
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

R E S E A R C H A R T I C L E

A Solution to the Ill-Conditioning of Gradient-Enhanced
Covariance Matrices for Gaussian Processes

André L. Marchildon David W. Zingg

1Institute for Aerospace Studies, University of
Toronto, Ontario, Canada

Correspondence
Corresponding author André L. Marchildon:

Email: andre.marchildon@mail.utoronto.ca

Funding Information
This research was supported by the Natural Sciences
and Engineering Research Council of Canada and
the Ontario Graduate Scholarship Program.

Abstract
Gaussian processes provide probabilistic surrogates for various applications including classification, un-
certainty quantification, and optimization. Using a gradient-enhanced covariance matrix can be beneficial
since it provides a more accurate surrogate relative to its gradient-free counterpart. An acute problem for
Gaussian processes, particularly those that use gradients, is the ill-conditioning of their covariance matrices.
Several methods have been developed to address this problem for gradient-enhanced Gaussian processes but
they have various drawbacks such as limiting the data that can be used, imposing a minimum distance be-
tween evaluation points in the parameter space, or constraining the hyperparameters. In this paper a diagonal
preconditioner is applied to the covariance matrix along with a modest nugget to ensure that the condition
number of the covariance matrix is bounded, while avoiding the drawbacks listed above. The method can
be applied with any twice-differentiable kernel and when there are noisy function and gradient evaluations.
Optimization results for a gradient-enhanced Bayesian optimizer with the Gaussian kernel are compared
with the use of the preconditioning method, a baseline method that constrains the hyperparameters, and a
rescaling method that increases the distance between evaluation points. The Bayesian optimizer with the
preconditioning method converges the optimality, i.e. the ℓ2 norm of the gradient, an additional 5 to 9 orders
of magnitude relative to when the baseline method is used and it does so in fewer iterations than with the
rescaling method. The preconditioning method is available in the open source Python library GpGradPy,
which can be found at https://github.com/marchildon/gpgradpy/tree/paper_precon.
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1 INTRODUCTION

In diverse fields and for various applications, such as uncertainty quantification, classification, regression, and optimization, an
expensive function of interest must be repeatedly evaluated1,2,3,4. To minimize the computational cost it is desirable to minimize
the number of expensive function evaluations. One way to achieve this is by constructing a surrogate that approximates the
function of interest and is inexpensive to evaluate. Various methods to construct surrogates are available, such as fixed basis
functions (e.g. polynomials), splines, or Gaussian processes (GPs)5,6. GPs are popular since their posteriors are nonparametric
probabilistic surrogates. The nonparametric component of the surrogate indicates that it does not depend on a parametric
functional form, unlike a polynomial surrogate where the order of the basis function must be selected a priori. The probabilistic
component enables the surrogate to provide an estimate for the function of interest and to quantify the uncertainty in its estimate6.
A GP requires a mean and a covariance function7,8. A constant is often used for the former and its value is set by maximizing
the marginal log-likelihood9,10,11,12. For the covariance function many kernels are available13,6, the most popular of which is the
Gaussian kernel, which is also known as the squared exponential kernel6,2,14. The desirable properties of this kernel include its
hyperparameters that can be tuned, its simplicity, and its smoothness. This final property enables the surrogate to be constructed
using gradient evaluations, which makes the surrogate more accurate15,3,14.
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Gradient-enhanced GPs use both the value and gradient of the function of interest to construct the probabilistic surrogate. By
using gradients with the GP, a more accurate surrogate is constructed that matches both the value and gradient of the function of
interest where it has been evaluated in the parameter space16,17,18. This is particularly useful in high-dimensional parameter
spaces since a single gradient evaluation provides much more information than a single function evaluation. The gradient-
enhanced covariance matrix can be constructed either with the direct method or the indirect method19. The former modifies the
structure of the gradient-free covariance matrix while the latter does not. The direct method is much more common20,15,14,21 and
is used in this paper. A drawback of using gradient-enhanced GPs is that the covariance matrix is larger than its gradient-free
counterpart and is thus more expensive to invert. Various strategies have been developed to mitigate this additional cost by using
random Fourier features22, or by exploiting the structure of the gradient-enhanced covariance matrix23.

A ubiquitous problem in the use of GPs is the ill-conditioning of their covariance matrices7,24,25. This problem is present with
the use of many kernels, including the Gaussian kernel. Various factors have been identified that exacerbate the ill-conditioning,
such as having the data points too close together13,26. The ill-conditioning of the covariance matrix is problematic since it can
cause the Cholesky factorization to fail27, and it also increases the numerical error. Regularizing the gradient-free covariance
matrix, i.e. adding a small positive nugget to the diagonal of the matrix, is sufficient to ensure that its condition number is below
a user-set threshold28.

The ill-conditioning of the gradient-enhanced covariance matrix is even more acute than the gradient-free case, and the
addition of a nugget is insufficient on its own to alleviate this problem29,30. Various approaches have been attempted to mitigate
the ill-conditioning problem, such as removing certain data points until the condition number is sufficiently low31,15, or imposing
a minimum distance constraint between data points in the parameter space16. Both methods have significant drawbacks since
they restrict the data available to construct the surrogate. A recent method does ensure that the condition number of the
gradient-enhanced covariance matrix remains below a user-set threshold when the Gaussian kernel is used32. This method uses
non-isotropic rescaling of the data in order to have a set minimum distance between the data points. While data points cannot
be collocated, they can get arbitrarily close in the parameter space, and the method allows all of the data points to be kept in
the construction of the gradient-enhanced covariance matrix. However, the drawback of this method is that, in some cases, the
rescaling needs to be done iteratively, which requires the hyperparameters to be optimized again. This adds additional complexity
and computational cost.

The method presented in this paper expands on the secondary method presented in Dalbey15. This method involves two steps,
preconditioning (also called equilibrating) the covariance matrix and then regularizing it with the addition of a nugget. The
preconditioning method shares the same benefits as the rescaling method from Marchildon and Zingg32, i.e. all of the data points
can be used, there is no minimum distance constraint between the data points in the parameter space, and the condition number
of the gradient-enhanced covariance matrix is bounded. The preconditioning method also has two additional benefits: it only
requires a single optimization of the hyperparameters, i.e. it is not iterative, and there is no need for a constraint on the condition
number for the optimization of the hyperparameters. This simplifies the implementation of the preconditioning method and
reduces its computational cost.

The method presented in this paper provides several advantages relative to the one presented by Dalbey15, which requires the
condition number of the covariance matrix to be approximated. This adds computational cost and it does not guarantee that the
selected nugget is sufficient to bound the condition number below a set threshold, as acknowledged by the author. Furthermore,
the nugget varies as the hyperparameters are changed but its gradient cannot be accurately calculated since it depends on an
approximation to the condition number of the covariance matrix. The method presented in this paper calculates a nugget value
sufficient to bound the condition number of the covariance matrix with the use of the Gershgorin circle theorem. This nugget
guarantees that the condition number of the covariance matrix is below a user-set threshold, it can be applied to cases with
noisy objective and gradient evaluations, and accurate gradients can be calculated to perform gradient-based optimization of the
hyperparameters.

