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Abstract Gaussian processes (GPs) are used for numerous different applica-
tions, including uncertainty quantification and optimization. Ill-conditioning
of the covariance matrix for GPs is common with the use of various kernels,
including the Gaussian, rational quadratic, and Matérn kernels. A common
approach to overcome this problem is to add a nugget along the diagonal
of the covariance matrix. For GPs that are not constructed with gradients,
it is straightforward to derive a nugget value that guarantees the condition
number of the covariance matrix to be below a user-set threshold. However,
for gradient-enhanced GPs, there are no existing practical bounds to select
a nugget that guarantee that the condition number of the gradient-enhanced
covariance matrix is below a user-set threshold. In this paper a novel approach
is taken to bound the condition number of the covariance matrix for GPs that
use the Gaussian kernel. This is achieved by using non-isotropic rescaling for
the data and a modest nugget value. This non-intrusive method works for GPs
applied to problems of any dimension and it allows all data points to be kept.
The method is applied to a Bayesian optimizer using a gradient-enhanced GP
to achieve deep convergence. Without this method, the high condition number
constrains the hyperparameters for the GP and this is shown to impede the
convergence of the optimizer. It is also demonstrated that applying this method
to the rational quadratic and Matérn kernels alleviates the ill-conditioning of
their gradient-enhanced covariance matrices. Implementation of the method is
straightforward and clearly described in the paper.
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1 Introduction

Gaussian processes (GPs) provide a method of constructing probabilistic surro-
gates [16,18]. The versatility and practicality of GPs have made them popular
for various applications. For example, GPs are used for classification [16], for
uncertainty quantification [5], and for optimization [20,15]. A GP requires a
covariance function and there are a wide variety of kernels that can be used
[16,1]. The Gaussian kernel, also known as the squared exponential kernel,
is the most commonly used. Some of the attractive properties of this kernel
include simplicity, hyperparameters that can be tuned, and its smoothness,
which allows for gradients to be used [24].

GPs can be constructed from not only function values but also gradients
of the function [15,24,3,25]. Using the gradients to construct the covariance
matrix allows for surrogates that not only match the function evaluations,
but also its gradient at the evaluation points, thus providing a surrogate that
is more accurate [15,25]. The use of gradients is particularly helpful for high-
dimensional problems, which are often encountered in optimization [29,6]. The
gradients are incorporated into the GP by modifying the structure of the co-
variance matrix, which is known as the direct method [8,3,24,12]. There is also
a less commonly used indirect method that does not require the structure of the
covariance matrix to be modified, which also suffers from ill-conditioning [27].
In fields such as geostatistics, Kriging models and gradient-enhanced Kriging
models are used [3]. The covariance matrix for a Kriging model typically also
uses a kernel and is equivalent to the covariance matrix for a GP.

The problem of ill-conditioned gradient-free covariance matrices for GPs
is common for a wide range of kernels [11,28], including the Gaussian kernel
[1]. The factors that cause the ill-conditioning of the gradient-free covariance
matrix for GPs has been studied in detail in [4]. It was identified that the
ill-conditioning problem gets worse as the data points get closer together and
the importance of using a nugget to increase the diagonal entries of the co-
variance matrix was highlighted. The role of the nugget to help alleviate the
ill-conditioning of positive definite matrices and GPs specifically is well studied
and it is extensively used [17,2,7]. For gradient-free GPs, the use of a nugget
is sufficient to ensure that the condition number of the covariance matrix is
below a user-set threshold. However, it is impractical to use this approach on
its own for gradient-enhanced GPs since it can require a significantly larger
nugget, which can negatively impact the accuracy of the surrogate [3]. Fur-
thermore, the gradient-enhanced covariance matrices can be significantly more
ill-conditioned than their gradient-free counterparts [9].

Various strategies have been used to mitigate the ill-conditioning problem
of gradient-enhanced covariance matrices. For example, a minimum distance
between evaluation points was imposed in [15]. This helped alleviate some of
the ill-conditioning problems since data points that are close together result
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in two rows of the covariance matrix being nearly identical, which causes the
matrix to be ill-conditioned. Unfortunately, as the authors highlighted, this
constraint is undesirable since data points naturally get closer together as an
optimizer gets closer to a minimum. The authors in [24] applied a discrete
Fourier transform to modify the application of the covariance matrix. Unfor-
tunately, this method introduced errors due to the lack of periodic boundary
conditions, and the storage requirement for the Fourier frequencies was high-
lighted as a bottleneck. Another method that has been used involves removing
function and gradient evaluations from the construction of the covariance ma-
trix until its condition number is below a user-set threshold [13,3]. All of these
methods are empirical in nature and do not provide an upper bound on the
condition number. Furthermore, these methods generally require that some
data points be excluded from the construction of the covariance matrix. The
objective of the present paper is to present a method that does not suffer
from these drawbacks, is non-intrusive, and is straightforward to implement
in existing codes that utilize Gaussian processes.

In Section 2 the notation used in this paper is introduced. The GP and the
Gaussian kernel are then presented in Section 3. The role of the nugget to de-
crease the condition number of the covariance matrix is detailed in Section 4.
The ill-conditioning problem for the Gaussian kernel along with the rational
quadratic and Matérn 5

2 kernels is highlighted in Section 5. In Section 6 the
condition number of the gradient-free covariance matrix is investigated us-
ing Gershgorin’s circle theorem. This analysis is repeated in Section 7 for the
gradient-enhanced GP. The results from Section 7 are then used in Sections 8
and 9 to derive required values for the nugget and the minimum Euclidean dis-
tance between data points to ensure that the condition number of the gradient-
enhanced covariance matrix is below a user-set threshold. The required steps
to implement the method of ensuring that the condition number of the covari-
ance matrix is below a certain threshold are provided in Section 10. In this
same section, an optimization test case is presented to demonstrate how the
new method allows for deeper convergence to be achieved as a result of the
improved conditioning of the covariance matrix.

2 Notation

Consider the function f(x, y, g(x); d, nx), where x and y are arbitrary variables,
g(x) is a nested function, while d ∈ Z+ and nx ∈ Z+ are parameters that
indicate the dimension and the number of evaluations in the parameter space,
respectively. When a function f(x, y, g(x); d, nx) is presented as f(x, g(x)), the
omitted variables and parameters are implicitly held constant. A variable with
an asterisk indicates the value of the variable that maximizes the function. For
example, x∗ is the value of x that maximizes f(x, g(x)). A function with an
asterisk indicates that it is maximized with respect to all of its variables,
i.e. f∗ = f(x∗, y∗, g(x∗)). Upper and lower bounds on a function f(·) are
indicated as uf (·) and `f (·), respectively. The lower and upper bounds may



4 André L. Marchildon, David W. Zingg

take different arguments than the function they are bounding and are usually
not tight bounds, unlike for example f∗, which represents a tight upper bound
on f .

Matrices are represented as sans-serif capital letters. For example, I repre-
sents the identity matrix. Vectors are denoted in bold font, e.g. x is a vector of
length d representing one location in a parameter space. The i-th parameter

of the j-th location in the parameter space is represented by x
(i)
j .

For figures, solid lines are used for functions, dashed lines are for lower and
upper bounds, and dotted lines indicate locations of critical points such as the
maximum of a function.

3 Gaussian process and Gaussian kernel

When performing tasks such as optimization or uncertainty quantification, a
function of interest will be evaluated at a finite number of points in a pa-
rameter space. Since the original function can be expensive to evaluate, we
are interested in having an inexpensive estimate of this function that can be
sampled at any point in the parameter space. A GP provides a surrogate that
is normally distributed at each point in the parameter space and is inexpen-
sive to evaluate. A GP requires a mean and a covariance function. The mean
function is simply selected to be a constant and we use the popular Gaussian
kernel for the covariance function

k(x,y) = e−
∑d
i=1 θi(x

(i)−y(i))
2

, (1)

where θ is a vector of hyperparameters, while x and y are points in the
parameter space. To have gradient-enhanced GPs, which are desired for their
improved fidelity relative to their gradient-free counterpart [24], we also require
the derivatives of the kernel with respect to its inputs

∂k(x,y)

∂x(i)
= −2θi

(
x(i) − y(i)

)
k(x,y) (2)

∂k(x,y)

∂y(j)
= 2θj

(
x(j) − y(j)

)
k(x,y) (3)

∂2k(x,y)

∂x(i)∂y(j)
=
(

2δijθi − 4θiθj

(
x(i) − y(i)

)(
x(j) − y(j)

))
k(x,y), (4)

where δij is the Kronecker delta. The kernel handles inputs that are matrices
as follows

k(X,Y) =


k(X1,:,Y1,:) k(X1,:,Y2,:) . . . k(X1,:,Yny,:)
k(X2,:,Y1,:) k(X2,:,Y2,:) . . . k(X2,:,Yny,:)

...
...

. . .
...

k(Xnx,:,Y1,:) k(Xnx,:,Y2,:) . . . k(Xnx,:,Yny,:),

 , (5)

where Xi,:, is the i-th row of X, while nx and ny are the number of rows in X
and Y, respectively.
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The matrix X is used to hold the locations where a function of interest and
its gradient have been evaluated. The vector x is the location at which the
surrogate is evaluated, and the vector f holds the function evaluations at all
rows in X. The gradient evaluations at the rows in X form a matrix F∇ of size
nx × d that is reshaped into the vector f∇ of length nx · d. The mean and
variance of the surrogate for the gradient-free case can be evaluated with

µf (x) = µ̂f + kT (x) (K + ηKI)
−1

(f − µ̂f ) (6)

σ2
f (x) = σ̂2

f

(
1− kT (x) (K + ηKI)

−1
k(x)

)
, (7)

where k = k(X,x) and K = k(X,X) is the gradient-free covariance matrix. The
hyperparameters σ̂f and µ̂f are set by optimizing the log-likelihood function,
which is presented at the end of this section. Finally, the nugget ηK ∈ R+ is
used when the data are noisy and it also helps to reduce the condition number
of the covariance matrix, as detailed in Section 4.

To evaluate the surrogate with the gradient-enhanced covariance matrix
we require

K∇ =


k(X,X) ∂k(X,X)

∂y(1)
. . . ∂k(X,X)

∂y(d)

∂k(X,X)
∂x(1)

∂2k(X,X)
∂x(1)∂y(1)

. . . ∂2k(X,X)
∂x(1)∂y(d)

...
...

. . .
...

∂k(X,X)
∂x(d)

∂2k(X,X)
∂x(d)∂y(1)

. . . ∂2k(X,X)
∂x(d)∂y(d)

 , k∇ =


k(X,x)
∂k(X,x)
∂x(1)

...
∂k(X,x)
∂x(d)

 , (8)

where k∇ is of length nx(d + 1) and K∇ is the gradient-enhanced covariance
matrix of size nx(d+ 1)× nx(d+ 1). The mean and variance of the surrogate
model with the gradient-enhanced covariance matrix are calculated with

µf (x) = µ̂f + kT∇(x) (K∇ + ηK∇ I)
−1
[
fT − µ̂f ,fT∇

]T
(9)

σ2
f (x) = σ̂2

f

(
k(x,x)− kT∇(x) (K∇ + ηK∇ I)

−1
k∇(x)

)
, (10)

where ηK∇ ∈ R+. The hyperparameters are commonly selected by maximizing
the marginal likelihood [22], which is given by

L(θ, µ̂f , σ̂
2
f ;X,f , ηK∇) =

e
− [fT−µ̂f ,fT∇](K∇(θ)+ηK∇

I)
−1

[fT−µ̂f ,fT∇]
T

2σ̂2
f(

2πσ̂2
f

)nx(d+1)
2 √

det (K∇(θ) + ηK∇ I)

, (11)

where the gradient-free case is analogous and ηK∇ is set by the user. It is com-
mon to consider the marginal log-likelihood by taking the natural logarithm of
L [22]. The optimal values of µ̂f and σ̂f can be found by differentiating ln(L)
with respect to these hyperparameters and setting the derivative to zero. As
will be shown in Section 4, a nugget can be added to the diagonal of K to en-
sure that its condition number is smaller than a user-set threshold. However,
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this same approach cannot be used on its own for K∇ since it may require
a significantly larger nugget value, which can significantly degrade the accu-
racy of the surrogate [3]. The previous methods that have been used to help
alleviate the ill-conditioning problem of K∇ are not always sufficient, and a
constraint on the condition number may still be required in the optimization
of the marginal log-likelihood [14]

θ̄(X; ηK∇) = argmax
θ

ln(L(θ;X, ηK∇)) such that κ(K∇(θ;X)+ηK∇ I) ≤ κmax.

(12)
The constraint on the condition number can severely limit the selection of the
hyperparameters and this can impact the effectiveness of the GP to model the
function of interest, as will be demonstrated in Section 10. An efficient way of
solving Eq. (12) is with a gradient-based optimizer [26,23,14]. However, the
marginal log-likelihood is often multimodal, which creates the risk of finding
a local minimum [21]. As such, if a gradient-based optimizer is used, several
starting solutions should be used to avoid finding a local optimal with a small
marginal likelihood.

4 The role of the nugget

The nugget is a positive scalar that is added to the diagonal of the covariance
matrix to help alleviate the ill-conditioning problem. We derive bounds for
ηK and ηK∇ to ensure κ(K(θ) + ηKI) ≤ κmax and κ(K∇(θ) + ηK∇ I) ≤ κmax,
respectively. In the derivations we use only the trace of K and K∇ in addition to
the symmetric positive definite property of these matrices. The eigenvalues are
ordered such that λmin = λ1 ≤ λ2 ≤ . . . ≤ λnλ = λmax, where nλ is the number
of eigenvalues. For K we have nλ = nx and for K∇ we have nλ = nx(d + 1).
The traces for K and K∇ are

tr (K) = nx (13)

tr (K∇) = nx(1 + 2θT1). (14)

The impact of adding η to the diagonal of a matrix and its use to bound the
condition number is considered in the following lemma.

