2 − r1
φ′(αk) − φ′(αk−1) + 2r2

]

(23)

where

r1 = φ′(αk−1) + φ′(αk) − 3
φ(αk−1) − φ(αk)

αk−1 − αk

(24)
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r2 =
√

r21 − φ′(αk−1)φ′(αk)

In the event that the line search algorithm stalls, the optimizer is re-started from the steepest descent direction
−G. The optimizer is considered converged when ||G||2 falls below a user-defined tolerance. However, for
many applications, it is often impractical to reduce the gradient by more than one or two orders of magnitude.

D. Variable Scaling

The scaling of the design variables is crucial to the performance of the optimizer. A problem is considered
poorly scaled if changes in one variable produces much larger variations in the value of the objective function
than other variables. This problem arises when we mix B-spline design variables with planform variables.
In our experience, ∆Xi from initial to optimized geometry range from 10−5 to 10−3 for B-spline variables,
to 100 for angle-of-attack and planform variables. We scale the design variables by their initial values:

Xs = L−1X (25)

where the entries in Xs are the scaled design variables, those in X are the unscaled design variables, and
the diagonal matrix L contains the initial unscaled design variables.

E. Grid Movement Strategy

A high-quality computational grid is necessary to compute the flow solution at each design iteration, and
also to evaluate the partial derivatives ∂J /∂X, ∂R/∂X in Eq. 20. For aerodynamic shape optimization
using structured grids, expensive grid re-generation can be avoided by employing a suitable grid movement
algorithm. Each time the wing surface changes, the grid is adjusted accordingly. For the current work, a
fast algebraic grid movement method is used. The movement of the nodes k = 2 to kmax along a normal
grid line is determined by the algebraic equation:

xnew
k = xold

k +
∆x1

2
[1 + cos (πSk)] (26)

where ∆x1 is the displacement of the surface node, and

Sk =

∑k

i=2 |xi − xi−1|
∑kmax

i=2 |xi − xi−1|
(27)

is the normalized arclength distance along the grid line.
An example of the grid movement algorithm is shown in Fig. 2. In this example, the root location of

an ONERA M6 wing is displaced, and the wing is rotated to a positive angle of attack. The grid at the
symmetry plane is shown.
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Figure 2. Example of algebraic grid movement algorithm.
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IV. Results and Discussion

We obtain flow solver and optimization results using a distributed-memory Beowulf-class cluster. The
cluster uses Intel Itanium 2 processors with a CPU speed of 1.5GHz. Each computation node consists of 4
processors, with 8GB of shared memory per node. The nodes are connected by a high-bandwidth low-latency
Myrinet network. Communication between processors is done using the message passing library MPICH.

For the inverse design and optimization cases, a 431,000-node grid over an ONERA M6 wing (Fig. 3) is
used. The grid has an H-H topology with 48 blocks. For gradient accuracy evaluations, a coarse ONERA
M6 grid with 146,000 nodes is used. This grid is too coarse to accurately capture the physics of the flow
field, but it can converge to machine zero quickly to verify the accuracy of the gradient.

X

Y

Z

Figure 3. H-H grid over an ONERA M6 wing used for inverse design and optimization cases.

A. Gradient Accuracy Evaluation

The factor that most affects the accuracy of the adjoint gradient is the linearization of the residual vector
R(Q) to obtain the flow Jacobian ∂R/∂Q. However, exact linearization of non-differentiable functions used
in the artificial dissipation terms poses a significant challenge. For the current tests, the second-difference
dissipation is turned off (ie: κ2 = 0), and the fourth-difference terms are linearized exactly in the flow
Jacobian.

Discrete adjoint gradients are compared to finite-difference gradients. The finite-difference gradient is
obtained using second-order centered-differencing, with a step size of ǫi = 10−5×Xi for each design variable.
The same step size is also used for evaluating ∂J /∂X and ∂R/∂X in the adjoint method for geometric
variables. For angle-of-attack design variables, ∂J /∂α is derived analytically, while ∂R/∂α is computed
using a complex step with ǫ = 10−20.

For the first case, a freestream Mach number of M∞ = 0.3 with an angle of attack of α = 5.0◦ is used.
The minimization of CD/CL (Eq. 5) is used as the objective function. The design variables are: change in
sweep angle ∆Λ from original configuration, 3 arbitrary B-spline control points, and the angle of attack. The
gradient components using the two methods are summarized in Table 1. The second case has a freestream
Mach number of M∞ = 0.84 with an angle of attack of α = 3.0◦. The lift-constrained drag minimization
objective (Eq. 4) is used, with the targets C∗

L = 0.35, C∗

D = 0.01 and weights ωL = 100.0 and ωD = 1.0 for
lift and drag respectively. The same design variables are used in the transonic test case. The results are
shown in Table 2. In both test cases, the adjoint gradient agrees well with the finite-difference gradient.

B. Inverse Design

The goal of the inverse design is to find a wing geometry that best matches a target pressure distribution
(Eq. 6). In this case, our target pressure is based on the surface pressure of the ONERA M6 wing at
M∞ = 0.80 at an angle of attack of α = 3.0◦. We begin with a wing that has the same planform as the
ONERA M6, but with a different cross section. The initial angle of attack was also perturbed to 3.5◦. The
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Design Variable Finite-Difference Adjoint Relative Diff.