The preconditioning and rescaling methods with the Gaussian, Matérn 5
2 , and rational quadratic kernels are available in the

Python library GpGradPy, which can be accessed at https://github.com/marchildon/gpgradpy/tree/paper_precon.
The notation used in this paper is presented in Section 2. In Section 3 the GP is presented along with the Gaussian kernel and

the covariance matrix. In Section 4 previous methods to bound the condition number of the gradient-enhanced covariance matrix
are presented while the preconditioning method is introduced in Section 5. Numerical results are provided in Section 6, where it
is demonstrated that the preconditioning method bounds the condition number of the covariance matrix for both noise-free and
noisy test cases. Furthermore, test cases with a Bayesian optimizer are presented to showcase the practical advantage of using
the preconditioning method over the methods from Section 4. Finally, the conclusions of the paper are in Section 7.
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2 NOTATION

Sans-serif capital letters are used for matrices. For example, I is the identity matrix, and X is an nx × d matrix that holds the
location of nx evaluation points in a d dimensional parameter space. Vectors are denoted in lowercase bold font. For instance, x
and y are vectors of length d denoting arbitrary points in the parameter space. The i-th row of X is denoted as xi: and its j-th
column is indicated as x:j. Finally, scalars are denoted in lowercase letters such as xij, which is the entry at the i-th row and
j-th column of X. The symbols 0d and 1d are vectors of length d with all of their entries equal to zero and one, respectively. In
addition, O and 1 are square matrices with all of their entries equal to zero and one, respectively. The math operator diag(·)
either converts a vector into a diagonal matrix or returns the diagonal entries of a matrix as a vector, depending on its input.
Finally, matrices with exponents in brackets, e.g. R(2), have the exponent applied elementwise to the entries of the matrix.

3 GAUSSIAN PROCESS

3.1 Overview of Gaussian processes

A GP is the generalization of a Gaussian distribution for a scalar random variable to a Gaussian distribution over functions6. Just
like scalar values can be sampled from a Gaussian distribution, functions can be sampled from a GP. To fully define a Gaussian
distribution we require a mean and standard deviation value. Similarly, to fully define a GP we require a mean function and a
covariance function. The mean function is commonly selected to be the scalar β, which is a hyperparameter that is selected
by maximizing the marginal log-likelihood function that will be presented in Section 3.4. The kernel, which describes the
covariance for a random process, is introduced in Section 3.2.

The posterior of a GP is a probabilistic surrogate that approximates a function of interest f (x). At each point in the parameter
space the posterior of the GP is normally distributed and its mean and variance are straightforward to evaluate, as is demonstrated
in Section 3.4. A GP can utilize noisy function and gradient evaluations of the function of interest. We assume that the noisy
function and gradient evaluations are the result of additive noise that is independent, identically distributed, and drawn from a
zero-mean Gaussian distribution. The noisy function and derivative evaluations are thus given by

f̃ (x) = f (x) + ϵf (1)

∂̃f
∂xi

∣∣∣∣∣
x

=
∂f
∂xi

∣∣∣∣
x

+ ϵ∇f ∀ i ∈ {1, . . . , d}, (2)

where ϵf ∼ N (0,σ2
f ) and ϵ∇f ∼ N (0,σ2

∇f ) with σf and σ∇f being the standard deviation for the noise on the evaluation of the
function f (·) and its gradient, respectively.

3.2 Gradient-free covariance matrix

The method presented in this paper to bound the condition number of the covariance matrix can be applied with any twice-
differentiable kernel, where this restriction is needed to form the gradient-enhanced kernel matrix, as will be seen in Section 3.3.
We start by considering the Gaussian kernel6, with the Matérn 5

2 and rational quadratic kernels presented in Section 6.3:

k(x, y;γ) = e– 1
2

∑d
i=1 γ

2
i (xi–yi)2

, (3)

where γ are hyperparameters and γi > 0∀ i ∈ {1, . . . , d}, which will be indicated hereafter as γ > 0 for conciseness. The
Gaussian kernel is often presented with θ = γ2/2 or θ = γ–1 as its hyperparameters6, but it is simpler in the later derivations to
use γ instead. The Gaussian kernel is a stationary kernel since it depends only on r = x – y, i.e. the relative location of y to x.
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The gradient-free Gaussian kernel matrix is

K = K (X;γ) =


1 k(x1:, x2:, ;γ) . . . k(x1:, xnx:;γ)

k(x2:, x1:;γ) 1 . . . k(x2:, xnx:;γ)
...

...
. . .

...
k(xnx:, x1:;γ) k(xnx:, x2:;γ) . . . 1

 , (4)

where its diagonal entries are all unity and nx represents the number of function evaluations. In general, the i-th diagonal entry of
K is k(xi:, xi:;γ). The gradient-free Gaussian kernel matrix K is positive semidefinite6, and also a correlation matrix since it
satisfies all of the properties of the following definition33. The two properties in Definition 1 ensure that all of the entries in a
correlation matrix are between –1 and 1. From the Cauchy-Schwarz inequality for a symmetric positive definite matrix A we
have

∣∣⟨u, v⟩A
∣∣2 ≤ ⟨u, u⟩A⟨v, v⟩A, where ⟨u, v⟩A = u⊤Av. If A is a correlation matrix then all of its diagonal entries are unity, and

if u and v are selected as the i-th and j -th columns of the identity matrix, respectively, then we have
∣∣aij

∣∣2 ≤ aii · ajj = 1.

Definition 1. A correlation matrix must satisfy the following conditions:

1. The diagonal entries of the matrix are all unity
2. The matrix is symmetric positive semidefinite

The gradient-free covariance matrix is commonly given by

Σ(X; σ̂K,γ, σ̂0) = σ̂2
KK(X;γ) + σ̂2

0 I, (5)

where the hyperparameter σ̂2
K is the variance of the stationary residual error and σ̂2

0 is a hyperparameter that estimates σ2
0 , which

is the true noise variance34. The hyperparameter σ̂2
0 is used when the function evaluations are noisy and, in practice, it also

serves to regularize Σ in order to reduce its condition number34. To separate the need to regularize the covariance matrix from
the estimation of the uncertainty of the function evaluations, we use the following notation

Σ(X; σ̂K,γ, ηK, σ̂f ) = σ̂2
K (K(X;γ) + ηKI) + V(σ̂f ), (6)

where the nugget ηK ≥ 0 is used to regularize Σ and the estimated variance of the uncertainty for the function evaluations is
provided by

V(σ̂f ) = σ̂2
f Inx , (7)

where σ̂f ≥ 0 is a hyperparameter that approximates the noise variance that exceeds what is provided by the nugget ηK. If the
noise variance is known, then it can be used instead of selecting σ̂f as a hyperparameter. The estimated noise variance σ̂2

0 from
Eq. (5) can be related to the terms in Eq. (6) with

σ̂2
0 = σ̂2

f + σ̂2
KηK. (8)

The nugget ηK, which is discussed in detail in Section 4.1, is used to ensure that κ(Σ) ≤ κmax, where κ(·) is the condition number
based on the ℓ2 norm and κmax > 1 is the maximum allowed condition number, which is set by the user. The second term on the
right-hand side of Eq. (8) is generally small, as will be demonstrated in Section 6, where the nugget ηK is on the order of 10–9

for κmax = 1010. The numerical benefit of having a positive nugget even when there is no uncertainty in the function evaluations
is also highlighted in Section 6.

3.3 Gradient-enhanced covariance matrix

Constructing the gradient-enhanced kernel matrix requires the derivatives of the kernel with respect to its inputs:

∂k(x, y)
∂xi

= –γ2
i (xi – yi) k(x, y) (9)

∂k(x, y)
∂yj

= γ2
j

(
xj – yj

)
k(x, y) (10)

∂2k(x, y)
∂xi∂yj

=
(
δijγ

2
i – γ2

i γ
2
j (xi – yi)

(
xj – yj

))
k(x, y), (11)
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where δij is the Kronecker delta. The gradient-enhanced kernel matrix is given by

K∇(X;γ) =


K ∂K

∂y1
. . . ∂K

∂yd
∂K
∂x1

∂2K
∂x1∂y1

. . . ∂2K
∂x1∂yd

...
...

. . .
...

∂K
∂xd

∂2K
∂xd∂y1

. . . ∂2K
∂xd∂yd

 (12)

=


K γ2

1R1 ⊙ K . . . γ2
dRd ⊙ K

–γ2
1R1 ⊙ K

(
γ2

11 – γ4
1R(2)

1

)
⊙ K . . . –γ2

1γ
2
dR1 ⊙ Rd ⊙ K

...
...