Lemma 1 For the condition number defined using the Euclidean norm and
a symmetric positive definite matrix A, a lower bound for η that ensures that
κ (A + ηI) ≤ κmax, where κmax is a user-set upper bound on the condition
number, is

η ≥ λmax

κmax − 1
. (15)

Proof Consider the following relations

κ(A + ηI) =
λmax + η

λmin + η
<
λmax

η
+ 1 ≤ κmax,
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where all the eigenvalues are increased by η since it is added to the diagonal
of A, which has real eigenvalues since it is symmetric. We recover Eq. (15) by
solving the last inequality for η.

For a positive definite matrix we have λmax(A) < tr (A) since the sum of
a matrix’s eigenvalues is equal to its trace. From Lemma 1 and Eqs. (13) and
(14) we can thus ensure that κ(K+ ηK) ≤ κmax and κ(K∇+ ηK∇) ≤ κmax with

ηK =
nx

κmax − 1
(16)

ηK∇ =
nx(1 + 2θT1)

κmax − 1
. (17)

From Eq. (16), ηK only depends on nx and κmax. Meanwhile, from Eq. (17),
ηK∇ depends on nx, κmax, and also θ. As such, it is not possible to have a
moderate value of ηK∇ to ensure κ (K∇(θ) + ηK∇ I) ≤ κmax without restricting
θ. In Sections 8 and 9 additional information on the structure of K∇ is used
to derive a smaller value of ηK∇ that ensures κ(K∇ + ηK∇ I) ≤ κmax. Those
sections use Geshgorin’s circle theorem to bound the eigenvalues of K∇, as is
demonstrated for K in the following section.

5 The ill-conditioning problem

In this paper the focus is on the Gaussian kernel. However, various other ker-
nels are also known to suffer from ill-conditioned covariance matrices [1]. In
this section we highlight the ill-conditioning of the gradient-enhanced covari-
ance matrices that use the Gaussian, rational quadratic, and Matérn kernels.
The rational quadratic kernel is given by

k(x,y) =

(
1 +

1

α

d∑
i=1

θi(xi − yi)2

)−α
, (18)

where α > 0 is a hyperparameter that is set by maximizing the marginal
log-likelihood from Eq. (12). The Matérn kernel can be parametrized with a
hyperparameter ν and is most commonly used with ν ∈ { 1

2 ,
3
2 ,

5
2}. We consider

the Matérn kernel with ν = 5
2 since it is twice continuously differentiable [16],

and can thus be used by a gradient-enhanced GP

k(x,y) =

(
1 +
√

5ζ +
5ζ2

3

)
e−
√

5ζ , (19)

where ζ(x,y) =
√∑d

i=1 θi(xi − yi)2. The Gaussian kernel can be recovered

from the Matérn and rational quadratic kernels with ν → ∞ and α → ∞,
respectively [16].

The condition numbers for the gradient-enhanced covariance matrices us-
ing the Gaussian, rational quadratic, and Matérn 5

2 kernels are compared in
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(a) Gaussian kernel with
vmin = 10−4

(b) Rational quadratic kernel
with α = 2 and vmin = 10−4

(c) Matérn 5
2

kernel with

vmin = 10−4

(d) Gaussian kernel with
vmin = 10−2

(e) Rational quadratic kernel
with α = 2 and vmin = 10−2

(f) Matérn 5
2

kernel with

vmin = 10−2

(g) Gaussian kernel with
vmin = 2

√
2

(h) Rational quadratic kernel
with α = 2 and vmin = 2

√
2

(i) Matérn 5
2

kernel with

vmin = 2
√

2

Fig. 1: Comparing κ (K∇(θ) + ηK∇ I) for the Gaussian, Matérn 5
2 , and rational

quadratic kernels for d = 2, nx = 10, and ηK∇ = ηK = 10−9 from Eq. (16). The
star marker indicates where the marginal likelihood from Eq. (12) is maximized
and red regions indicate where κ (K∇(θ) + ηK∇ I) ≥ κmax = 1010.

Fig. 1. The set of data points was created with a Latin hypercube sampling
and nx = 10. An isotropic rescaling was then used to change the minimum
Euclidean distance vmin between data points in order to evaluate its impact
on the condition number of the gradient-enhanced covariance matrix. While
the function of interest does not modify the condition number of the gradient-
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enhanced covariance matrix, it does impact the solution that maximizes the
marginal log-likelihood from Eq. (12). For our function of interest we use the
Rosenbrock function

f(x) =

d−1∑
i=1

[
a

(
x(i+1) −

(
x(i)
)2
)

+
(

1− x(i)
)2
]

(20)

with a = 10 and d = 2.

For the gradient-free case there are various factors that have been identified
that contribute to an ill-conditioned covariance matrix, including when the
characteristic lengths tend to zero [4]. However, as can be seen in Fig. 1, the
gradient-enhanced covariance matrix can become ill-conditioned not only when
the characteristic lengths are small, but also when they are large.

The subfigures in the top row of Fig. 1, i.e. Figs. 1a, 1b, and 1c, are for
the Gaussian, rational quadratic, and Matérn 5

2 kernels, respectively, with
vmin = 10−4. The location where the marginal log-likelihood is maximized,
which is indicated by the star marker, corresponds with a gradient-enhanced
covariance matrix with a condition number greater than κmax for all three
kernels. For the second row of subfigures in Fig. 1, i.e. Figs. 1d, 1e, and 1f,
vmin is increased to 10−2 and the region in the hyperparameter space where
κ (K∇(θ) + ηK∇ I) ≥ κmax = 1010 is reduced significantly. Once again, the star
markers for all three kernels remain in the red region, indicating the condition
number is larger than κmax = 1010. Finally, in the last row of Fig. 1, i.e.
Figs. 1g, 1h, and 1i, we have vmin = 2

√
2. In this case the star marker for

all three kernels corresponds with a condition number that is smaller than
κmax = 1010.

It is clear from Fig. 1 that the condition number of the gradient-enhanced
covariance matrix using the Gaussian kernel is the largest, followed closely
by the rational quadratic kernel with α = 2, while the Matérn 5

2 kernel has
the smallest condition number for all three cases of vmin. Additionally, for
all three kernels the condition number of the gradient-enhanced covariance
matrix is inversely related to vmin. This trend is proved for the Gaussian
kernel and used in Section 8 to demonstrate that having vmin ≥ 2

√
d ensures

that κ (K∇(θ) + ηK∇ I) ≤ κmax for the Gaussian kernel under mild conditions.
While the proofs are specific to the Gaussian kernel, it is clear from Fig. 1 that
with vmin = 2

√
d, both the rational quadratic α = 2 and Matérn 5

2 kernels
have κ (K∇(θ) + ηK∇ I) ≤ κmax at the star marker. The results from this paper
can thus be applied to other kernels to alleviate the ill-conditioning problem
of their gradient-enhanced covariance matrices.

6 Bounding κ(K + ηKI) with Geshgorin’s circle theorem

Gershgorin’s circle theorem bounds the location of a matrix’s eigenvalues in
the complex plane. The eigenvalues are further restricted to the real axis since
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K and K∇ are symmetric. With Gershgorin’s circle theorem we get the follow-
ing lower bound for the smallest eigenvalue and upper bound for the largest
eigenvalue of a matrix A with

λmin(A) ≥ min
i

(Aii − ri) ≥ min
i

(Aii − uri) = `λmin
(A) (21)

λmax(A) ≤ max
i

(Aii + ri) ≤ max
i

(Aii + uri) = uλmax
(A), (22)

where ri =
∑
j 6=i |Aij | and uri is an upper bound on ri. The bounds `λmin

and uλmax represent the lower and upper bounds on the eigenvalues of a given
matrix from the application of Gershgorin’s circle theorem. Since the positive
definite property of the matrix is not used, we may have `λmin

< 0. The
condition number of a positive definite matrix based on the Euclidean norm
can be bounded with

uκ(A + η) =
uλmax(A) + η

max(0, `λmin
(A)) + η

. (23)

All of the diagonal entries in K are one, which simplifies Eqs. (21) and (22) to

`λmin
= 1− urK (24)

uλmax
= 1 + urK , (25)

where urK is an upper bound on the sum of the off-diagonal entries of K that
is considered in Proposition 1.

To simplify the derivation of urK we consider the case of θ = θ1. This
simplification reduces the number of hyperparameters in the analysis from d
to one. This simplification is used both in this section as well as in Section 7 for
the analysis of K∇. In Section 10.4 an iterative non-isotropic rescaling method
is introduced to ensure θ = θ1. Therefore, the simplification θ = θ1 does not
limit the analysis of this section or the next one for K∇. An upper bound on
the sum of absolute values of the off-diagonal entries for K is considered in the
next proposition.

Proposition 1 The maximum sum of the off-diagonal entries for one row of
K(θ) when θ = θ1 is bounded from above by maxj

∑nx
i=1,i6=j Kij ≤ urK , where

urK(θ; vmin, nx) = (nx − 1)e−θv
2
min , (26)

where vmin is the shortest Euclidean distance between any two rows in the
matrix X, i.e. between two evaluated points in the parameter space.

Proof Eq. (5) provides the structure of the matrix K, which is used to derive
the upper bound on the sum of the off-diagonal entries. When θ = θ1, the
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(a) K with vmin = 1.75. (b) K∇ with vmin = 2.5.

Fig. 2: Bounds on the eigenvalues of the covariance matrices using Gershgorin’s
circle theorem for the case with d = 2, nx = 10, and θ = 1.

result is the same for any row considered and we thus arbitrarily select the
j-th row of K

rK,j =

nx∑
i=1
i 6=j

e
−
∑d
m=1 θ

(
x
(m)
j −x(m)

i

)2

=

nx∑
i=1
i 6=k

e−θ‖xj−xi‖
2
2

≤ (nx − 1)e−θv
2
min ,

which holds for all rows in K since vmin = mini6=j ‖xj − xi‖2.

From Eq. (26) it is clear that vmin plays an important role in bounding the
condition number of K. The same is true for bounding the condition number
of K∇, as shown in Section 7 below. Given a matrix Xinit with vmin,init > 0 as
the minimum Euclidean distance between all rows, i.e. evaluated points in the
parameter space, we can scale the data isotropically with

X = τ Xinit (27)

F∇ =
1

τ
F∇,init, (28)

where τ =
vmin,set

vmin,init
, and vmin,set is the new minimum Euclidean distance be-

tween rows in X.
Fig. 2a shows the bounds on λmin and λmax from Eqs. (24) and (25) for

vmin = 1.75, θ = 1, d = 2, and nx = 10. The bounds use Gershgorin’s circle
theorem, which bounds the eigenvalues in the complex plane, but the eigen-
values are further limited to the solid green line on the real axis since K is
symmetric. For the case plotted in Fig. 2a, it is clear that the bound on λmax

from Eq. (25) and Gershgorin’s circle theorem is significantly tighter than sim-
ply using the trace of K from Eq. (13).

Fig. 3a shows the minimum and maximum eigenvalues of K for d = 2,
nx = 10, vmin = 2

√
2, and ηK = 10−9 as a function of θ along with its bounds
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(a) Min and max eigenvalues of K along
with their respective bounds from Eqs. (24)
and (25) for vmin = 1.75.

(b) The condition number of K + ηKI along
with its upper bound from Eq. (23).

Fig. 3: Case with d = 2, nx = 10, and ηK = 10−9 for the gradient-free covari-
ance matrix K.

using Eqs. (24) and (25). Fig. 3b compares the condition number along with its
derived upper bound from Eq. (23) for two covariance matrices. The covariance
matrices are both constructed from a single matrix X rescaled isotropically
using Eq. (27) to have different minimum Euclidean distances between its
rows. From Fig. 3b, we see that the impact of increasing vmin is to shift the
plots of λmin(θ), λmax(θ), and κ(K(θ) + ηKI) to the right. While changing
vmin does not impact the maximum value of κ (K + ηKI), it does impact the
maximum of κ (K∇ + ηK∇ I), as is shown in Section 7.

7 Relations for bounding the condition number of K∇ + ηK∇ I

7.1 Bounding the sum of the off-diagonal entries of K∇

As was done in Section 6, the analysis in this section uses the simplification
θ = θ1. In Section 10.4 it is demonstrated that non-isotropic rescaling of X
and F∇ can be used to ensure the solution to Eq. (12) also satisfies θ = θ1.
As such, the analysis in this section is applicable even when the solution to
Eq. (12) prior to the rescaling of X and F∇ does not satisfy θ = θ1.

The matrix K∇ has different values along its diagonal and the matrix struc-
ture is different for the first nx rows and the remaining d · nx rows. The two
following propositions provide upper bounds on the sum of the absolute values
of the off-diagonal entries of K∇.