∆Λ 6.7066465E-3 6.7131130E-3 0.09%

B-spline 1 1.4214947E-3 1.4228262E-3 0.09%

B-spline 2 3.7034843E-3 3.7012754E-3 0.06%

B-spline 3 7.8118853E-4 7.8110487E-4 0.01%

α 8.4637219E-3 8.4634355E-3 0.003%

Table 1. Gradient comparison for the first case.

Design Variable Finite-Difference Adjoint Relative Diff.

∆Λ 2.2621572 2.2641458 0.087%

B-spline 1 1.7330761 1.7333275 0.015%

B-spline 2 1.8041299 1.8038633 0.015%

B-spline 3 3.5786079 3.5786861 0.002%

α 3.7008111 3.7008132 0.0003%

Table 2. Gradient comparison for the second case.

initial wing cross section was arbitrarily created. Design variables are the z-coordinates of 165 B-spline
control points, previously described in Fig. 1, and the angle of attack.

Convergence history is shown in Fig. 4. After 600 iterations, the objective function has decreased by
seven orders of magnitude. The gradient L2-norm has also decreased by five orders of magnitude. This is
excellent convergence behaviour for such a large number of design variables. The initial and final geometries
are compared at various spanwise stations in Fig. 5. The converged geometry is indistinguishable from the
ONERA M6 wing.

Objective Function and Gradient Evaluations
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Figure 4. Convergence history for the inverse design case.

C. Single-Point Wing Optimization

We present results from a single-point optimization of a wing at a transonic speed. The goal of this optimiza-
tion case is to minimize drag at M = 0.90 while maintaining the lift coefficient of the original geometry. The
ONERA M6 wing initially operates at α = 2.50◦. At this operating condition, the lift and drag coefficients
are CL = 0.350 and CD = 0.0320 respectively. The lift-constrained drag minimization objective function
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Figure 5. Comparison of initial and final (ONERA M6) wing cross sections at various spanwise stations.

(Eq. 4) is used for this case, with a targets in lift and drag specified as:

C∗

L = 0.351

C∗

D = 0.0085

Weights on lift and drag are ωL = 20.0 and ωD = 1.0 respectively. The high value on ωL is found to be
necessary for the optimizer to maintain the lift coefficient.

For the optimization case, the design variables are the z-coordinates of 165 B-spline control points, the
angle of attack, the change in the leading-edge sweep angle at the wing root, the changes in two sweep angles
near the wing tip, chord, span, twist and dihedral, for a total of 173 design variables. The sweep angle is
measured as the difference between the optimized geometry and the original ONERA M6 wing. As the sweep
angle changes, the wing is sheared along the chordwise direction, thus the planform area remains constant
throughout the optimization cycle. A volume constraint (Eq. 9) was added to maintain the optimized wing’s
volume to within 2% of the original wing. A penalty weight of ωV = 50.0 was used for this case.

During the optimization cycle, a flow solve requires an average of 8.2 minutes to reduce the residual by
10 orders of magnitude, using 48 processors. The adjoint solver takes an average of 2.2 minutes to reduce
the residual by eight orders of magnitude. That the flow solution takes about 4 times longer to solve than
the adjoint solution is consistent with previous experience with our 2D adjoint solver.

The convergence history is shown in Figure 6. After 120 iterations, the objective function is reduced by
12 orders of magnitude and the gradient norm by over six. At this point, the lift and drag values are:

CL = 0.3510 and CD = 0.00850

in good agreement with the targets. This representing 73.4% improvement in drag. In the final geometry,
the wing span increased by 30.0%, the sweep angle Λ25% was increased slightly from 26.7◦ to 29.19◦. The
angle of attack was also increased 2.50◦ to 3.0565◦. A small twist angle of −7.35◦ was added. Finally, a
small dihedral angle of −2.41◦ was added. Mach contours and pressure coefficients on the surface of the
optimized wings are compared to the original ONERA M6 wing in Fig. 7. The optimizer has eliminated
the wave drag by removing the shock, and furthermore, since the drag lies vary close to the theoretical drag
for an elliptical load distribution, the induced drag has been reduced as well. The optimized wing’s cross
sections are compared to the ONERA M6 wing in Fig. 8.
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Objective Function and Gradient Evaluations
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Figure 6. Convergence history for the single-point optimization case.

V. Conclusion

An efficient Newto-Krylov algorithm for aerodynamic shape optimization in three dimensions is presented.
Our discrete gradient calculations are found to be accurate compared to finite differencing, and when a fast
algebraic grid movement algorithm is used, the gradient calculation time can be independent of the number
of design variables. A B-spline control net allows us to parameterize the wing geometry with a high degree
of flexibility. A test case is presented for the optimization of a cruise configuration at transonic speed. Our
algorithm is found to perform well with the combined number of B-spline and planform design variables
exceeding 170. This means that the optimizer can efficiently optimize the planform as well as the cross
section of the wing. Further research will focus on multi-point optimization, as well as maximizing the range
and endurance.
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