. . .
...

–γ2
dRd ⊙ K –γ2

1γ
2
dR1 ⊙ Rd ⊙ K . . .

(
γ2

d1 – γ4
dR(2)

d

)
⊙ K

 , (13)

where 1 is a matrix of ones of size nx × nx, the operator ⊙ is the Hadamard product for elementwise multiplication, and Ri is a
skew-symmetric matrix given by

Ri(X) = x:i1⊤nx
– 1nx x

⊤
:i

=


0 x1i – x2i . . . x1i – xnxi

x2i – x1i 0 . . . x2i – xnxi
...

...
. . .

...
xnxi – x1i xnxi – x2i . . . 0

 . (14)

Just like K, K∇ is also symmetric positive semidefinite15. However, unlike K, K∇ is not a correlation matrix since it does not
satisfy the first condition in Definition 1. This is clear from checking the diagonal of K∇:

diag(K∇) = [1, . . . , 1︸ ︷︷ ︸
nx

, γ2
1 , . . . γ2

1︸ ︷︷ ︸
nx

, . . . , γ2
d , . . . γ2

d︸ ︷︷ ︸
nx

]. (15)

The first condition of Definition 1 would only be satisfied for K∇ if γ1 = . . . = γd = 1. However, the hyperparameters γ are set
by maximizing the marginal log-likelihood, which is introduced in the following subsection. The gradient-enhanced covariance
matrix is given in the same format as Eq. (6) by

Σ∇(X; σ̂K,γ, ηK∇ , W, σ̂f , σ̂∇f ) = σ̂2
K
(
K∇ + ηK∇W

)
+ V∇, (16)

where ηK∇ ≥ 0 is a nugget, W is a nonnegative diagonal matrix that is traditionally set to the identity matrix, and V∇ is given by

V∇(σ̂f , σ̂∇f ) = diag
(
σ̂2

f 1⊤nx
, σ̂2

∇f 1
⊤
nxd

)
, (17)

where σ̂∇f is a hyperparameter that estimates σ∇f .

3.4 Evaluating the Gaussian process’s posterior

The mean and variance of the posterior of the gradient-enhanced GP are evaluated with18

µGP(x) = β + σ̂2
K k⊤

∇(x)Σ–1
∇
(
f∇ – β1̌

)
(18)

σ2
GP(x) = σ̂2

K

(
k(x, x) – σ̂2

K k⊤∇(x)Σ–1
∇k∇(x)

)
, (19)

where 1̌ = [1⊤nx
, 0⊤

nxd]⊤, and
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k∇(x; X) =


k(X, x)
∂k(X,x)
∂x1
...

∂k(X,x)
∂xd

 , f∇(X) =


f (X)
∂f (X)
∂x1
...

∂f (X)
∂xd

 , (20)

where f (X) is the function of interest evaluated at all of the rows in X. In this paper the gradient of the function of interest is
calculated analytically, but it could also be calculated with algorithmic differentiation or approximated with finite differences.

The hyperparameters of the GP are set by maximizing the marginal likelihood9,10,11,12

L(γ,β, σ̂2
K, σ̂f , σ̂∇f ; X, f∇, ηK∇ ) =

e– (f∇–β1̂)⊤Σ–1
∇(f∇–β1̂)

2

(2π)
nx (d+1)

2
√

det (Σ∇)
. (21)

It is straightforward to get a closed-form solution for β that maximizes the marginal likelihood9:

β(γ, σ̂f , σ̂∇f ; X, f∇, ηK∇ ) =
1̌⊤Σ–1

∇f∇
1̌⊤

Σ–1
∇ 1̌

. (22)

For the noise-free case, i.e. σf = σ∇f = 0, we have V∇ = O, and we can derive the following closed form solution for σ̂2
K that

maximizes the marginal likelihood9:

σ̂2
K(γ; X, f∇, ηK∇ ,β) =

(
f∇ – β1̌

)⊤ (
K∇ + ηK∇ I

)–1 (f∇ – β1̌
)

nx(d + 1)
. (23)

Substituting this solution for σ̂2
K into ln(L) and dropping the constant terms gives

ln(L(γ; X, ηK∇ , σ̂K)) = –
nx(d + 1) ln(σ̂2

K) + ln(det(K∇ + ηK∇ I))
2

. (24)

For the noise-free case the hyperparameters in the vector γ are selected by maximizing Eq. (24) numerically with the bound γ > 0.
When σf > 0 or σ∇f > 0, it is not possible to get a closed-form solution for σ̂2

K and it must thus be optimized numerically along
with σ̂f , σ̂∇f , and γ. In contrast, the nugget ηK∇ is not a hyperparameter that is set by maximizing the marginal log-likelihood,
as is discussed further in Section 4.1.

To demonstrate the benefit of using gradients we compare a gradient-free and a gradient-enhanced GP that approximate the
following one-dimensional noise-free function:

f (x) = sin(x) + sin
(

10x
3

)
, (25)

which was evaluated at x = [3.5, 4.5, 5.5, 6.5]⊤. The posterior of the gradient-free and gradient-enhanced GPs can be seen
in Figs. 1a and 1b, respectively. For Fig. 1b the black line is Eq. (25), the solid green line is the mean of the surrogate from
Eq. (18), and the light green area represents ±2σGP(x), where σGP comes from Eq. (19). For Fig. 1a the mean and standard
deviation of the posterior for the gradient-free GP are calculated with equations analogous to Eqs. (18) and (19) that omit the
gradient evaluations and use the gradient-free kernel matrix. The hyperparameters β = –0.62, σ̂2

K = 1.07, and γ = 1.7 come
from maximizing Eq. (24) numerically for the gradient-enhanced GP. The gradient-free GP uses the same hyperparameters
since it was found that selecting its hyperparameters by maximizing the marginal log-likelihood with only the four evaluation
points resulted in a significantly less accurate surrogate. It was found that at least 10 evaluation points were needed such that the
hyperparameters for the gradient-free GP set by maximizing the marginal log-likelihood provided an accurate surrogate.

It is clear from Fig. 1 that the use of gradients to construct the GP significantly improves the accuracy of its posterior and
also reduces its uncertainty, i.e. σGP. The benefit of using gradients to construct a GP is even greater for higher-dimensional
parameter spaces since the gradient provides more information as the number of parameters increases. However, a significant
problem for gradient-enhanced GPs is that their covariance matrices become extremely ill-conditioned, which is addressed in the
two following sections.
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(a) Gradient-free GP (b) Gradient-enhanced GP

F I G U R E 1 The posterior of gradient-free and gradient-enhanced GPs approximating the function from Eq. (25) with the
same hyperparameters β = –0.62, σ̂2

K = 1.07, and γ = 1.7.

4 PREVIOUS METHODS TO MITIGATE ILL-CONDITIONING

4.1 Regularization

A common approach to alleviate the ill-conditioning of a matrix is to regularize it, i.e. to add a positive nugget to its diagonal.
For a GP, the addition of a nugget to the covariance matrix is analogous to having noisy data6,34, as can be seen from Eqs. (6)
and (16) for the gradient-free and gradient-enhanced cases, respectively. When the nugget is zero, the mean of the posterior for
the GP will match the function of interest exactly at all points where it has been evaluated. The same applies to the evaluated
gradients if a gradient-enhanced covariance matrix is used. However, if a positive nugget is used, the surrogate will generally not
match the function of interest exactly at points where it has been sampled. It is therefore desirable to use the smallest nugget
value required to ensure that the condition number of the covariance matrix is below a desired threshold.