Proposition 2 The sum of the absolute values of the off-diagonal entries for
any of the first nx rows of K∇(θ) when θ = θ1 is bounded by

ura(θ, va(θ; vmin, d); d, nx) = (nx − 1)
(

1 + 2θ
√
dva

)
e−θv

2
a , (29)
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where

va(θ; vmin, d) = max (vmin, v
∗
a(θ; d)) (30)

v∗a(θ; d) = argmax
v

ura(θ, v); d, nx). (31)

Proof The structure of K∇ is provided by Eq. (8). For θ = θ1, the derivation
is the same for any of the first nx rows and we thus arbitrarily consider the
a-th row of K∇, where 1 ≤ a ≤ nx

ra (θ;X) =

nx∑
i=1
i 6=a

e−θ‖xa−xi‖
2
2 +

d∑
j=1

nx∑
i=1
i 6=a

2θ|x(j)
a − x

(j)
i |e

−θ‖xa−xi‖22

=

nx∑
i=1
i 6=a

1 + 2θ

d∑
j=1

|x(j)
a − x

(j)
i |

 e−θ‖xa−xi‖
2
2

≤
nx∑
i=1
i 6=a

(
1 + 2θ

√
d‖xa − xi‖2

)
e−θ‖xa−xi‖

2
2

≤ (nx − 1)
(

1 + 2θ
√
dva

)
e−θv

2
a ,

where
∑d
j=1 |x

(j)
i − x

(j)
j | = ‖x

(j)
i − x

(j)
j ‖1 ≤

√
d‖x(j)

i − x
(j)
j ‖2. The parameter

va is selected to ensure ura is an upper bound for ra and is thus given by
Eq. (30).

Proposition 3 The sum of the absolute values of the off-diagonal entries for
any of the last d · nx rows of K∇(θ) when θ = θ1 is bounded by

urb(θ, vb(θ; vmin, d); d, nx) = 2θvb(nx − 1)
(

1 + 2θ
√
d vb

)
e−θv

2
b , (32)

where

vb(θ; vmin, d) = max (vmin, v
∗
b (θ; d)) (33)

v∗b (θ; d) = argmax
v

urb(θ, v; d, nx). (34)

Proof We consider the b-th row of K∇, where b = k1nx + k2, 1 ≤ k1 ≤ d,
1 ≤ k2 ≤ nx, and we follow a similar approach to the one taken to prove
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Proposition 2

rb(θ;X) =

nx∑
i=1

2θ|x(k1)
k2
− x(k1)

i |e−θ‖xk2−xi‖
2
2

+

d∑
j=1

nx∑
i=1

4θ2|x(k1)
k2
− x(k1)

i ||x(j)
k2
− x(j)

i |e
−θ‖xk2−xi‖

2
2

=

nx∑
i=1

2θ|x(k1)
k2
− x(k1)

i |

1 + 2θ

d∑
j=1

|x(j)
k2
− x(j)

i |

 e−θ‖xk2−xi‖22
≤

nx∑
i=1

[
2θ‖xk2 − xi‖2

(
1 + 2θ

√
d‖xk2 − xi‖2

)]
e−θ‖xk2−xi‖

2
2

≤ 2θvb(nx − 1)
(

1 + 2θ
√
d vb

)
e−θv

2
b ,

where the relation |x(k1)
k2
− x

(k1)
i | ≤ ‖xk2 − xi‖2 was used. To ensure rb is

bounded from above, the parameter vb is given by Eq. (33).

As a result of Propositions 2 and 3 and Eqs. (21) and (22), the eigenvalues
of K∇ are bounded from below and above by

`λmin(θ; vmin, d, nx) = min(1− ura , 2θ − urb) (35)

uλmax(θ; vmin, d, nx) = max(1 + ura , 2θ + urb). (36)

The application of Eqs. (35) and (36) is shown in Fig. 2b for the case with
d = 2, nx = 10, and θ = 1. For the case in Fig. 2b, the bounds provided on
λmin and λmax from Eqs. (35) and (36) are tighter than the previous bounds,
which were λmin > 0 and λmax < tr (K∇).

The upper bounds ura(θ, va) and urb(θ, vb) from Eqs. (29) and (32) are
plotted as a function of va and vb, respectively, in Fig. 4 with θ = 1

2 ,
d = 10, and nx = 4. The shaded cyan region represents the range of Eu-
clidean distances between two rows in the matrix X. As will be explained in
Section 7.4, only the minimum Euclidean distance, i.e. vmin, is important for
bounding the condition number of K∇, which is why vmax is omitted from
Eqs. (30) and (33). For the case shown in Fig. 4, there is a unique maximum
for both ura(va) and urb(vb). In Sections 7.2 and 7.3 it is proven that there is
always a unique maximum for d ∈ Z+, nx ∈ Z+ \ 1, and vmin > 0.

Fig. 5 plots ura(θ, va(θ)) and urb(θ, vb(θ)) for nx = 4, d = 10, and
vmin =

√
2. In Sections 7.2 and 7.3 the functions u∗ra(vmin, d, nx) and

u∗ra(vmin, d, nx), i.e. the maximum of ura and urb , respectively, are derived.
This is then used in Sections 8 and 9 to derive values of vmin and ηK∇ to
ensure κ (K∇ + ηK∇ I) ≤ κmax.
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Fig. 4: The dependence of the upper bounds ura and urb from Eqs. (29) and
(32), respectively, on the distance parameter v for the case with nx = 4, d = 10,
and θ = 1

2 .

Fig. 5: Upper bounds ura(θ, va(θ)) and urb(θ, vb(θ)) from Eqs. (29) and (32),
respectively, for nx = 4, d = 10, and vmin =

√
2.

7.2 Maximum of ura(θ, va(θ))

In this subsection the maximum of ura(θ, va(θ; vmin, d); d, nx) is derived for
θ > 0, vmin > 0, d ∈ Z+, and nx ∈ Z+. The maximum of ura(θ, va(θ)) as a
function of θ is considered in the next proposition.

Proposition 4 For θ ≥ 0, d ∈ Z+, and nx ∈ Z+, the maximum of ura(θ, va(θ))
is at

θ∗a(va, d) = max

(
0,

2
√
d− va

2
√
dv2
a

)
. (37)

Proof We find the maximum of ura(θ, va(θ)) by using the chain rule

Dura(θ, va(θ))

Dθ
=
∂ura
∂θ

+

�
��>

0
∂ura
∂va

∂va
∂θ if va(θ) = v∗a(θ) > vmin

∂ura
∂va �

��
0

∂va
∂θ if va(θ) = vmin,

where
∂ura
∂va

= 0 when va(θ) = v∗a(θ) since v∗a is the critical point that maxi-
mizes ura(va). This was verified by checking the second-order optimality con-
dition, which is omitted for conciseness. We can thus find the maximum of
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ura(θ, va(θ)) by finding the root of its partial derivative with respect to θ

∂ura
∂θ

= (nx − 1)
(

2
√
dva − v2

a(1 + 2
√
dθva)

)
e−θv

2
a = 0

θ∗a =
2
√
d− va

2
√
dv2
a

,

where we recover Eq. (37) by including a max function to ensure θ∗a ≥ 0, which
completes the proof.

In order to calculate θ∗a from Eq. (37) we need to evaluate va(θ∗a) from
Eq. (30). At first it might appear that we have an implicit equation but it will
be proven in this subsection that va(θ∗a) = vmin. From Eq. (30), va is simply
the maximum of vmin and v∗a, where the latter is provided by the following
proposition.

Proposition 5 For va > 0, d ∈ Z+, nx ∈ Z+, and θ > 0, the function ura(va)
is maximized at va = v∗a, where

v∗a(θ; d) =
−1 +

√
1 + 8dθ

4θ
√
d

. (38)

Proof We demonstrate there is a unique maximum of ura(va) for va > 0 by
calculating its derivative

∂ura
∂va

= −2θ(nx − 1)
[
2θ
√
dv2
a + va −

√
d
]
e−θv

2
a . (39)

The positive root for the quadratic equation in square brackets is given by
Eq. (38). For va > v∗a, the quadratic in Eq. (39) is positive and thus

∂ura
∂va

< 0.

On the other hand, for 0 < va < v∗a it is clear that
∂ura
∂va

> 0. Therefore, the
critical point va = v∗a is the maximum of ura(va).

The following proposition considers the trends of v∗a(θ; d) with respect to
θ and d, which are required to prove that at θ = θ∗a we have v∗a < vmin and
thus va(θ∗a) = vmin.

Proposition 6 For d ∈ Z+ and θ > 0 the function v∗a(θ; d) is monotonically
increasing with respect to d, monotonically decreasing with respect to θ, and is
bounded from above by

uv∗a = min

(√
d,

1√
2θ

)
. (40)

Proof The proof can be found in Section 12.1.

The following proposition proves that va(θ∗a) = vmin, which is needed to
evaluate θ∗a from Eq. (37).
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Proposition 7 For d ∈ Z+, vmin > 0, and θ ≥ θ̂a, which includes θ ≥ θ∗a, we
have va(θ) = vmin, where

θ̂a(vmin, d) =

√
d− vmin

2
√
d v2

min

. (41)

Proof We begin by solving for θ̂a(vmin, d), which is the value of θ at which we
have va(θ) = v∗a(θ) = vmin

vmin =
−1 +

√
1 + 8dθ̂a

4θ̂a
√
d

16v2
mindθ̂

2
a + 8vmin

√
dθ̂a + 1 = 1 + 8dθ̂a,

where we recover Eq. (41) by isolating for θ̂a in the last equation. From
Proposition 6 we know that v∗a(θ) is monotonically decreasing with respect

to θ. Therefore, for θ > θ̂a we have v∗a(θ) < vmin and thus from Eq. (30) it

follows that va(θ > θ̂a) = vmin. From Eqs. (37) and (41) we have the relation

θ∗a = 2
√
d−vmin

2
√
d

>
√
d−vmin

2
√
d

= θ̂a. We thus have va(θ ≥ θ∗a) = vmin, which

completes the proof.

As a result of Propositions 4 and 7 we know that the maximum of ura(θ, va; d, nx)
is at θ = θ∗a and va = vmin. For 0 < vmin ≤ 2

√
d we thus have

u∗ra(vmin, d, nx) = ura(θ∗a(vmin), vmin; d, nx)

= (nx − 1)

(
1 + 2

√
d vmin

(
2
√
d− vmin

2
√
d v2

min

))
e
−
(

2
√
d−vmin

2
√
d v2

min

)
v2min

= (nx − 1)
2
√
d

vmin
e
vmin−2

√
d

2
√
d . (42)

Eq. (37) indicates that for vmin ≥ 2
√
d we have θ∗a = 0 and it is straightforward

to show that this gives u∗ra(vmin) = nx − 1.

7.3 Maximum of urb(θ, vb(θ))

A similar approach to the one taken in Section 7.2 is used to derive the max-
imum of urb(θ, vb(θ; vmin, d); d, nx) for θ > 0, vmin > 0, d ∈ Z+, and nx ∈ Z+.
The following proposition considers the maximum of urb(θ, vb(θ)) as a function
of θ.

Proposition 8 The maximum of urb(θ, vb(θ)) for d ∈ Z+, nx ∈ Z+, and
θ > 0 is at θ = θ∗b (vmin; d), where

θ∗b (vb, d) =
4
√
d+

√
v2
b + 16d− vb

4
√
dv2
b

. (43)
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Proof The derivative of urb(θ, vb(θ)) with respect to θ is

Durb(θ, vb(θ))

Dθ
=
∂urb
∂θ

+

�
��>

0
∂urb
∂vb

∂vb
∂θ if vb(θ) = v∗b (θ) > vmin

∂urb
∂vb �

��
0

∂vb
∂θ if vb(θ) = vmin

= −2v(nx − 1)
[
2
√
dv3
bθ

2 + vb(vb − 4
√
d)θ − 1

]
e−θv

2
b = 0,

where Eq. (43) is recovered by keeping the positive root of the quadratic equa-
tion for θ. It is straightforward to verify that θ∗b from Eq. (43) satisfies the
second-order optimality condition and is thus the critical value that maxi-
mizes urb(θ, vb(θ)).

Similar to Section 7.3, the remaining proofs in this subsection prove that
vb(θ

∗
b ) = vmin, which makes Eq. (43) an explicit equation. From Eq. (33), vb

depends on v∗b , which is provided by the following proposition.

Proposition 9 For vb > 0, θ > 0, d ∈ Z+, and nx ∈ Z+, the function urb(vb)
is quasiconcave and its maximum is at

v∗b (θ; d) =

√
12dθ + 1

3θ
√
d

cos

(
1

3
cos−1

(
9dθ − 1

(12dθ + 1)
3
2

))
− 1

6θ
√
d
. (44)

Proof The proof can be found in Section 12.2.

Using Eq. (44) in the analysis of later sections is cumbersome since it is a
non-polynomial equation. The analysis is simplified with the lower and upper
bounds for v∗b that are presented in the following lemma.

Lemma 2 For d ∈ Z+ and θ > 0 we have `v∗b (θ) < v∗b (θ; d) < uv∗b (θ), where

`v∗b (θ) =
1√
2θ

(45)

uv∗b (θ) =
1√
θ
. (46)

Proof The proof can be found in Section 12.3.

The value at which we have vb(θ) = v∗b (θ) = vmin is θ = θ̂b. Solving for θ̂b
requires solving a transcendental equation. However, this can be avoided by
using the lower and upper bounds on θ̂b from the following lemma.

Lemma 3 The value θ̂b at which we have vb(θ̂b) = v∗b (θ̂b) = vmin > 0 is

bounded by `θ̂b(vmin) < θ̂b(vmin) < uθ̂b(vmin), where

`θ̂b(vmin) =
1

2v2
min

(47)

uθ̂b(vmin) =
1

v2
min

. (48)
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Proof The bounds `v∗b (θ) and uv∗b (θ), which are given by Eqs. (45) and (46),
respectively, are monotonically decreasing with respect to θ. Therefore, we can
derive lower and upper bounds for θ̂b by isolating for θ in `v∗b (θ) = vmin and
uv∗b (θ) = vmin, which provides Eqs. (47) and (48), respectively.