For the gradient-free covariance matrix the addition of noise, i.e. σf > 0, helps reduce its condition number since σf , just like
ηK∇ , is added to the entire diagonal of Σ from Eq. (6)35. For the gradient-enhanced case however, the addition of σf > 0, σ∇f > 0,
or both, may decrease or increase the condition number of Σ∇. This is the result of σf and σ∇f only being added to part of the
diagonal for Σ∇, as seen in Eq. (16). In this subsection we consider the addition of a nugget to a noise-free covariance matrix, i.e.
σf = σ∇f = 0. Methods to bound the condition number of covariance matrices with noisy data will be considered in Section 5.

For the noise-free case the covariance matrices for the gradient-free and gradient-enhanced cases simply to Σ = σ̂2
K (K + ηKI)

and Σ∇ = σ̂2
K

(
K∇ + ηK∇ I

)
, respectively. We omit the non-zero scalar σ̂K from the analysis since it does not affect the condition

number. The eigenvalues of K and K∇ are real since these are symmetric matrices. We derive the minimum nonnegative nugget
value sufficient to have κ(A + ηminI) ≤ κmax, where A is an arbitrary symmetric semidefinite matrix, and the condition number is
based on the ℓ2 norm:

κ(A + ηminI) =
λmax + ηmin

λmin + ηmin
≤ κmax

ηmin = max
(
λmax – λminκmax

κmax – 1
, 0
)

, (26)

where λmin and λmax are the smallest and largest eigenvalues of A, respectively. For positive semidefinite matrices, such as K and
K∇, we have λmin ≥ 0 and λmax(K) ≤ tr (K). From Eq. (26) it thus follows that nugget values sufficient to bound the condition
numbers of the kernel matrices below κmax are

ηK(nx;κmax) =
nx

κmax – 1
(27)

ηK∇ (nx,γ;κmax) =
nx(1⊤γ2 + 1)
κmax – 1

. (28)



8 Marchildon and Zingg

These are sufficient but not necessary conditions to ensure that the condition numbers of the covariance matrices are smaller than
κmax since the bound λmax ≤ tr (K) is not tight and Eqs. (27) and (28) were derived with the worst case λmin = 0.

Eq. (27) provides a small ηK that is sufficient to ensure that κ(Σ) ≤ κmax. However, ηK∇ from Eq. (28) is undesirable since it
depends on γ. Consequently, as γ gets larger, ηK∇ must also increase to ensure that κ(Σ∇(γ)) ≤ κmax. In Sections 4.2 and 4.3
two methods are presented to ensure that κ(Σ∇(γ)) ≤ κmax with a finite nugget value.

4.2 Baseline method: constrained optimization of γ

An approach that has been used previously to ensure that κ(Σ∇) ≤ κmax is to add a constraint to the maximization of the marginal
log-likelihood from Eq. (24)36,12. The hyperparameters γ are thus selected by solving the following constrained optimization
problem:

γ∗ = argmax
γ>0

L(γ) s.t. κ(Σ∇(γ)) ≤ κmax. (29)

There will always be a feasible solution to Eq. (29) if ηK∇ ≥ nx
κmax–1 . This can be verified from Eq. (28) with γ → 0d. Solving

Eq. (29) to set the hyperparameters thus ensures that κ(Σ∇(X,γ)) ≤ κmax∀X ∈ Rnx×d. However, the constraint in Eq. (29) may
result in selecting hyperparameters that provide a significantly lower marginal log-likelihood. This impacts the accuracy of the
surrogate and is shown in Section 6.5 to be detrimental to the optimization case.

4.3 Rescaling method

A short overview of the rescaling method from Marchildon and Zingg32 is provided in this section. To ensure that
κ(Σ∇(X;γ, ηK∇ )) ≤ κmax when γ1 = . . . = γd and Σ∇ is not diagonally dominant, the parameter space is rescaled such that the
minimum Euclidean distance between evaluation points is vmin,set, where

vmin,set(d, nx) = min

2
√

d,
2 +

√
4 + 2e2 ln

(
(nx–1)(1+2

√
d)

2

)
e

 . (30)

The condition that Σ∇ is not diagonally dominant is required since the condition number of Σ∇ is unbounded as γ tends to
infinity, regardless of the selected nugget, as seen in Eq. (15). However, since the condition on the diagonal dominance of Σ∇
only applies for large values of γ, it is not in practice limiting since there is little correlation between evaluation points and thus
the marginal log-likelihood is unlikely to be maximized at these hyperparameter values32.

To ensure that the minimum Euclidean distance between evaluation points is vmin,set from Eq. (30), an isotropic scaling is
performed

X = τXinitial

∂f (x)
∂xi

=
1
τ

(
∂f (x)
∂xi

)
initial

,

where τ = vmin,set
vmin,initial

with vmin,set coming from Eq. (30) and vmin,initial being the initial minimum Euclidean distance between
evaluation points prior to rescaling the data. The required nugget to bound the condition number of Σ∇ with the rescaling
method is

ηK∇ (d, nx;κmax) =
1 + (nx – 1) 2

√
d

vmin,set
e

vmin,set
2
√

d
–1

κmax – 1
. (31)

In order to have the optimized hyperparameters satisfy γ1 = . . . = γd, which is needed for this method to ensure that
κ(Σ∇(X;γ, ηK∇ )) ≤ κmax, the data can be rescaled non-isotropically and iteratively32. Having to optimize the hyperparameters
more than once increases the computational cost, but it ensures that the final optimized hyperparameters are unconstrained,
unlike the method presented in Section 4.2. This enables a Bayesian optimizer using this rescaling method to achieve deeper
convergence, i.e. to reduce the optimality several additional orders of magnitude, relative to the use of the baseline method from
Section 4.2, as was shown in Marchildon and Zingg32 and will be demonstrated in Section 6.5.
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5 PRECONDITIONING METHOD

5.1 Preconditioned gradient-enhanced covariance matrix

In Section 3.3 it was indicated that the gradient-enhanced kernel matrix K∇ is not a correlation matrix, unlike its gradient-free
counterpart K. However, we can form a gradient-enhanced correlation matrix by preconditioning the unregularized, i.e. ηK∇ = 0,
gradient-enhanced covariance matrix Σ∇ from Eq. (16) as follows:

K̇∇(X; σ̂K,γ, σ̂f , σ̂∇f ) = (σ̂KP)–1 Σ∇ (σ̂KP)–1

= P–1 (K∇ + σ̂–2
K V∇

)
P–1, (32)

where
P = diag

(√
diag

(
σ̂–2

K Σ∇
))

= diag
(√

diag
(
K∇ + σ̂–2

K V∇
))

. (33)

For the noise-free case, i.e. σ̂f = σ̂∇f = 0, the preconditioning matrix for the gradient-enhanced Gaussian kernel from Eq. (3)
simplifies to

P = diag(1, . . . , 1︸ ︷︷ ︸
nx

, γ1, . . . , γ1︸ ︷︷ ︸
nx

, . . . , γd, . . . , γd︸ ︷︷ ︸
nx

). (34)

More information on K̇∇, which is a correlation matrix, is provided in Section 5.2. With the preconditioned gradient-enhanced
kernel matrix we can form the preconditioned gradient-enhanced covariance matrix

Σ̇∇(X; σ̂K,γ, σ̂f , σ̂∇f , ηK̇∇
) = σ̂2

K

(
K̇∇ + ηK̇∇

I
)

. (35)

In the following subsections different methods of regularizing Σ̇∇ to ensure that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 are introduced. In
Section 5.3 a constant nugget that scales as O (nxd) is presented and compared to the secondary method from Dalbey15, which
uses the same preconditioning matrix P but only considers the noise-free case. In Section 5.4, a smaller constant nugget that
scales as O

(
nx
√

d
)

is derived but it only ensures that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 if the Gaussian kernel is used. Finally, in

Section 5.5 an even smaller nugget is presented that depends on γ and ensures that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0. These methods
provide several advantages relative to the regularization approach from Dalbey15, as detailed in the following subsections.

5.2 Correlation matrix K̇∇

The matrix K̇∇ is a gradient-enhanced correlation matrix since it is formed by normalizing the gradient-enhanced covariance
matrix Σ∇ by its diagonal entries. For the noise-free case K̇∇ from Eq. (32) can be calculated with

K̇∇(X;γ) = P–1K∇P–1

=


K ∂K

∂ẏ1
. . . ∂K

∂ẏd
∂K
∂ẋ1

∂2K
∂ẋ1∂ẏ1

. . . ∂2K
∂ẋ1∂ẏd

...
...

. . .
...

∂K
∂ẋd

∂2K
∂ẋd∂ẏ1

. . . ∂2K
∂ẋd∂ẏd



=


K Ṙ1 ⊙ K . . . Ṙd ⊙ K

–Ṙ1 ⊙ K
(
1 – Ṙ1 ⊙ Ṙ1

)
⊙ K . . . –Ṙ1 ⊙ Ṙd ⊙ K

...
...

. . .
...

–Ṙd ⊙ K –Ṙ1 ⊙ Ṙd ⊙ K . . .
(
1 – Ṙd ⊙ Ṙd

)
⊙ K

 , (36)

where Ṙi = γiRi(X) = Ri(Ẋ), and Ẋ = XP.
The correlations for the entries in f∇ can be seen in Fig. 2. Having K̇∇ as a correlation matrix makes the GP easier to interpret.

Values in K̇∇ close to –1 or 1 indicate near perfect inverse or direct correlations, respectively. On the other hand, values close to
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(a) Correlations in one dimension (b) Plot of corr
(

∂f (x)
∂x1

, ∂f (y)
∂y2

)
for d = 2

F I G U R E 2 Correlations for the Gaussian kernel k(x, y) from Eq. (3) for the evaluation of a function of interest f (x), such
as Eq. (25), and its gradient. The correlations do not depend directly on the evaluation of the function f (x), but rather on
where it is evaluated, i.e. x. However, the evaluation of f (x) and of its gradient impacts the selection of the hyperparameters
γ, which thus impacts the correlations. The correlations are corr(f (x), f (y)) = k(x, y;γ), corr

(
∂f (x)
∂xi

, f (y)
)

= ∂k(x,y;γ)
∂ẋi

, and

corr
(

∂f (x)
∂xi

, ∂f (y)
∂yj

)
= ∂2k(x,y;γ)

∂ẋi∂ẏj
for i, j ∈ {1, . . . , d}.

–1 and 1 in K∇ indicate negative and positive relations, respectively, but provide little insight on the strength of the relations
between the evaluation points.

5.3 Regularizing K̇∇ with ηK̇∇
= O(nxd)

To derive a nugget value that is sufficient to ensure that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 we can follow the same approach taken in
Section 4.1 to get

ηK̇∇
(nx, d;κmax) =

nx(d + 1)
κmax – 1

. (37)

Unlike ηK∇ from Eq. (28), ηK̇∇
does not depend on the hyperparameters γ. However, the nugget that Eq. (37) provides is

much larger than required and it scales as ηK̇∇
= O(nxd). Dalbey15 took a slightly different approach by using the relation∑

i=1 λi = tr
(

K̇∇

)
= nx(d + 1) and considered the worst-case eigenvalue distribution that maximizes the ℓ2 condition number:

λmax + (nx(d + 1) – 1)λmin = nx(d + 1). (38)

Eq. (38) along with the relation λmin = λmax
κ2

, where κ2 is the condition number of K̇∇ based on the ℓ2 norm, were then used to
get the following relation:

λmax =
nx(d + 1)κ2

κ2 + nx(d + 1) – 1
. (39)

Eq. (39) can be substituted into Eq. (26) to get

ηK̇∇
=

λmax

κmax – 1

(
1 –

κmax

κ2

)
=

nx(d + 1)κ2

(κmax – 1)(κ2 + nx(d + 1) – 1)

(
1 –

κmax

κ2

)
, (40)

which is sufficient to ensure that κ(K̇∇(γ) + ηK̇∇
I) ≤ κmax ∀γ > 0. However, calculating κ2 is expensive and Dalbey15 avoids

this by approximating the ℓ1 condition number of K̇∇, i.e. κ1, and using the following relations κ1√
nx(d+1) ≤ κ2 ≤

√
nx(d + 1)κ1.
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Approximating κ1 reduces the computational cost from calculating κ2 but it makes the bound for ηK̇∇
looser. Furthermore, as the

author acknowledged, this method does not guarantee that κ(K̇∇ + ηK̇∇
I) ≤ κmax since it uses an approximation to κ1 rather than

its exact value. Finally, when a gradient-based optimizer is used to select the hyperparameter γ, the gradient of ηK̇∇
is needed

but it cannot be calculated if κ1 is approximated, or it is very expensive to calculate if κ2 is used since this would require the
gradients of λmin and λmax.

We can compare the nugget values obtained from Eqs. (40) and (37) by dividing the former by the latter:

ηK̇∇

η
tr
(

K̇∇

) =
κ2

κ2 + nx(d + 1) – 1

(
1 –

κmax

κ2

)
. (41)

The first term on the right-hand side is always approximately unity since κ2 ≫ nx(d + 1) – 1 and the second term is also
approximately unity when κ2 ≫ κmax, which is when ηK̇∇

is needed to regularize K̇∇. Therefore, when κ2 ≫ κmax, Eq. (40)
and Eq. (28) provide roughly the same nugget value that scales as O(nxd). This will be demonstrated in Section 6.2 when the
different nugget values are compared in more detail.

A constant ηK̇∇
that scales with O(nx

√
d) instead of O(nxd) from Eq. (37) is derived in Section 5.4 for the Gaussian kernel. In

Section 5.5 a smaller nugget than the one derived in Section 5.4 is provided which ensures that κ(K̇∇(γ) + ηK̇∇
I) ≤ κmax ∀γ > 0

for any twice differentiable kernels. Another advantage of the nugget values derived in the following subsections is that they do
not require the condition number of the K̇∇ to be approximated, which makes them simpler and computationally cheaper to use
than the nugget from Eq. (40).

5.4 Regularizing K̇∇ for the Gaussian kernel with ηK̇∇
= O(nx

√
d)

In this section we derive a nugget for the Gaussian kernel that scales as ηK̇∇
= O(nx

√
d) instead of as ηK̇∇

= O(nxd) if Eq. (37)
is used while still ensuring κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0. The derivation uses the Gershgorin circle theorem, which bounds the
largest eigenvalue of a symmetric matrix A by

λmax(A) ≤ max
i

aii +
∑
j ̸=i

∣∣aij
∣∣ . (42)

The two following propositions provide an upper bound on the sum of the absolute values of the off-diagonal entries of K̇∇
when it is constructed with the Gaussian kernel from Eq. (3).