The following proposition proves that θ̂b < θ∗b , which is used by the subse-
quent lemma to prove that vb(θ

∗
b ) = vmin.

Lemma 4 For d ∈ Z+ and vmin > 0 we have θ̂b < uθ̂b < `θ∗b ≤ θ∗b < uθ∗b ,
where

`θ∗b (vmin) =
1

v2
min

+

√
v2
min + 16− vmin

4v2
min

(49)

uθ∗b (vmin) =
2

v2
min

. (50)

Proof The proof can be found in Section 12.4.

Lemma 5 For vmin > 0 and d ∈ Z+ we have vb(θ) = vmin for θ ≥ uθ̂b , which
includes θ ≥ θ∗b .

Proof From Eq. (46) we have uv∗b (θ) = 1√
θ
, which is clearly monotonically

decreasing with respect to θ. Therefore we have uv∗b (θ ≥ uθ̂b) ≤ vmin and thus
vb(θ ≥ uθ̂b) = vmin. In Lemma 4 it was proven that θ∗b > uθ̂b and it thus
follows that we have vb(θ ≥ θ∗b ) = vmin, which completes the proof.

From Proposition 8 and Lemma 5 the maximum of urb(θ, vb; d, nx) is at
θ = θ∗b and vb = vmin, which is given by

u∗rb(vmin, d, nx) = urb(θ
∗
b (vmin), vmin)

= 2(nx − 1)θ∗bvmin

(
1 + 2

√
d θ∗bvmin

)
e−θ

∗
b v

2
min

= 2(nx − 1)
4
√
d+

√
v2

min + 16d

v2
min

e
−

4
√
d+
√
v2
min

+16d−vmin

4
√
d . (51)

7.4 Combined results for ura and urb

In Sections 8 and 9 the relative values of θ̂a and θ̂b, and likewise θ∗a and θ∗b ,
are important and are considered in the following lemma and can be seen in
Fig. 6a.

Lemma 6 For d ∈ Z+ and vmin > 0 we have θ̂a(vmin, d) < θ̂b(vmin, d) and
θ∗a(vmin, d) < θ∗b (vmin, d).

Proof It is straightforward to prove that θ̂a(vmin, d) < θ̂b(vmin, d) by comparing
Eqs. (37) and (49) directly. Similarly, proving θ∗a(vmin, d) < θ∗b (vmin, d) comes
from showing that θ∗a(vmin, d) < `θ∗b (vmin) using Eqs. (37) and (49).
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(a) Values of θ that satisfy v∗a(θ̂a) = vmin

and v∗b (θ̂b) = vmin, where θ̂a is calcu-

lated with Eq. (41), θ̂b is calculated with
a root search, and its bounds coming from
Eqs. (47) and (48).

(b) Values θ∗a and θ∗b from Eqs. (37) and (43)
that maximize ura (θ) and urb (θ), respec-
tively, with Eqs. (49) and (50) providing the
bounds for θ∗b .

Fig. 6: Critical values of θ.

In this section va and vb were bounded using vmin but not vmax, i.e. the
maximum Euclidean distance between points in the parameter space. It was
proven in Proposition 6 that v∗a(θ) is monotonically decreasing with respect
to θ and it is clear from Eqs. (45) and (46) that `v∗b (θ) and uv∗b (θ) follow the
same trend, which can also be seen in Fig. 7b. Therefore, using vmax to bound
va and vb would be most consequential for θ → 0, which is considered in the
following lemma.

Lemma 7 We have limθ→0 ura = nx − 1 and limθ→0 urb = 0.

Proof The proof can be found in Section 12.5.

The result of Lemma 7 can be seen in Fig. 4 for nx = 4, d = 10, and
θ = 1

2 . The limit of both ura(θ) and urb(θ) for θ → 0, which is where va and
vb are largest, is small and finite. Therefore, vmax does not play an important
role in bounding ra and rb, which is why it is omitted from va(θ; vmin, d) and
vb(θ; vmin, d).

The use of Eqs. (35) and (36) to bound the eigenvalues of K∇ can be seen
in Fig. 8a for d = 2, nx = 10, and vmin = 2

√
2. Meanwhile, Fig. 8b compares

the condition number and its bound from Eq. (23) and ηK∇ = 10−8. The
rapid reduction in the bound for the condition number in Fig. 8b coincides
with the value of θ when `λmin = 0, as can be seen in Fig. 8a for the case with
vmin = 2

√
d.

Unlike for the gradient-free case, the condition number of K∇ is not mono-
tonically decreasing with respect to θ, as shown in Fig. 8b. The reason for
this is explored by exploring the structure of K∇ as θ gets progressively
larger. As was proven in Propositions 4 and 8, there is a unique maximum
for ura(θ, va(θ)) and urb(θ, vb(θ)), respectively. It is also straightforward to
verify that both of these bounds go to zero as θ → ∞, and this can be seen
in Fig. 5 for the case with nx = 4, d = 10 and vmin =

√
2. As a result, for
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(a) The functions va(θ) and vb(θ) are from
Eqs. (30) and (33), respectively, and uv∗a
comes from Eq. (40), with d = 16 and
vmin = 2.

(b) Functions v∗a(θ; d) and v∗b (θ; d) from
Eqs. (38) and (44), respectively, while the
bounds on v∗b (θ; d) come from Eqs. (45) and
(46).

Fig. 7: The role of va(θ) and vb(θ) for the upper bounds ura(θ, va(θ)) and
urb(θ, vb(θ)), respectively.

(a) Values and bounds of λmin and λmax for

K with vmin = 2
√
d from Eqs. (35) and (36),

respectively.

(b) Plots of κ
(
K∇(θ) + ηK∇ I

)
with ηK∇ =

10−8 along with its bounds from Eq. (23).

Fig. 8: Case with d = 2 and nx = 10.

θ > θ∗b > θ∗a, the sum of the absolute value of the off-diagonal entries of K∇
become progressively smaller and the last nx · d diagonal entries get larger
as θ increases. From Eq. (21) it follows that once `λmin

> 0, K∇ is strictly
diagonally dominant and its condition number can be approximated with

κ(K∇(θ)) ≈ κ(diag(K∇(θ))) =

{
1
2θ if θ < 1

2

2θ if θ ≥ 1
2 .

(52)

Fig. 8b shows that Eq. (52) provides a good approximation of the condition
number of K∇ when θ is sufficiently large. In order to see the same trend for
θ < 1

2 , vmin would need to be even larger. Also, it is clear from Eqs. (29) and
(32) that K∇ is a diagonal matrix when nx = 1. The consequence of Eq. (52) is
that, unlike for the gradient-free case, it is not possible to bound the condition
number of K∇ for all θ > 0. The following remark explains why this is not a
practical limitation.
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Remark 1 The condition number of K∇(θ) is unbounded as θ →∞. However,
it is only important to have κ (K∇(θ) + ηK∇ I) ≤ κmax for values of θ that are
likely to maximize Eq. (12). When `λmin

(θ) ≥ 0, K∇ is diagonally dominant,
which implies that the off-diagonal entries, i.e. the cross-correlations, are small
relative to the diagonal entries. Therefore, values of θ that provide a diagonally
dominant K∇ result in a surrogate where the data is weakly correlated and
thus unlikely to maximize the marginal log-likelihood from Eq. (12). As such,
we are only interested in ensuring κ (K∇(θ) + ηK∇ I) ≤ κmax while `λmin(θ) ≤ 0.

8 Bounding κ(K∇(θ) + ηK∇ I) with the minimum ηK∇

8.1 Optimization problem

To ensure we have κ (K∇ + ηK∇ I) ≤ κmax we use both ηK∇ and vmin. In this
section we are interested in identifying the smallest value of ηK∇ first and then
using this to identify the required vmin such that the condition number of
K∇ + ηK∇ I remains below the user-set thresholds of κmax. We thus have the
following successive optimization problems

ηK∇ = argmin
η

η such that lim
θ→0

κ (K∇(θ) + ηI) ≤ κmax (53)

vmin = argmin
v

v such that κ (K∇(θ; v) + ηK∇ I) ≤ κmax while `λmin
(θ; v) ≤ 0,

(54)

where the solution to Eq. (53) is used to solve Eq. (54) along with θ >
0. The constraint in Eq. (54) is only active while `λmin

(θ; v) ≤ 0, as ex-
plained in Remark 1. In Section 8.2 it is proven that the solution to Eq. (53) is
ηK∇ = ηK = nx

κmax−1 . Next, it is proven in Section 8.3 that the solution to

Eq. (54) is vmin = 2
√
d. Finally, the following remark provides additional in-

formation on the solutions of Eqs. (53) and (54).

Remark 2 Values for ηK∇ and vmin to ensure κ(K∇(θ; vmin)+ηK∇ I) ≤ κmax are
found by using the upper bounds derived in Section 7.1 for ra(θ) and rb(θ).
The functions ura(θ, va(θ)) and urb(θ, vb(θ)) are not strict upper bounds on
ra(θ) and rb(θ). As such, it is possible to ensure κ(K∇(θ; vmin) +ηK∇ I) ≤ κmax

with values of ηK∇ and vmin smaller than what is derived using ura(θ, va(θ))
and urb(θ, vb(θ)).

8.2 Solution to Eq. (53)

The following proposition provides the solution to Eq. (53).

Proposition 10 The solution to Eq. (53) for nx ∈ Z+ is ηK∇ = nx
κmax−1 .
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Proof From Lemma 7 we have limθ→0 ura(θ) = nx − 1 and limθ→0 urb(θ) = 0,
and we thus have from Eqs. (35) and (36)

lim
θ→0

uλmax(θ) = lim
θ→0

max (1 + ura(θ), 2θ + urb(θ)) = nx (55)

lim
θ→0

`λmax
(θ) = lim

θ→0
min (1− ura(θ), 2θ − urb(θ)) = min(2− nx, 0). (56)

We assume λmax = uλmax = nx and λmin = max(0, `λmin) = 0 to consider the
worst-case scenario for bounding κ (K∇ + ηK∇ I). Using these values of λmin

and λmax along with Lemma 1, which assumes λmin = 0, we find that we can
ensure κ(K∇(θ → 0) + ηK∇ I) ≤ κmax with ηK∇ = nx

κmax−1 , which completes the
proof.

Proposition 10 indicates that it is possible to have κ(K∇+ηK∇ I) ≤ κmax and
κ(K + ηKI) ≤ κmax with ηK∇ = ηK = nx

κmax−1 , where ηK comes from Eq. (16).
The same nugget value can thus ensure that K and K∇ have a condition number
below the same user-set threshold even though the latter matrix has d+1 times
as many rows and columns as the former. The following subsection provides
the solution to Eq. (54).

8.3 Solution to Eq. (54)

The following lemma proves that vmin ≥ 2
√
d is necessary in order to satisfy

the constraint in Eq. (54).

Lemma 8 Having vmin ≥ 2
√
d when ηK∇ = ηK = nx

κmax−1 is a necessary
condition to have κ (K∇(θ) + ηK∇ I) ≤ κmax while `λmin ≤ 0.

Proof From Proposition 10 the solution to Eq. (53) is ηK∇ = ηK = nx
κmax−1 . To

ensure we have κ(K∇(θ) + ηK∇ I) ≤ κmax we require that uλmax
(θ) ≤ nx while

`λmin
≤ 0. From Lemma 7 we have 1 + ura(θ → 0) = nx. Therefore, to have

uλmax(θ) ≤ nx, which depends on 1 + ura(θ) from Eq. (36), ura(θ) must be
monotonically decreasing for θ > 0. From Propositions 4 and 7, the maximum
of ura(θ) is at

θ∗a(vmin, d) = max

(
0,

2
√
d− vmin

2
√
dv2

min

)
.

To ensure ura(θ) is monotonically decreasing for θ > 0, we need θ∗a ≤ 0 and
thus vmin ≥ 2

√
d, which completes the proof.

Corollary 1 From Lemma 8 and Eq. (36) it follows that when vmin ≥ 2
√
d,

we can only have uλmax
> nx if 2θ+ urb(θ) > nx since 1 + ura(θ) ≤ nx ∀θ > 0.
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We now calculate ura(θ, va), urb(θ, vb), as well as θ∗b (vmin) with

va = vb = vmin = 2
√
d

θ∗b

(
vmin = 2

√
d
)

=
1 +
√

5

8d
(57)

ura

(
θ, va = 2

√
d
)

= (nx − 1) (1 + 4dθ) e−4dθ

= (nx − 1)ga(θ; d) (58)

urb

(
θ, vb = 2

√
d
)

= (nx − 1)4
√
d θga(θ; d)

= (nx − 1)gb(θ; d), (59)

where ga(θ; d) = (1 + 4dθ) e−4dθ and gb(θ; d) = 4
√
d θga(θ; d). From Corollary 1

the maximum of uλmax
depends on 2θ+urb(θ), which depends on gb(θ; d) from

Eq. (59). The next lemma considers the maximum of gb(θ; d).

Lemma 9 For d ∈ Z+ and θ > 0 we have gb(θ; d) ≤ g∗b (d) < 1, where

g∗b (d) =

(
2 +
√

5√
d

)
e−

1+
√

5
2 . (60)

Proof It is straightforward to derive Eq. (60) with gb(θ; d) from Eq. (59) and
θ = θ∗b from Eq. (57). The maximum of g∗b (d) for d ∈ Z+ is at d = 1 since it is
monotonically decreasing with respect to d. We thus have

gb(θ; d) ≤ g∗b (d) ≤ g∗b (1) =

(
2 +
√

5√
1

)
e−

1+
√

5
2 ≈ 0.84,

which completes the proof.

The next proposition considers the maximum of uλmax
(θ) for the range

0 < θ ≤ 1
2 .

Lemma 10 For 0 < θ ≤ 1
2 we have uλmax(θ) ≤ nx when vmin = 2

√
d, d ∈ Z+,

and nx ∈ Z+ \ 1.

Proof From Corollary 1 it follows that we can only have uλmax(θ) > nx when
2θ + urb(θ) > nx when vmin = 2

√
d. Therefore, we consider the maximum of

2θ + urb(θ) for 0 < θ ≤ 1
2 . From Eqs. (59) and (60) we have

max
0<θ≤ 1

2

(2θ + urb(θ; vb(θ))) < max
0<θ≤ 1

2

2θ + max
0<θ≤ 1

2

urb(θ; vb(θ))

= 2
1

2
+ (nx − 1)g∗b

< nx,

where g∗b < 1 comes from Lemma 9, which completes the proof.
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It is impossible to ensure uλmax(θ) < nx ∀ θ > 0 since the function
2θ + urb(θ) is unbounded with respect to θ. The two following proposition
prove that when uλmax

(θ) > nx, we also have `λmin
(θ) > 0.

Proposition 11 For vmin = 2
√
d, d ∈ Z+, and nx ∈ Z+ \ 1, we have

(1− ura(θ)) > 0 when uλmax(θ) > nx.

Proof The proof can be found in Section 13.1.

Proposition 12 For vmin = 2
√
d, d ∈ Z+, and nx ∈ Z+ \ 1, we have

(2θ − urb(θ)) > 0 when uλmax(θ) > nx.

Proof The proof is in Section 13.2.

As a result of Propositions 11 and 12 we have `λmin
(θ) > 0 when

uλmax(θ) > nx, d ∈ Z+, nx ∈ Z+ \ 1, and vmin = 2
√
d. From Lemma 8 it

follows that vmin = 2
√
d is also the minimum required value for vmin, which

means it is the solution to Eq. (54).

9 Bounding κ(K∇(θ) + ηK∇ I) with the minimum vmin

9.1 Optimization problem

In the previous section we set ηK∇ = ηK and then found the minimum vmin to
ensure κ (K∇ + ηK∇ I) ≤ κmax. In this section we reverse the order and solve
first for vmin and then for ηK∇ with the following optimization problems

vmin = argmin
v

v such that `λmin
(θ; v) > 0, ∀ θ > 1

2
(61)

ηK∇ = argmin
η

η such that κ (K∇(θ; vmin) + ηI) ≤ κmax ∀ θ ∈
(

0,
1

2

]
. (62)

Just like in Section 8, Remark 2 applies to the optimization of Eqs. (61) and
(62) and the constraint in Eq. (62) is only active while `λmin

(θ; v) ≤ 0, as
explained in Remark 1. The cut-off θ = 1

2 was selected since it is at this value
that all the diagonal entries in K∇ are equal. The solution for Eq. (61) is
derived in Section 9.2 and Section 9.3 provides the solution to Eq. (62).

9.2 Solution to Eq. (61)

Sufficient but not necessary conditions to ensure that the constraint in Eq. (61)
is satisfied involve having `λmin

(θ) ≥ 0 at θ = 1
2 and `λmin

(θ) be monotonically
increasing for θ ≥ 1

2 . The two following lemmas consider these requirements.

Lemma 11 For d ∈ Z+, nx ∈ Z+ \ 1, and vmin ≥
√

2, a necessary and
sufficient condition to have `λmin

= 0 at θ = 1
2 is 2θ − urb(θ, vb(θ; vmin)) = 0.
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Proof We have from Lemma 6 and Eq. (47) θ̂a < θ̂b < uθ̂b = 1
v2min

≤ 1
2 when

vmin ≥
√

2. From Proposition 7 and Lemma 5 we thus have va(θ) = vb(θ) =
vmin for θ ≥ 1

2 . We now compare 2θ−urb(θ, vmin) and 1−ura(θ, vmin) at θ = 1
2

[2θ − urb(θ)]θ= 1
2

= 1− vmin(nx − 1)
(

1 +
√
dvmin

)
e−

v2min
2

= 1− vminura

(
θ =

1

2

)
< 1− ura

(
θ =

1

2

)
,

where the last inequality holds since vmin ≥
√

2 and ura > 0. From Eq. (35)
it follows that having `λmin

> 0 at θ = 1
2 requires 1 − ura(θ, va(θ)) ≥ 0 and

2θ− urb(θ, vb(θ)) ≥ 0. Since we have shown that 2θ− urb < 1− ura , it follows
that having 2θ − urb(θ, vmin) = 0 at θ = 1

2 is necessary and sufficient to have
`λmin = 0, which completes the proof.

Lemma 12 For θ ≥ 1
2 , d ∈ Z+, and nx ∈ Z+ \ 1, having vmin ≥ 2 is a

sufficient condition to ensure `λmin(θ) is monotonically increasing.

Proof With vmin ≥ 2 we have from Lemma 6 and Eq. (50) θ∗a < θ∗b < uθ∗b =
2

v2min
≤ 1

2 . Therefore, for θ ≥ 1
2 , both 1− u∗ra(θ) and 2θ − u∗rb(θ) are monoton-

ically increasing, which also applies to `λmin
(θ) and this completes the proof.

The following proposition combines the results from the last two lemmas
to derive the solution to Eq. (61).

Proposition 13 For d ∈ Z+ and nx ∈ Z+ \ 1 the constraint in Eq. (61) is
satisfied with vmin ≥ vreq and the solution to Eq. (61) is vmin = vreq, where
vreq is the solution to the following transcendental equation

(nx − 1)vreq

(
1 +
√
dvreq

)
e−

v2req
2 = 1 where vreq >

√
2. (63)

Proof The proof can be found in Section 14.1.

Eq. (63) requires a root search to solve for vreq. The next proposition
presents a simple algebraic equation that provides ṽreq > vreq.

Proposition 14 Having vmin ≥ ṽreq > vreq ensures the constraint in Eq. (61)
is satisfied for d ∈ Z+, and nx ∈ Z+ \ 1, where

ṽreq(d, nx) =

2 +

√
4 + 2e2 ln

(
(nx−1)(1+2

√
d)

2

)
e

. (64)

Proof The proof can be found in Section 14.2.
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9.3 Selecting ηK∇ to ensure κ (K∇ + ηK∇ I) ≤ κmax for 0 < θ ≤ 1
2

In this subsection we derive the solution to Eq. (62). To ensure
κ(K∇(θ) + ηK∇ I) ≤ κmax for 0 < θ ≤ 1

2 , the parameter ηK∇ must be selected
by considering the maximum of uλmax for 0 < θ ≤ 1

2 , which is considered in

the next proposition. The case for vmin > 2
√
d is not considered since it was

shown in Section 8 that using vmin = 2
√
d provides the minimum requires

ηK∇ to ensure κ (K∇ + ηK∇ I) ≤ κmax. Therefore, there is no benefit to having
vmin > 2

√
d.

Proposition 15 We have uλmax = 1+u∗ra for 0 < θ ≤ 1
2 , d ∈ Z+, nx ∈ Z+\1,

and vreq ≤ vmin ≤ 2
√
d, where u∗ra and vreq come from Eqs. (65) and (63),

respectively.

Proof The proof can be found in Section 14.3.

The following proposition provides the solution to Eq. (62).

Proposition 16 For vreq ≤ vmin ≤ 2
√
d, d ∈ Z+, and nx ∈ Z+ \ 1, we can

ensure κ (K∇ + ηK∇ I) ≤ κmax for 0 < θ ≤ 1
2 with

ηK∇(vmin, d, nx) =
1 + (nx − 1) 2

√
d

vmin
e
vmin
2
√
d
−1

κmax − 1
. (65)

Proof From Proposition 15 and Eq. (15), we can ensure κ (K∇ + ηK∇ I) ≤ κmax

for 0 < θ ≤ 1
2 , d ∈ Z+, and nx ∈ Z+ \ 1 with vmin ≥ vreq and

ηK∇ ≥
max0<θ≤ 1

2
uλmax

(θ; vmin)

κmax − 1

=
1 + u∗ra
κmax − 1

=
1 + (nx − 1) 2

√
d

vmin
e
vmin
2
√
d
−1

κmax − 1
,

where Eq. (42) was used for u∗ra and this matches Eq. (65), which completes
the proof.

From Eq. (65) we recover ηK∇ = ηK = nx
κmax−1 when vmin = 2

√
d, which is

consistent with the results from Section 8.

10 Results and discussion

10.1 Required vmin and ηK∇

The results from Sections 8 and 9 are combined to provide a required value of
vmin that is smaller than either individual section while ensuring
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κ(K∇(θ) + ηK∇ I) ≤ κmax when θ = θ1. Either of the following equations
can be used

vmin,set(d, nx; ρ) =
min

(
2
√
d, vreq(d, nx)

)
ρ

(66)

vmin,set(d, nx; ρ) =
min

(
2
√
d, ṽreq(d, nx)

)
ρ

, (67)

where ρ ≥ 1 is a user-set parameter, while vreq and ṽreq are given by Eqs. (63)
and (64), respectively. Having 0 < ρ ≤ 1 ensures κ(K∇(θ) + ηK∇ I) ≤ κmax

when θ = θ1. While ρ > 1 does not ensure κ(K∇(θ) + ηK∇ I) ≤ κmax, using
a modest value for ρ, such as ρ = 10, is still sufficient in practice to ensure
κ(K∇(θ) + ηK∇ I) ≤ κmax since the bounds ura and urb are not tight. This is
demonstrated in Section 10.3. The benefit to having ρ > 1 is to accelerate the
optimization, as shown in Section 10.6.

Eq. (66) provides a smaller value for vmin,set than using Eq. (67), but it
requires solving Eq. (63) with a root search for vreq. However, as is shown in
Fig. 9a, Eq. (67) provides a solution that is nearly identical to the one from
Eq. (66) and no root search is required to solve for ṽreq.

Fig. 9b plots the fraction of ηK∇ to ηK, which are calculated with Eqs. (65)
and (16), respectively. The nugget ηK∇(vmin,set, d, nx) is calculated with
vmin,set(d, nx) from both Eqs. (66) and (67). An additional benefit to using
Eq. (67) instead of Eq. (66) is that the former requires a slightly smaller ηK∇
than the latter. For a given nx, the matrix K∇ has d+ 1 times as many rows
and columns as K. Nonetheless, Fig. 9b demonstrates that when Eqs. (66) or
(67) is used to set vmin for X, K∇ only requires a nugget that is marginally
larger than what is required for K to ensure the condition number of these
matrices is smaller than κmax. For example, with d ∈ {5, 25, 100} in the worst-
case scenario for nx we only require ηK∇ to be approximately 1.1, 1.5, and 2.2
times as large as ηK, respectively.

10.2 Consequence of increasing vmin

In Sections 8 and 9 it was proven that having vmin ≥ vmin,set ensures
κ(K∇(θ) + ηK∇ I) ≤ κmax when θ = θ1. In this section it is demonstrated
that there is a consequence to increasing vmin, namely that this increases the
difference between the gradient of the surrogate and of the function of interest
at evaluation points. To demonstrate this, a Latin hypercube sampling was
used to create a set of nx = 10 points where the Rosenbrock function from
Eq. (20) was evaluated. The matrix X was rescaled isotropically and Eq. (12)
was solved with a gradient-based optimizer and five different initial solutions
θ ∈ [10−8, 108]2. The parameters κmax = 1015 and ηK∇ = 10−7 were selected so
that the constraint on the condition number was not active. Fig. 10a shows the
relation between rescaling X isotropically and the solution θ̄ to Eq. (12) when
the constraint on the condition number is not active. The slope of the lines
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(a) Solution to Eqs. (66) and (67) with ρ =
1.

(b) Solution to Eq. (65) with vmin =
vmin,set from Eqs. (66) and (67) with ρ = 1.

Fig. 9: Ensuring κ (K∇(θ) + ηK∇ I) ≤ κmax with vmin ≥ vmin,set and the mini-
mum ηK∇ . Solid lines are for Eq. (66), while dashed lines are for Eq. (67).

using a least squares fit are -1.9 and -1.8 for θ1 and θ2, respectively. The inverse
quadratic relationship between the scaling of X and θ from Eq. (1) indicates
that the theoretical slope should be -2 on a log-log plot. The small difference
between the theoretical and observed slopes is thought to be primarily due to
the non-zero nugget.

In Fig. 10b we can see that as vmin increases, so does the difference between
the gradient of the surrogate and of the function of interest where Eq. (20)
was evaluated. However, if ηK∇ was zero instead of 10−7, then the difference
between the gradient of the surrogate and of the function of interest would be
on the order of machine precision, as long as the condition number of K∇ is not
too large. The last nx ·d diagonal entries in K∇+ηK∇ are 2θ+ηK∇ . Therefore,
as θ gets smaller, which is a consequence of vmin getting larger as seen in
Fig. 10a, then ηK∇ makes a larger relative change to the diagonal entries of
the matrix K∇. This leads to the increased difference between the gradient of
the surrogate and of the function of interest shown in Fig. 10b. There is thus
a trade-off between increasing vmin sufficiently to ensure the condition number
of the covariance matrix is below a user-set threshold, but not too much since
it increases the difference between the gradient of the surrogate and of the
function of interest.