Proposition 1. For nx, d ∈ Z+ the sum of the absolute values for the off-diagonal entries for any of the first nx rows of the
gradient-enhanced Gaussian kernel matrix K̇∇ from Eq. (32) is bounded by uG, where

uG(nx, d) = (nx – 1)
1 +

√
1 + 4d
2

e– 1+2d–
√

1+4d
4d . (43)

Proof. We derive an upper bound for the sum of the absolute values for the off-diagonal entries for any of the first nx rows of
K̇∇. We consider the noise-free case since the magnitude of the off-diagonal entries of K̇∇ is largest when σ̂f = σ̂∇f = 0. For
σ̂f ≥ 0 and σ̂∇f ≥ 0 the diagonal of K̇∇ remains unity. However, the off-diagonal entries are smaller since the entries of P–1,
which is used to form K̇∇ with Eq. (32), are inversely related to σ̂f and σ̂∇f . The derivation is the same for any of the rows of
K̇∇ from Eq. (36) and we thus consider the a-th row, where 1 ≤ a ≤ nx and

nx∑
i=1
i ̸=a

∣∣∣K̇∇

∣∣∣
ai

=
nx∑
i=1
i ̸=a

1 +
d∑

j=1

∣∣ẋaj – ẋij
∣∣ e–

∥ẋa:–ẋi:∥
2
2

2

≤ (nx – 1) max
i

1 +
d∑

j=1

∣∣ẋaj – ẋij
∣∣ e–

∥ẋa:–ẋi:∥
2
2

2

≤ (nx – 1) max
w≥0

((
1 + w⊤1d

)
e– w⊤w

2

)
,
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where wj = |ẋaj – ẋij| and we denote the expression inside the max function as g(w). To identify the maximum of g(w) we calculate
its derivative and set it to zero:

∂g(w)
∂wi

=
(
1 – wi(1 + w⊤1d)

)
e– w⊤w

2 = 0

wi =
1

1 + w⊤1
∀ i ∈ {1, . . . , d}.

It is clear that the gradient of g(w) is zero if and only if all of the entries in w are equal. We thus use w = α1d and solve for the
value of α that maximizes g(α1d):

∂g(α1d)
∂α

= d (1 – α(1 + dα)) e– dα2
2 = 0

α∗ =
–1 +

√
1 + 4d

2d
,

where we only kept the positive root since w ≥ 0 and it is straightforward to verify that this provides the maximum of g(w).
Eq. (43) is recovered by evaluating g(α∗1d), which completes the proof.

Proposition 2. The sum of the absolute values for the off-diagonal entries for any of the last nxd rows of the preconditioned
noise-free gradient-enhanced Gaussian kernel matrix K̇∇ is smaller than uG(nx, d) from Eq. (43) for nx, d ∈ Z+.

Proof. The proof can be found in Section A.1.

As a result of Propositions 1 and 2 and the Gershgorin circle theorem, we have λmax(K̇∇) ≤ 1 + uG(nx, d), where uG(nx, d) is
calculated from Eq. (43). Therefore, we can ensure that κ(K̇∇(γ) + ηK̇∇

I) ≤ κmax ∀γ > 0 for the cases with and without noisy
data by using Eqs. (26) and (43) to obtain

ηK̇∇
(nx, d;κmax) =

1 + (nx – 1) 1+
√

1+4d
2 e– 1+2d–

√
1+4d

4d

κmax – 1
. (44)

Larger nugget values than the one provided by Eq. (44) would also ensure that κ(K̇∇(γ) + ηK̇∇
I) ≤ κmax ∀γ > 0 but we are

interested in using the smallest sufficient value. From Eq. (44) we have ηK̇∇
= O(nx

√
d), which is proven in the following lemma.

Lemma 1. From Eq. (44) we have ηK̇∇
(nx, d) = O(nx

√
d) for nx, d ∈ Z+.

Proof. From Eq. (44) we have

ηK̇∇
(nx, d;κmax) =

1 + (nx – 1) 1+
√

1+4d
2

(
e– 1

2 e
√

1+4d–1
4d

)
κmax – 1

,

where the exponent for the final term goes to zero as d → ∞. The only other term containing d scales as
√

d, which completes
the proof.

From Lemma 1 it is clear that the use of Eq. (44) to calculate ηK̇∇
is advantageous for high-dimensional problems since it

provides ηK̇∇
= O(nx

√
d) instead of ηK̇∇

= O(nxd) from Eq. (37).

5.5 Regularization with a variable nugget

Deriving the value of ηK̇∇
in Section 5.4 to ensure that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 when the Gaussian kernel is used required

an extensive proof. This same process would need to be repeated to derive a nugget to ensure that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0
if other kernels were used. In this section this problem is avoided by having a nugget that depends on the hyperparameter
γ, and in the case with noisy data it also depends on σ̂f , σ̂∇f , and σ̂K. From Eq. (26) with λmin = 0 we can ensure that
κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 with

ηK̇∇
(γ, σ̂K, σ̂f , σ̂∇f ; X,κmax) =

max
i

∑nx(d+1)
j=1

∣∣∣K̇∇

∣∣∣
ij

κmax – 1
, (45)
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where the numerator is an upper bound on the maximum eigenvalue of K̇∇ that comes from the application of the Gershgorin
circle theorem. We now compare the nugget from this section to the one from Section 5.4:

ηG circle, vary(X) ≜
max

i

∑nx(d+1)
j=1

∣∣∣K̇∇(X)
∣∣∣
ij

κmax – 1
≤

max
X

max
i

∑nx(d+1)
j=1

∣∣∣K̇∇(X)
∣∣∣
ij

κmax – 1
≤ ηG circle, const(nx, d),

where ηG circle, vary comes from Eq. (45) while ηG circle, const come from Eq. (44) if the Gaussian kernel is used. In Section 6.2
ηG circle, vary and ηG circle, const will be compared for a a given X.

The nugget ηK̇∇
from Eq. (45) depends on the hyperparameters γ and α, and this must be taken into consideration when

optimizing the hyperparameters with a gradient-based optimizer. The derivative of ηK̇∇
from Eq. (45) with respect to γℓ for

ℓ ∈ {1, . . . , d} is

∂ηK̇∇

∂γℓ
=

∑nx(d+1)
j=1 sgn

((
K̇∇

)
i∗j

)(
∂K̇∇
∂γℓ

)
i∗j

κmax – 1
(46)

=

∑nx(d+1)
j=1 sgn

((
K̇∇

)
i∗j

)[
P–1 ∂K∇

∂γℓ
P–1 – K̇∇

∂P
∂γℓ

P–1 – P–1 ∂P
∂γℓ

K̇∇

]
i∗j

κmax – 1
,

where sgn(·) returns +1 for positive numbers, –1 for negative numbers, and zero otherwise, and

i∗ = argmax
i

nx(d+1)∑
j=1

∣∣∣K̇∇

∣∣∣
ij

. (47)

The derivatives of ηK̇∇
from Eq. (45) with respect to σ̂2

K, σ̂2
f , and σ̂2

∇f are analogous to Eq. (46). When performing gradient-
based optimization of the hyperparameters, the matrices ∂K∇

∂γℓ
∀ ℓ ∈ {1, . . . , d} are already required whether ηK̇∇

depends on the
hyperparameters or not. Furthermore, calculating ∂P

∂γℓ
is inexpensive since it is a diagonal matrix. Therefore, calculating Eq. (46)

does not significantly increase the computational cost of the hyperparameter optimization.
This same method can also be applied to the gradient-free kernel matrix in order to get a nugget that is smaller than the one

provided by Eq. (27) while ensuring that κ(Σ(γ)) ≤ κmax ∀γ > 0. For the Gaussian kernel and others that provided non-negative
gradient-free correlations, the gradient calculation of ηK is simpler since it does not require the preconditioning matrix P nor the
operator sgn(·):

∂ηK

∂γℓ
=
∂
∑nx

j=1

(
∂K
∂γℓ

)
i∗j

∂κmax – 1
, (48)

where i∗ for ηK is analogous to the one for ηK̇∇
from Eq. (47). Similar equations to Eqs. (45) and (46) could also be applied to

preconditioned Hessian-enhanced covariance matrices.