10.3 Impact of rescaling X on κ(K∇(θ) + ηK∇ I)

A Latin hypercube sampling with the domain [−1, 1]2 was used to create
data sets with nx = 10 and nx = 50. The matrix X was rescaled isotropi-
cally using Eq. (27) to have three different minimum Euclidean distances be-
tween data points. For all cases ηK∇(nx) = ηK(nx) from Eq. (16) was used.
With vmin = 0.01 we can see from Figs. 11a and 11d that there are large
regions of the hyperparameter space where κ(K∇(θ) + ηK∇ I) > κmax, includ-
ing where the marginal likelihood from Eq. (12) is maximized. We can ensure
κ(K∇(θ) + ηK∇ I) ≤ κmax when θ = θ1 and vmin is calculated using Eq. (67)
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(a) Impact of rescaling X isotropically on the
solution θ̄ to Eq. (12).

(b) Difference between the gradient of the
surrogate and of the function of interest at
evaluation points as a function of vmin.

Fig. 10: The consequence of rescaling X isotropically in order to increase vmin.

with ρ = 1. This is shown in Figs. 11c and 11f where κ(K∇(θ) + ηK∇ I) ≤ κmax

when θ = θ1 and also for most of θ ∈ [10−8, 108]2. Finally, Figs. 11b and 11e
consider the case when vmin is calculated using Eq. (67) with ρ = 10. While
this case does not ensure κ(K∇(θ) + ηK∇ I) ≤ κmax when θ = θ1, we can
see that in practice the condition number of the covariance matrix is smaller
than κmax when θ = θ1 and once again for most of the plotted domain of
θ. By having ρ > 1 we lose the proven bound on the condition number of
K∇. However, as was shown in Fig. 10b, having a smaller vmin reduces the dif-
ference between the gradient of the surrogate and of the function of interest.
Section 10.6 demonstrates that having ρ > 1 is advantageous for optimization.

10.4 Non-isotropic rescaling of X

It is common to either not rescale the data or to do so such that all of the
data points are in a unit cube [3]. For the method presented in this paper the
data is rescaled to ensure vmin = vmin,set, where vmin,set comes from either
Eq. (66) or Eq. (67). In this section we demonstrate how an iterative non-
isotropic rescaling can be used to also ensure that ‖θ− θ1‖ < ε, where ε is set
to a small positive value such as 10−2. This is important since the results from
Sections 8 and 9 only ensure κ(K∇(θ)+ηK∇ I) ≤ κmax when θ = θ1. When the
marginal log-likelihood is first maximized it is likely that θ 6= θ1. However,
the non-isotropic rescaling is used such that when the marginal log-likelihood
is maximized again with the scaled data , the result is θ ≈ θ1. This iterative
process of non-isotropically rescaling the data and maximizing the marginal
log-likelihood is repeated until ‖θ − θ1‖ < ε. As is shown in this section, this
may require 2-4 iterations, depending on the selected value of ε.

It is straightforward to demonstrate that the closest point on the line θ1
to θ is when θ = α, where

α =
θT1

d
. (68)
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(a) nx = 10 and vmin = 0.01 (b) nx = 10 and vmin =
2
√
d

10
≈ 0.283

(c) nx = 10 and vmin = 2
√
d

(d) nx = 50 and vmin = 0.01 (e) nx = 50 and vmin =
2
√
d

10
≈ 0.283

(f) nx = 50 and vmin = 2
√
d

Fig. 11: Plots of κ (K∇(θ) + ηK∇ I) with d = 2, and ηK∇ = ηK from Eq. (16).
Regions where κ (K∇(θ) + ηK∇ I) ≥ κmax = 1010 are in red and the location
where the marginal likelihood from Eq. (12) is maximized is indicated by a
star marker.

The Euclidean distance between α1 and θ is

δmin(θ) = ‖θ − α1‖2

= θTθ −

(
θT1

)2

d
. (69)

The goal is to rescale X non-isotropically with the vector γ such that θ = α1.
From Eq. (1) we have

e−
∑d
i=1 θi(x

(i)−y(i))
2

= e−
∑d
i=1 α(γix(i)−γiy(i))

2

γi =

√
θi
α
. (70)

We can thus rescale X and F∇ with

Xnew = XΓ (71)

F∇,new = F∇ Γ
−1, (72)
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where Γ = diag(γ). After the non-isotropic rescaling both Xnew and F∇,new

still need to be rescaled isotropically to ensure vmin = vmin,set since the shortest
Euclidean distance between data points is likely to have changed from the
non-isotropic rescaling. Furthermore, this isotropic rescaling cannot be done
a priori since the two points with the shortest Euclidean distance may change
from the non-isotropic scaling. Algorithm 1 provides the steps to implement
the non-isotropic rescaling. The initial data can be recovered from the scaled
data with

Xinit = Xfinal Γ
−1
final (73)

F∇,init = F∇,final Γfinal (74)

Γfinal =

(
nk∏
k=0

τ (k)

)(
nk∏
k=1

Γ (k)

)
, (75)

where the superscript in parentheses indicates the iteration counter for the
scaling in Algorithm 1, and nk is the total number of iterations. When θ is
set by maximizing the marginal log-likelihood without iteratively rescaling the
data, the entries in the vector θ are the inverse of the squared characteristic
lengths. When the iterative non-isotropic rescaling method is used, we have
θ ≈ θ1. The inverse characteristic lengths are thus not found in θ, but instead
along the diagonal of the rescaling matrix Γfinal.

Algorithm 1 Isotropic (kmax = 0) and non-isotropic (kmax > 0) rescaling of
X and F∇
Require: nx > 1, vmin,init > 0, and user-set ε ≥ 0

Set k = 0 and calculate vmin,init from Xinit

τ (0) =
vmin,set

vmin,init

X(0) = τ (0)Xinit

F
(0)
∇ =

F∇,init

τ(0)

Solve Eq. (12) for θ̄

α = θ̄T 1
d

δmin = θ̄
T
θ̄ −

(
θ̄T 1

)2
d

while δmin > ε and k ≤ kmax do
k = k + 1

Γ (k) = diag

(√
θ̄
α

)
X

(k)
init = X(k−1)Γ (k) (update vmin,init)

τ (k) =
vmin,set

v
(k)
min,init

X(k) = τ (k)X
(k)
init

F
(k)
∇ =

F
(k−1)
∇

(
Γ (k)

)−1

τ(k)

Solve Eq. (12) with the initial solution 1 α

(τ(k))2
for θ̄

Updates δmin and α
end while
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Fig. 12: Convergence of θ̄ to θ1 using the iterative non-isotropic rescaling of
X from Algorithm 1, where δvmin

(θ̄) is calculated with Eq. (69).

To demonstrate how the non-isotropic rescaling works in practice, a matrix
X was created with a Latin hypercube sampling, nx = 10, the domain [−1, 1]d,
and d ∈ {2, 5, 10}. Eq. (20) and its gradient were evaluated at all the rows in
X and Eq. (67) was used to calculate vmin,set with ρ = 1. Algorithm 1 was then
used with ε = 0 and kmax = 3. Fig. 12 shows how the non-isotropic scaling
allows the solution of Eq. (12) to quickly converge to θ1. This ensures that
the bounds on the condition number of the covariance matrix apply even when
the initial solution to Eq. (12) is far from θ1.

10.5 Steps for ensuring κ (K∇(θ) + ηK∇ I) ≤ κmax

The five steps provided in this subsection provide a non-intrusive method
of ensuring the gradient-enhanced covariance matrix has a condition number
below κmax. If ρ = 1 and the non-isotropic rescaling of X is used, then the con-
straint in Eq. (12) for the condition number of the covariance matrix will not
be active. When ρ > 1, the constraint in Eq. (12) may be active even with the
non-isotropic rescaling of X. However, it was found that when a modest value
of ρ was used, such as ρ = 10, then the non-isotropic rescaling of X from Algo-
rithm 1 was sufficient to ensure the condition number of the gradient-enhanced
covariance matrix has a condition number below κmax without having an ac-
tive constraint in Eq. (12). Furthermore, as is demonstrated in Section 10.6,
using ρ > 1 allows a Bayesian optimizer to achieve more rapid convergence of
the optimality relative to the case with ρ = 1. As was detailed in Section 10.2,
having a larger vmin,set leads to larger difference between the gradient of the
surrogate and of the function of interest. Therefore, by having ρ > 1, vmin,set

is smaller and thus the surrogate is more accurate. The suggested value for ε is
10−2. From Fig. 12, it is clear that ε can be selected to be significantly smaller,
such as 10−10. However, selecting a smaller ε requires additional iterations that
involve optimizing the hyperparameters θ several times.

1. Use suggested parameters or modify as desired
(a) κmax = 1010
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(b) ρ = 1 for proven bound on the condition number or ρ = 10 for efficient
optimization

(c) kmax = 0 for isotropic rescaling of X or kmax = 3 and ε = 10−2 for
non-isotropic rescaling of X

2. Calculate the following parameters
(a) vmin,set using Eq. (67), or alternatively Eq. (66)
(b) ηK∇ with Eq. (65) using vmin = ρvmin,set

3. Use Algorithm 1 to rescale X and F∇, and to solve for the hyperparameter
θ

4. Evaluate the surrogate with Eqs. (9) and (10)
5. Unscale the data using Eqs. (73) and (74)

10.6 Bayesian optimization test case

As is apparent in Fig. 1, the ill-conditioning problem for the gradient-enhanced
covariance matrix becomes more acute as the data points get closer together.
This will naturally happen when there is a larger number of data points and
when the data points are selected to be close together. This may be done,
for example, to reduce the surrogate’s uncertainty in a given region of the
parameter space, or to achieve deep convergence for Bayesian optimization.
As such, to highlight the ability of the method from this paper to overcome
the ill-conditioning of the gradient-enhanced covariance matrix a local opti-
mization test case is used. The goal of this test case is to highlight how this
method overcomes the ill-conditioning problem for the gradient-enhanced co-
variance matrix and thus allows for deeper convergence to be achieved. While
the test case is for local optimization, this method can also be applied with a
gradient-enhanced GP for any other use such as for global Bayesian optimiza-
tion, uncertainty quantification, or classification.

Minimizations of the unimodal Rosenbrock function from Eq. (20) with
d = 2 and d = 5 were performed first without rescaling X and then repeated
using the steps in Section 10.5 with ρ = 1 and ρ = 10. A simple acquisition
function is the upper-confidence bound

h(x) = µf (x)− ωσf (x), (76)

where a large value for ω promotes exploration while a small value promotes
exploitation. Since we were interested in local optimization and achieving deep
convergence, we used ω = 0.

For all test cases the optimizer was started with the initial solution at
x = [2, . . . , 2]T . All subsequent points were selected by minimizing the acqui-
sition function. A gradient-based optimizer was used to maximize the marginal
log-likelihood from Eq. (12) and to minimize the acquisition function. Since
these functions can be multimodal, the optimizers were started with five ini-
tial points using a Latin hypercube sampling. A baseline method that does
not rescale the data points was used to compare with the method presented
in this paper. For the baseline method ηK∇ = ηK from Eq. (16) was used.
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It was not possible for the baseline method to be non-regularized, i.e. to use
ηK∇ = 0, since for most values of θ this resulted in the failure of the Cholesky
decomposition for the gradient-enhanced covariance matrix due to its severe
ill-conditioning.

Figs. 13a and 13d show the convergence history when X is not rescaled.
For both the d = 2 and d = 5 cases, the optimizer stalls when the optimality
and the Euclidean distance to the minimum reach approximately 10−5. The
optimizer stalls since the solution θ̄ from Eq. (12) is highly restricted by the
constraint on the condition number, as shown in Fig. 11. As a consequence
of ensuring the constraint is satisfied, θ̄ does not provide a large marginal
likelihood and thus the surrogate is not an effective approximation to the
function of interest.

Figs. 13c and 13f show the convergence of the optimizer when X is rescaled
using Eq. (67) with ρ = 1. In this case the results from Sections 8 and 9 and the
non-isotropic rescaling of X ensure that κ(K∇(θ)+ηK∇ I) ≤ κmax. For the d = 2
case the optimizer is able to converge the optimality an additional four orders
of magnitude relative to the cases when X is not rescaled. However, comparing
Figs. 13a and 13c we see that the rescaling method slows down the initial
convergence and this also holds for the d = 5 case. This slower convergence
is due to the larger size of vmin, which increases the difference between the
gradient of the surrogate and of the function of interest, as explained in 10.2.

For the optimization in Figs. 13b and 13e, the steps from Section 10.5 were
used with ρ = 10. For the d = 2 case the optimizer converges nearly as deeply
as the case with the rescaling with ρ = 1 and achieves deeper convergence when
d = 5. For both the d = 2 and d = 5 cases the optimizer convergences as fast
as the non-rescaled case and significantly faster than the case with rescaling
and ρ = 1. In fact, for the d = 5 case the optimizer with ρ = 10 gets to within
a distance of 10−9 of the solution after 40 iterations while the optimizer with
ρ = 1 does not achieve this level of convergence after 60 iterations.

By increasing vmin the condition number of the covariance matrix is re-
duced, which ensures the solution to Eq. (12) is not limited by the constraint
on the condition number. However, the trade-off to increasing vmin is that
this increases the difference between the gradient of the surrogate and of the
function of interest, as detailed in Section 10.2 and demonstrated in Fig. 13.
The use of Algorithm 1 with ρ = 10 was found to provide a good balance and
an efficient optimizer that is able to achieve deep and rapid convergence.

11 Conclusions

The ill-conditioning of the gradient-enhanced covariance matrix has been ex-
tensively studied and various methods have been proposed. Unfortunately,
these previous methods require undesirable trade-offs such as removing certain
data points and setting a minimum Euclidean distance between data points.
Furthermore, none of the prior methods guaranteed an upper bound on the
condition number of the gradient-enhanced covariance matrix.
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(a) d = 2, vmin = vmin,init,
and ηK∇ = ηK

(b) d = 2, vmin = vmin,set,
ηK∇ = ηK∇ (ρ · vmin,set), and
ρ = 10

(c) d = 2, vmin = vmin,set,
ηK∇ = ηK∇ (ρ · vmin,set), and
ρ = 1

(d) d = 5, vmin = vmin,init,
and ηK∇ = ηK

(e) d = 5, vmin = vmin,set,
ηK∇ = ηK∇ (ρ · vmin,set), and
ρ = 10

(f) d = 5, vmin = vmin,set,
ηK∇ = ηK∇ (ρ · vmin,set), and
ρ = 1

Fig. 13: Optimization test case using the Rosenbrock function from Eq. (20),
κmax = 1010, Eqs. (16) and (65) for ηK and ηK∇ , respectively, and Eq. (67) is
used to calculate vmin,set.

In the method presented in this paper, the matrix of data points is rescaled
such that the minimum Euclidean distance between data points is sufficiently
large. This simple method is non-intrusive since it only requires the matrix of
data points X and the matrix of gradients F∇ to be rescaled and for a modest
nugget to be used. A simple algebraic equation was derived to calculate the
minimum required Euclidean distance to rescale X along with a modest nugget
value. The procedure is detailed in Section 10.5. The method presented in this
paper is advantageous since it is easy to implement, all data points can be
kept, deep and rapid convergence can be achieved, and the condition number
is bounded below a user-set threshold. This was demonstrated in Section 10.6
where the two and five dimensional Rosenbrock function was minimized with-
out any ill-conditioning of the covariance matrix. Furthermore, the method
presented in this paper allowed the optimizer to converge the optimality an
additional four orders of magnitude relative to the standard method without
rescaling.
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12 Proofs for Section 7

12.1 Proof of Proposition 6

The results from the two following lemmas prove that v∗a(θ, d) is monotonically
decreasing with respect to θ and monotonically increasing with respect to d.

Lemma 13 For θ > 0 and d ∈ Z+, the function v∗a(θ; d) is monotonically
decreasing with respect to θ.

Proof Consider the derivative of v∗a(θ) with respect to θ:

∂v∗a(θ)

∂θ
=

√
1 + 8θd− (1 + 4θd)

4θ2
√
d
√

1 + 8θd
, (77)

where it is clear that the denominator is always positive for d ∈ Z+ and θ > 0.
We begin by assuming that the numerator is negative and show that this holds
for d ∈ Z+ and θ > 0:

√
1 + 8θd− (1 + 4θd) < 0(√

1 + 8θd
)2

< (1 + 4θd)
2

−16θ2d2 < 0,

where both sides of the inequality on the second line are positive prior to being
squared for d ∈ Z+ and θ > 0. As such, the squaring operation does not change
their respective signs or the direction of the inequality. Since the denominator

of
∂v∗a(θ)
∂θ is always positive and its numerator is negative, it follows that v∗a(θ)

is monotonically decreasing with respect to θ, which completes the proof.



A Solution to the Ill-Conditioning of the Gradient-Enhanced Covariance Matrix 39

Lemma 14 The function v∗a(θ; d) is monotonically increasing with respect to
d for d ∈ Z+ and θ > 0.

Proof We have d ∈ Z+ but for this analysis we consider d to be a continuous
variable and we calculate the derivative of v∗a(d) with respect to d:

∂v∗a(d)

∂d
=

√
1 + 8θd− 1

8θd
3
2

√
1 + 8θd

. (78)

Both the numerator and denominator are always positive for θ > 0 and d > 0.
Consequently, v∗a(d) is monotonically increasing for d > 0.

The two following lemmas bound v∗a(θ; d) by using the result from Lemmas 13
and 14.

Lemma 15 For θ > 0 and d ∈ Z+, the supremum of v∗a(θ; d) is
√
d at θ = 0.

Proof As a consequence of Lemma 13, v∗a is maximized when θ is minimized.
We thus evaluate limθ→0 v

∗
a(θ) using L’Hôpital’s rule:

lim
θ→0

v∗a(θ; d) = lim
θ→0

−1 +
√

1 + 8θd

4θ
√
d

= lim
θ→0

4d (1 + 8θd)
− 1

2

4
√
d

=
√
d,

which is the desired result.

Lemma 16 We have v∗a(θ; d) ≤ 1√
2θ

for θ > 0 and d ∈ Z+.

Proof From Lemma 14 we know that v∗a(θ; d) is monotonically increasing for
d > 0. As such, we can derive an upper bound on v∗a(θ; d) by considering the
following limit:

uv∗a(θ) = lim
d→∞

v∗a(θ; d)

= lim
d→∞

− 1√
d

+
√

1
d + 8θ

4θ

=
1√
2θ
,

which completes the proof.

We have shown that v∗a(θ; d) ≤
√
d and v∗a(θ; d) ≤ 1√

2θ
. We therefore have

v∗a(θ; d) ≤ min
(√

d, 1√
2θ

)
, which completes the proof of Proposition 6.
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12.2 Proof of Proposition 9

To identify the maximum of urb we begin by calculating its derivative:

∂urb(vb)

∂vb
= −2θ(nx − 1)

[
4θ2
√
dv3
b + 2θv2

b − 4θ
√
dvb − 1

]
e−θv

2
b , (79)

which is zero if the following cubic is satisfied:

v3
b +

1

2θ
√
d
v2
b −

1

θ
vb −

1

4θ2
√
d

= 0. (80)

A general cubic equation is v3 +a2v
2 +a1v+a0 = 0 where we have a2 = 1

2θ
√
d
,

a1 = − 1
θ , and a0 = − 1

4θ2
√
d
. We can determine if the cubic equation has one

or three real roots by checking the sign of the discriminant [10], which is given
by

∆ =
4a3

2a0 − a2
2a

2
1 + 4a3

1 − 18a2a1a0 + 27a2
0

108

= −64θ2d2 + 13θd+ 2

1728 θ5d2
, (81)

which is negative for θ > 0 and d ∈ Z+. A negative discriminant indicates the
cubic equation has three real roots [10]. Furthermore, for d ∈ Z+ and θ > 0,
we have a2 > 0, a0 < 0, which is Case III3 in the first table in [10]. Case III3
indicates that only one of the three roots is positive and the other two are
negative. We use the cubic solution from [19] to calculate the only positive
root of Eq. (80):

v∗b =

√
12dθ + 1

3θ
√
d

cos

(
1

3
cos−1

(
9dθ − 1

(12dθ + 1)
3
2

))
− 1

6θ
√
d
,

which matches Eq. (44) and this completes the proof.

12.3 Proof of Lemma 2

Consider the following reformulation of urb(vb):

urb(vb) = 2θvb(nx − 1)
(

1 + 2θ
√
d vb

)
e−θv

2
b

= 2θvb(nx − 1)e−θv
2
b︸ ︷︷ ︸

urb,1(vb)

+ 4θ2v2
b

√
d(nx − 1)e−θv

2
b︸ ︷︷ ︸

urb,2(vb)

.

The positive root for the gradient of urb,1(vb) is

∂urb,1(vb)

∂vb
= 2θ(nx − 1)

[
1− 2θv2

b

]
e−θv

2
b = 0

v∗b1(θ) =
1√
2θ
, (82)
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and analogously for urb,2(vb) we find its unique positive critical point is
v∗b2(θ) = 1√

θ
, which match Eqs. (45) and (46), respectively. It is straight-

forward to check that both v∗b1 and v∗b2 are the location of the maximum for

urb,1(vb) and urb,2(vb), respectively. Both
∂urb,1(vb)

∂vb
and

∂urb,2(vb)

∂vb
are positive

when v < v∗b1, and both are negative when v > v∗b2. Therefore,
∂urb (vb)

∂vb
can

only be zero in the range v∗b1(θ) = 1√
2θ
< v∗b (θ) < 1√

θ
= v∗b2(θ). We therefore

have `v∗b (θ) = v∗b1(θ) = 1√
2θ

and uv∗b (θ) = v∗b2(θ) = 1√
θ
, which completes the

proof of Lemma 2.

12.4 Proof of Lemma 4

We need to derive `θ∗b (vmin) and uθ∗b (vmin) and prove that uθ̂b < `θ∗b for d ∈ Z+

and vmin > 0. We begin by showing that θ∗b (d) from Eq. (43) is monotonically
increasing with respect to d:

∂θ∗b
∂d

=

√
v2

min + 16d− vmin

8d
3
2 vmin

√
v2

min + 16d
, (83)

which is always positive for d ∈ Z+ and vmin > 0. Lower and upper bounds
on θ∗b (d) are thus given by

`θ∗b = θ∗b (d = 1) =
1

v2
min

+

√
v2

min + 16− vmin

4v2
min

(84)

uθ∗b = lim
d→∞

θ∗b (d) ≤ 2

v2
min

. (85)

Comparing uθ̂b(vmin) = 1
v2min

from Eq. (48) and `θ∗b (vmin) from Eq. (49) it is

clear that uθ̂b(vmin) < `θ∗b (vmin) for vmin > 0. We thus have θ̂b < uθ̂b < `θ∗b ≤
θ∗b < uθ∗b , which completes the proof of Lemma 4.

12.5 Proof of Lemma 7

We start by considering the limit limθ→0 ura . From Proposition 6 we have
v∗a ≤

√
d and therefore va(θ) = min(vmin,

√
d). Our limit of interest is given

by

lim
θ→0

ura(θ, va(θ)) = lim
θ→0

(nx − 1)
(

1 + 2θ
√
dva(θ)

)
e−θv

2
a(θ)

= nx − 1,

which is the desired result. We next consider the limit limθ→0 urb . From
Lemma 2 we have 1√

2θ
= `v∗b (θ) < v∗b (θ) < uv∗b (θ)) = 1√

θ
. Therefore, we
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have v∗b (θ → 0) → ∞ and thus, vb(θ → 0) = v∗b . However, we also have the
following relations:

lim
θ→0

θ`v∗b (θ) = lim
θ→0

√
θ

2
= 0

lim
θ→0

θuv∗b (θ) = lim
θ→0

√
θ = 0,

which implies that θv∗b (θ) = 0 for θ → 0. It is straightforward to verify that
1
2 < θ (v∗b )

2
< 1 when θ → 0. We now consider the limit of 2θ + urb(θ):

lim
θ→0

(2θ + urb(θ, v
∗
b )) = lim

θ→0
2(θv∗b )(nx − 1)

(
1 + 2

√
d(θv∗b )

)
e−θ(v

∗
b )2

= 0,

which is the desired result and this completes the proof of Lemma 7.

13 Proofs for Section 8

13.1 Proof of Proposition 11

From Corollary 1 and Lemma 10 it follows that with vmin = 2
√
d we only have

uλmax
(θ) > nx when 2θ + urb(θ) > nx and θ > 1

2 . The next lemma considers
the case when 2θ + urb(θ;nx) = nx.

Lemma 17 For θ > 1
2 , d ∈ Z+, and vmin = 2

√
d, we have 2θ+urb(θ;nx) = nx

when nx = n̂x > 0, where

n̂x =
2θ − gb(θ)
1− gb(θ)

, (86)

and gb(θ) comes from Eq. (59).

Proof For vmin = 2
√
d we have from Eq. (57) θ∗b = 1+

√
5

8d < 1
2 since d ∈ Z+.

As such, from Lemma 5, vb(θ) = vmin = 2
√
d for θ ≥ 1

2 and thus Eq. (59) is
used:

2θ + urb(θ; n̂x) = 2θ + (n̂x − 1)gb

= n̂x,

where Eq. (86) is recovered by isolating for n̂x. Both the numerator and de-
nominator of Eq. (86) are positive for θ > 1

2 thanks to Lemma 9 and this
completes the proof.

We now evaluate 1− ura(θ; n̂x) using Eqs. (58) and (86):

1− ura(θ; n̂x) = 1− (n̂x − 1)ga

=
1−

(
2θ(2
√
d+ 1)− 1

)
(4dθ + 1)e−4dθ

1− gb

=
1− ha(θ; d)

1− gb
, (87)
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where the denominator is always positive thanks to Lemma 9 and

ha(θ; d) =
(

2θ(2
√
d+ 1)− 1

)
(4dθ + 1) e−4dθ. The maximum of ha(θ; d) is

considered in the following lemma.

Lemma 18 For θ > 1
2 and d ∈ Z+ we have ha(θ, d) ≤ uha(θ; d) < 1, where

uha(d) = (8θd− 2)(4θd+ 1)e−4θd. (88)

Proof We start by showing that uha(d) ≥ ha(θ; d):

(8θd− 2)(4θd+ 1)e−4θd ≥
(

2θ(2
√
d+ 1)− 1

)
(4dθ + 1) e−4dθ

2θ(4d− 2
√
d− 1) ≥ 1. (89)

For θ > 1
2 and d ∈ Z+ the LHS is minimized and equal to one with θ = 1

2
and d = 1. We now calculate the maximum of uha(θ, d) using a = 4θd, where
a ≥ 2 since θ > 1

2 and d ∈ Z+. The maximum of uha(a) is at

∂uha
∂a

=
∂
(
(a2 − 1)e−a

)
∂a

= −2
(
a2 − 2a− 1

)
e−1 = 0

a = 1 +
√

2, (90)

where we only keep the positive root of the quadratic and it straightforward
to verify that this is the location of a maximum. The maximum of uha(a) is
thus uha(a = 1 +

√
2) ≈ 0.432, which completes the proof.