5.6 Implementation

Since the inverse of the symmetric positive definite matrix Σ–1
∇ is needed to calculate µGP, σ2

GP, and ln(L) along with their
gradients, it is desirable to calculate its Cholesky decomposition. Once the Cholesky decomposition has been calculated, it
becomes inexpensive to evaluate µGP(x) and σ2

GP(x) for various x. However, doing so directly may cause the decomposition to
fail since the condition number of Σ∇ cannot always be bounded with a finite nugget, as explained in Section 4.1. Instead, the
Cholesky decomposition of the preconditioned matrix Σ̇∇ from Eq. (35) is calculated in Algorithm 1, which is preferable since
κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0. For the Gaussian kernel the nugget ηK̇∇

can be calculated with either Eq. (44) or Eq. (45). The former
is simpler to implement since ηK̇∇

does not depend on the hyperparameter while the latter provides a smaller nugget value. For
kernels other than the Gaussian kernel only the use of Eq. (45) to calculate ηK̇∇

ensures that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0.
Applying Algorithm 1 provides the following relation

LL⊤ = PL̇L̇⊤P

= σ̂2
K

(
K∇ + ηK̇∇

PP
)

+ V∇,
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Algorithm 1 Stable Cholesky decomposition for gradient-enhanced GP

1: Select evaluation points X and hyperparameters γ, σ̂K, σ̂f, and σ̂∇f

2: Calculate K∇ and V∇ with Eqs. (12) and (17), respectively
3: Calculate ηK̇∇

with Eq. (45), or Eq. (44) for the Gaussian kernel

4: From Eq. (33): P = diag
(√

diag
(
K∇ + σ̂–2

K V∇
))

5: From Eq. (32): K̇∇ = P–1
(
K∇ + σ̂–2

K V∇
)

P–1

6: From Eq. (35): Σ̇∇ = σ̂2
K

(
K̇∇ + ηK̇∇

I
)

7: L̇L̇⊤ = Σ̇∇
8: L = PL̇, where LL⊤ = Σ∇ from Eq. (16) with W = PP

T A B L E 1: Comparison of methods to address the ill-conditioning of the covariance matrix Σ∇ . The baseline and rescaling methods are summarized in Sections 4.2 and 4.3, respectively, and the implementation of the preconditioning method is
provided in Section 5.6.

Method Baseline Rescale Precondition

κ(Σ∇(γ)) ≤ κmax, ∀γ > 0 ✗ γ1 = . . . = γd ✓

Constraint free hyperparameter optz ✗ ✗ ✓

Nodes can be collocated ✓ ✗ ✓

Provides a correlation matrix ✗ ✗ ✓

Bounded κ(Σ̇∇(γ)) for other kernels ✗ ✗ ✓

Works with Hessian-enhanced covariance matrix ✓ ✗ ✓

which is equal to Σ∇ with W = PP from Eq. (16). The result of preconditioning the non-regularized covariance matrix Σ∇ with
P and then adding a constant nugget is thus equivalent to using a variable nugget. A varying nugget was also used by Chen et al.,
but their method does not provide an upper bound on the condition number of the gradient-enhanced covariance matrix30. It is
important to note that the condition number of Σ̇∇ can be several orders of magnitude smaller than the condition number for
Σ∇. As such, the Cholesky decomposition of the preconditioned matrix should be performed, as detailed in Algorithm 1.

5.7 Summary of methods

In Sections 5.3, 5.4, and 5.5 variations of the preconditioning method are introduced. The variations from Sections 5.3 and 5.4
are the simplest to implement since their nuggets are independent of γ. However, the nugget for the former scales as O (nxd) and
while the latter scales as O

(
nx
√

d
)

, it only ensures that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 if the Gaussian kernel is used. The nugget
from Section 5.5 depends on γ, but it provides a nugget smaller than the one from Section 5.3 and, for the Gaussian kernel, it is
also smaller than the one from Section 5.5.

Table 1 provides a comparison of the preconditioning method with the baseline method and rescaling methods from
Sections 4.2 and 4.3, respectively. The greatest advantage of the preconditioning method is that it ensures that κ(Σ̇∇(γ)) ≤
κmax ∀γ > 0, which results in the Cholesky decomposition of a well conditioned matrix, so long as κmax is not selected to be too
large. The preconditioning method thus does not require a constraint on the condition number of the covariance matrix when
optimizing γ, unlike the baseline and rescaling methods. The preconditioning method also provides other benefits relative to
the rescaling method such as allowing evaluation points to be collocated, enabling any twice differentiable kernel to be used,
and it can also be applied to Hessian-enhanced covariance matrices. In the following section the practical benefits of using the
preconditioning method for a Bayesian optimizer are demonstrated.

6 RESULTS

6.1 Condition numbers of the noise-free Gaussian kernel covariance matrices

The condition numbers of the gradient-free and gradient-enhanced covariance matrices for the noise-free case are compared
for the baseline method presented in Section 4.2, the rescaling method from Marchildon and Zingg32 that is summarized in
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Section 4.3, and the preconditioning method introduced in this paper. The noise-free covariance matrices depend only on
the evaluation points in X, the nugget, and the hyperparameters γ, σ̂f , and σ̂∇f . However, the maximization of the marginal
log-likelihood also depends on the function of interest and we use the Rosenbrock function:

f (x) =
d–1∑
i=1

[
10

(
xi+1 – x2

i

)2
+ (1 – xi)2

]
. (49)

The selection of the evaluation points is important since the ill-conditioning problem of the covariance matrix is made worse
when the points are close together13. If the evaluation points are selected randomly, or come from an optimizer performing
local optimization, some evaluation points will naturally be clustered close together, making the ill-conditioning problem
more acute. Meanwhile, if the evaluation points are selected from a Latin hypercube sampling, they will inherently be
spaced apart. The selection of the evaluation points is not problematic for the preconditioning method since it ensures that
κ(Σ̇∇) ≤ κmax ∀γ > 0, X ∈ Rnx×d, including when some or all of the evaluation points are collocated. To demonstrate how the
gradient-enhanced covariance matrix can become ill-conditioned even in the best case, i.e. when the evaluation points are evenly
spaced apart, we select them with a d = 2 Latin hypercube sampling centred around x = [1, 1]⊤, which is the minimum for the
Rosenbrock function:

X = 10–3 ×
[

1 9 7 –9 –5 –7 –3 5 3 –1
1 –3 7 3 5 –9 –7 9 –1 –5

]⊤
+ 1, (50)

where vmin =
√

2/500 ≈ 2.8 × 10–3, which is the minimum Euclidean distance between evaluation points.
Fig. 3 plots the condition number of the noise-free covariance matrices as a function of γ for the evaluation points from

Eq. (50). The star marker indicates where the marginal log-likelihood from Eq. (24) is maximized. The nugget value for all
cases is η = 1.5 × 10–9, which comes from Eq. (44). Red regions in Fig. 3 indicate where the condition number is greater than
κmax = 1010. Selecting a different value for κmax would not impact the results in Fig. 3 since ηK̇∇

was calculated with Eq. (44),
which takes into account κmax.

Figs. 3a and 3b plot the condition number of the noise-free gradient-free and gradient-enhanced covariance matrices,
respectively, using the baseline method, which does not precondition the covariance matrix but adds the nugget to its diagonal.
For the gradient-free case we have κ(Σ(γ)) < κmax ∀γ > 0. However, for the baseline gradient-enhanced case κ(Σ∇(γ)) ≥ κmax

for most values of γ, including where the marginal log-likelihood from Eq. (24) is maximized. Selecting the hyperparameters to
satisfy the constraint κ(Σ∇(γ)) ≤ κmax results in a lower marginal log-likelihood. This impacts the accuracy of the surrogate,
which degrades the performance of the Bayesian optimizer, as will be shown in Section 6.5.

Fig. 3c plots log(κ(Σ∇)) with the use of the rescaling method. As stated in Section 4.3, the rescaling method only ensures
that κ(Σ∇(γ)) ≤ κmax when γ1 = . . . = γd and Σ∇ is not diagonally dominant. While there are several values of γ where
κ(Σ∇(γ)) ≥ κmax, the condition number is below κmax where the marginal log-likelihood is maximized.