Since ha(θ, d) < 1 for θ > 1
2 and d ∈ Z+ it follows from Eq. (87) that 1−

ura(θ) > 0 when uλmax(θ) ≥ nx, which completes the proof of Proposition 11.

13.2 Proof of Proposition 12

We follow the same approach used for the proof of Proposition 11 in Section 13.1
and begin by evaluating 2θ − urb(θ; n̂x) using Eqs. (59) and (86):

2θ − urb(θ; n̂x) = 2θ − (n̂x − 1)gb

=
2θ

1− gb

[
1− 2

√
d(4θ − 1) (4θd+ 1) e−4dθ

]
=

2θ

1− gb
(1− hb(θ, d)) , (91)

where hb(θ, d) = 2
√
d(4θ − 1) (4θd+ 1) e−4dθ and the denominator is positive

as a result of Lemma 9. In order to have 2θ−urb(θ; n̂x) > 0 for θ > 1
2 we need

to prove that hb(θ, d) < 1 for d ∈ Z+ and θ > 1
2 . We begin by showing that

hb < uha for d ∈ Z+ and θ > 1
2 , where uha comes from Eq. (88):

(8θd− 2)(4θd+ 1)e−4θd ≥ 2
√
d (4θ − 1) (4dθ + 1) e−4dθ

(8θ
√
d+ 2)(

√
d− 1) > 0,
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which is satisfied for θ > 0 and d ∈ Z+. From Lemma 18 we have uha(θ, d) ≤ 1
for d ∈ Z+ and θ > 1

2 . Therefore, hb < uha < 1 for d ∈ Z+ and θ > 1
2 . Since

hb < 1, it follows from Eq. (91) that 2θ − urb(θ;nx) > 0 when uλmax
(θ) ≥ nx,

which completes the proof of Proposition 12.

14 Proofs for Section 9

14.1 Proof of Proposition 13

Eq. (63) is derived by setting θ = 1
2 in 2θ − urb(θ, vb(θ)) = 0 along with the

constraint vmin ≥
√

2. The solution to Eq. (63) thus satisfies all the criteria
from Lemma 11 to ensure `λmin

> 0 ∀ θ > 1
2 , (d, nx) ∈ (Z+,Z+ \ 1). In order

for the solution to Eqs. (61) and (63) to be the same, we must show that the
solution to Eq. (63) is the smallest one that ensures `λmin(θ; d, nx) > 0∀ θ > 1

2 ,
(d, nx) ∈ (Z+,Z+ \ 1).

Eq. (63) is simply urb(θ, v) = 1 with v = vreq >
√

2 and θ = 1
2 . The func-

tion urb(θ, v) evaluates to zero for v = 0 and v → ∞ and from Proposition 9
we know it is a quasiconcave function with respect to v. Therefore, if there
is a value of v > 0 such that urb(θ, v) > 1, then there are two values of v
that satisfy urb(θ, v) = 1, one smaller and one greater than

√
2 and v∗b . With

d = 1, nx = 2, and v =
√

2 we have urb ≈ 1.26. Since urb is monotonically
increasing with respect to both d and nx, it follows that there are two values
of v that satisfy urb(θ, v) = 1 for d ∈ Z+ and nx ∈ Z+ \ 1. However, only
the larger solution is greater than v∗b and ensures urb(θ, vb) = 1 since for the
smaller solution we have vb = v∗b and thus urb(θ, vb) > 1. Therefore, the re-
quirement in Eq. (63) that vmin ≥ vreq >

√
2 ensures that the larger solution

of urb(θ, v) = 1 is found. With vmin = vreq we thus have the smallest value
of vmin that ensures urb(θ, vb) = 1 and thus `λmin

(θ) = 0 at θ = 1
2 . The next

two lemmas prove that with vmin ≥ vreq, the bound `λmin
(θ) is monotonically

increasing for θ > 1
2 .

Lemma 19 The solution to Eq. (63) ensures that `λmin
(θ) is monotonically

increasing for θ ≥ 1
2 and (d, nx) ∈ (Z+,Z+ \ 1) \ (1, 2).

Proof The solution to Eq. (63) for (d, nx) = (1, 3) and (d, nx) = (2, 2) is
vreq = 2.347 and vreq = 2.031, respectively. The LHS of Eq. (63) is mono-
tonically increasing with respect to d and nx but monotonically decreasing
with respect to vreq since vreq > v∗b . Therefore, since the RHS of Eq. (63) is
constant, vreq must be monotonically increasing with respect to d and nx. As
such vreq > 2 for (d, nx) ∈ (Z+,Z+ \ 1) \ (1, 2) and Lemma 12 indicates this is
a sufficient condition to have `λmin

(θ) be monotonically increasing for θ ≥ 1
2 ,

which completes the proof.

Lemma 20 The solution to Eq. (63) ensures that `λmin(θ) is monotonically
increasing for θ ≥ 1

2 and (d, nx) = (1, 2).



A Solution to the Ill-Conditioning of the Gradient-Enhanced Covariance Matrix 45

Proof A sufficient condition for `λmin(θ) to be monotonically increasing for
θ > 1

2 is that both 1 − ura(θ) and 2θ − urb(θ) are themselves monotoni-
cally increasing for θ > 1

2 . The solution to Eq. (63) with (d, nx) = (1, 2) is
vreq = 1.797. From Eq. (37) we have θ∗a(v = 1.797, d = 1) = 0.031, which in-
dicates 1− ura(θ) is monotonically increasing for θ > 1

2 . We now differentiate
2θ − urb(θ; d = 1, nx = 2):

∂ (2θ − urb(θ))
∂θ

= 2 + 2vmin

(
2v3

minθ
2 + vmin(vmin − 4)θ − 1

)
e−θv

2
min . (92)

For vmin = vreq = 1.797 we have
∂(2θ−urb (θ))

∂θ = 0 only when θ = 0.224.
Therefore, 2θ−urb(θ; d = 1, nx = 2) is monotonically increasing for θ > 0.224,
which completes the proof.

The solution to Eq. (63) is the smallest one that ensures `λmin
(θ) = 0

for θ = 1
2 and it is also sufficiently large to ensure `λmin

(θ) is monotonically
increasing for θ > 1

2 . Therefore, the solution to Eq. (63) is the solution to
Eq. (61), which completes the proof.

14.2 Proof of Proposition 14

We take the natural logarithm of both sides of Eq. (63):

ln
(

(nx − 1)v
(

1 +
√
dv
)
e−

v2

2

)
= ln(1),

and isolate v2 to obtain

v2 = 2 ln(nx − 1) + 2 ln(v) + 2 ln(1 +
√
dv). (93)

The two following lemmas provide upper bounds on the two non-polynomial
terms in Eq. (93) that contain v.

Lemma 21 For v ≥ 2 and d ∈ Z+ we have

ln(v) + ln

(
1 + 2

√
d

2

)
≥ ln

(
1 +
√
dv
)
. (94)

Proof We start by finding the smallest value of c1 such that the following
inequality holds for v > 2 and d ∈ Z+:

ln(c1
√
dv) ≥ ln(1 +

√
dv) (95)

c1 = max
v≥2

1 +
√
dv√

dv

=
1 + 2

√
d

2
√
d

, (96)

where the minimum value of v, i.e. v = 2, was used since 1+
√
dv√
dv

= 1√
dv

+ 1

is monotonically decreasing with respect to v. Eq. (94) is recovered by substi-
tuting the value of c1 from Eq. (96) into Eq. (95), which completes the proof.
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Lemma 22 For v > 0 we have v
e ≥ ln(v).

Proof We have max ln(v)
v = 1

e at v = e. Therefore, v
e ≥ ln(v)∀ v > 0, which

completes the proof.

We now use Lemmas 21 and 22 to convert Eq. (93) into an algebraic equa-
tion:

v2 > 2 ln(v) + 2 ln(nx − 1) + 2

[
ln(v) + ln

(
1 + 2

√
d

2

)]

>
4

e
v + 2 ln

 (nx − 1)
(

1 + 2
√
d
)

2

 , (97)

which is a quadratic relation that can be satisfied with the positive root of the
quadratic equation:

ṽreq(d, nx) =

2 +

√
4 + 2e2 ln

(
(nx−1)(1+2

√
d)

2

)
e

, (98)

which matches Eq. (64). Lemma 21 considered the case with v ≥ 2 but
ṽreq(nx = 2, d = 1) = 1.899. Nonetheless, vreq(nx = 2, d = 1) = 1.814 and
as such, ṽreq ≥ vreq ∀(d, nx) ∈ (Z+,Z+ \ 1). From Proposition 13 it follows
that vmin ≥ vreq ensures that `λmin is positive and monotonically increasing
for θ > 1

2 , which satisfies the constraint in Eq. (61) and this completes the
proof of Proposition 14.

14.3 Proof of Proposition 15

We consider the maximum of uλmax
(θ) for 0 < θ ≤ 1

2 using Eq. (36):

max
0<θ≤ 1

2

uλmax
= max

0<θ≤ 1
2

(
1 + u∗ra , 2θ + u∗rb

)
≤ max

0<θ≤ 1
2

(
1 + u∗ra , 1 + u∗rb

)
. (99)

To prove that uλmax
= 1 + u∗ra for d ∈ Z+, nx ∈ Z+ \ 1, 0 < θ ≤ 1

2 , and

vreq ≤ vmin ≤ 2
√
d it is thus sufficient to show that the following relation is

satisfied:

u∗rb(vmin) < u∗ra(vmin)

2(nx − 1)
4
√
d+

√
v2

min + 16d

v2
min

e
−

4
√
d+
√
v2
min

+16d−vmin

4
√
d < (nx − 1)

2
√
d

vmin
e

1− vmin
2
√
d

√
dvmin

4
√
d+

√
v2

min + 16d
e

(
vmin+

√
v2
min

+16d

4
√
d

)
> 1, (100)
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Fig. 14: Comparing vreq and vr, which are the roots to Eqs. (63) and (100),
respectively.

where Eqs. (42) and (51) were used for u∗ra and u∗rb , respectively. To determine
when Eq. (100) is satisfied the trend of the LHS of Eq. (100) with respect to
vmin and d is required and this is considered in the two following lemmas.

Lemma 23 The LHS of Eq. (100), which is denoted as g(vmin, d), is mono-
tonically increasing with respect to vmin for vmin > 0 and d ∈ Z+.

Proof The derivative of g(vmin, d) with respect to vmin is

∂g

∂vmin
=

(
vmin + 4

√
d
)√

v2
min + 16d+ 4

√
dvmin + 16d+ v2

min

4
(√

v2
min + 16d+ 4

√
d
)2 e

(
vmin+

√
v2
min

+16d

4
√
d

)
,

(101)
which is always positive for vr > 0 and d ∈ Z+ and this completes the proof.

Lemma 24 The LHS of Eq. (100), which is denoted as g(vmin, d), is mono-
tonically decreasing with respect to d for vr > 0 and d ∈ Z+.

Proof The partial derivative of g(vr, d) with respect to d is

∂g

∂d
= −

vr

(
vr +

√
v2

r + 16d− 4
√
d
)

8d
(√

v2
r + 16d+ 4

√
d
) e

(
vmin+

√
v2
min

+16d

4
√
d

)
, (102)

which is always negative since
√
v2

r + 16d− 4
√
d > 0 for vr > 0 and d ∈ Z+.

We are interested in proving that u∗ra(vmin) > u∗rb(vmin) for vmin ≥ vreq.
In order to do that the following lemma solves for vr, which is the solu-
tion to u∗ra(vr) = u∗rb(vr). It is then proven that vreq > vr, which ensures
u∗ra(vreq) > u∗rb(vreq).

Lemma 25 There is a unique solution vr to the equation u∗ra(vr) = u∗rb(vr),
where 0 < vr ≤ uvr = 8

e .
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Proof From Lemma 23 we know that the LHS of Eq. (100), which is denoted
as g(vmin, d), increases monotonically with respect to vmin. As such, there is a
unique vr(d) that satisfies g(vr) = 1, which is equivalent to u∗ra(vr) = u∗rb(vr).
We have g(0) = 0 and we therefore require vr > 0 to have g(vr) = 1. From
Lemma 24 we know that g(d) is monotonically decreasing with respect to d.
As such, when d increases, the LHS decreases, and thus vr must increase to
ensure g(vr) = 1. This can be seen in Fig. 14. Since vr(d) increases with respect
to d, we consider the following limit:

lim
d→∞

g(vr; d) = lim
d→∞

 vr

4 +
√

v2r
d + 16

 e

 vr√
d
+

√
v2r√
d
+16

4



=
vr

8
e. (103)

For d ∈ Z+ it follows that there is a unique value of vr such that
u∗ra(vr) = u∗rb(vr), where vr ∈

(
0, 8

e

]
, which completes the proof.

As explained in the proof of Lemma 19, vreq(d, nx) increases monotonically
with respect to d and nx and is thus minimized with nx = 2. We thus want to
show that vreq(d, nx = 2) > vr(d)∀d ∈ Z+ and this will also hold for all nx ∈
Z+ \ 1. Fig. 14 shows that for 1 ≤ d ≤ 100 we have vreq(d, nx = 2) > vr. For
d = 100 we have vreq(d, nx = 2) > uvr and this holds for all d > 100
since vreq(d) is monotonically increasing with respect to d. We thus have
vreq(d, nx) > vr(d)∀ (d, nx) ∈ (Z+,Z+ \ 1) and it follows from Eq. (100) that
u∗ra(vmin) > u∗rb(vmin) when vmin ≥ vreq, which completes the proof of
Proposition 15.