From Fig. 3d we have κ(K̇∇) < κmax ∀γ > 0 as a result of the preconditioning method. Consequently, there is no need for
a constraint on the condition number for the optimization of the hyperparameters. This ensures that the hyperparameters are
never constrained by the need to bound the condition number of the covariance matrix. Furthermore, this also provides a small
reduction in the cost of the hyperparameter optimization since the constraint and its gradient do not need to be calculated. The
nugget ηK̇∇

was calculated with Eq. (44). However, if Eq. (45) were used instead to calculate the nugget it would be 17% smaller
at the point in the hyperparameter space where the marginal log-likelihood is maximized while still ensuring κ(Σ̇∇) ≤ κmax.

The blue regions in Figs. 3a and 3d indicate where Σ and Σ̇∇ are nearly equal to the identity matrix. While the condition
number is very small in these regions, the marginal log-likelihood is as well. This makes it undesirable to select those values of γ.

6.2 Comparing different ηK̇∇

In Fig. 4a the condition number of K̇∇(X;γ) is plotted as a function of γ1 = γ2 and the set of evaluation X comes from Eq. (50).
For γ < 100 we have κ(K̇∇) > κmax = 1010. With evaluations of the Rosenbrock function from Eq. (49), the marginal log
likelihood from Eq. (24) is maximized at γ = 18, where κ(K̇∇) = 1.7× 1017. From Fig. 4b we can see that the nugget value from
Eq. (40), which comes from Dalbey15 and is normalized by ηTr = 3 × 10–9, is approximately unity until γ > 100, which is where
κ(K̇∇) < κmax, as seen in Fig. 4a. For κ(K̇∇) > κmax the largest nugget values come from Eq. (40), the ones from Eq. (44) are
half as large, and Eq. (45) provides nugget values that are even smaller while still ensuring that κ(K̇∇(γ) + ηK̇∇

I) ≤ κmax ∀γ > 0.
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(a) Baseline gradient-free: log(κ(Σ)) (b) Baseline gradient-enhanced: log(κ(Σ∇))

(c) Gradient-enhanced with the rescaling method: log(κ(Σ∇)) (d) Gradient-enhanced with the preconditioning method: log(κ(Σ̇∇))

F I G U R E 3 The condition number for the noise-free covariance matrices for the Gaussian kernel with the nugget ηK̇∇
=

1.5 × 10–9 from Eq. (44) with κmax = 1010, and the set of evaluation points X from Eq. (50). The star markers indicate where the
marginal log-likelihood function from Eq. (24) is maximized with the use of the Rosenbrock function from Eq. (49).

The relative advantage of using Eq. (44) to calculate ηK̇∇
instead of Eq. (40) increases as the dimension increases since

the former scales as ηK̇∇
= O(nx

√
d) while the latter scales as ηK̇∇

= O(nxd) when κ(K̇∇) ≫ κmax. Eq. (45) can be used to
calculate nugget values smaller than the ones provided by Eq. (44) and these ensure that κ(K̇∇(γ) + ηK̇∇

I) ≤ κmax ∀γ > 0
for the use of any twice-differentiable kernels. Eq. (26) provides the smallest nonnegative nugget sufficient to ensure that
κ(K̇∇(γ) + ηK̇∇

I) ≤ κmax ∀γ > 0, but it requires λmin and λmax to be calculated exactly, which is computationally expensive.

6.3 Application to other kernels

The preconditioning method can be applied to gradient-enhanced covariance matrices that utilize kernels other than the Gaussian
kernel considered thus far. For example, the preconditioning method can be applied to the Matérn 5

2 and rational quadratic
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(a) The ℓ2 condition number of K̇∇ with κmax = 1010 indicated by a dashed red line. (b) The nuggets ηℓ2 , ηG circle, const, ηG circle, vary, ηmin, and ηTr can all be used in place of
ηK̇∇

and come from Eq. (40), (44), (45), (26), and (28), respectively.

F I G U R E 4 Plots of κ(Σ̇∇) with the set of evaluation points X from Eq. (50), σ̂f = σ̂∇f = 0, ηTr = 3× 10–9, and γ1 = γ2. The
location where the marginal log likelihood from Eq. (24) is maximized with the condition γ1 = γ2 is indicated by the vertical
dashed line.

kernels, which are both stationary like the Gaussian kernel6:

kM 5
2
(ṙ) =

(
1 +

√
3∥ṙ∥ + ∥ṙ∥2

)
e–

√
3∥ṙ∥ (51)

krq(ṙ) =
(

1 +
∥ṙ∥2

2α

)–α

, (52)

where α > 0 is a hyperparameter and ṙi = γi(xi – yi). The hyperparameters for the Matérn 5
2 and rational quadratic kernels from

Eqs. (51) and (52), respectively, have been selected such that the preconditioning matrix P also comes from Eq. (34) for the
noise-free case. The preconditioning method could also be applied to more general kernels that are, for example, non-stationary.
The only practical limitation is that the kernel must be at least twice differentiable in order to construct the gradient-enhanced
kernel matrix from Eq. (12).

Fig. 5 plots the condition number of the baseline and preconditioned gradient-enhanced covariance matrices for the Matérn 5
2

and rational quadratic kernels for the noise-free case with κmax = 1010. The set of evaluation points in X comes from Eq. (50) and
the nugget for the baseline method comes from Eq. (44) while Eq. (45) is used for the preconditioning method. It is clear from
Figs. 5a and 5c that the condition number for the baseline method, i.e. the non-preconditioned gradient-enhanced covariance
matrices, for both kernels is larger than κmax for several values of γ, including where the marginal log-likelihood is maximized
at the star marker. However, with the preconditioning method we have κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0 for both kernels as seen in
Figs. 5b and 5d. This demonstrates that the gradient-enhanced covariance matrix constructed with various kernels suffers from
severe ill-conditioning. Fortunately, the preconditioning method can be applied to bound the condition number of Σ̇∇ constructed
with various kernels. Using Eq. (45) with the hyperparameters that maximize the marginal log-likelihood results in nugget values
29% and 24% smaller relative to the one from Eq. (44) for the Matérn 5

2 and rational quadratic kernels, respectively.

6.4 Noisy data

Fig. 6 plots the condition number of the preconditioned gradient-enhanced covariance matrix for the Gaussian, Matérn 5
2 ,

and rational quadratic kernels with σ̂f = 10–6 and σ̂∇f = 0.1. The set of evaluation points X comes from Eq. (50); and
the nugget ηK̇∇

is calculated with Eq. (45) and κmax = 1010. For all three kernels the preconditioning method ensures that
κ(Σ̇∇(γ, σ̂f , σ̂∇f ) ≤ κmax ∀γ > 0, σ̂f , σ̂∇f ≥ 0.

6.5 Optimization

In this section, the baseline, rescaling, and preconditioning methods are compared when used with a Bayesian optimizer to
minimize the Rosenbrock function from Eq. (49) with d ∈ {5, 10, 20}. For the preconditioning method the steps detailed in
Algorith 1 are used with the nugget calculated with Eq. (45). The results demonstrate the same trends if Eq. (44) is used to
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(a) Baseline Matérn 5
2 kernel: log(κ(Σ∇)) (b) Preconditioned Matérn 5

2 kernel: log(κ(Σ̇∇))

(c) Baseline rational quadratic kernel: log(κ(Σ∇)) (d) Preconditioned rational quadratic kernel: log(κ(Σ̇∇))

F I G U R E 5 The condition number of the noise-free gradient-enhanced covariance matrices with the baseline and precondi-
tioned methods with the set of evaluation points X from Eq. (50). The baseline method uses Eq. (44) with κmax = 1010 to calculate
ηK∇ = 1.5 × 10–9, while the preconditioned method uses Eq. (45) for ηK̇∇

. The value of the hyperparameters γ that maximizes
the marginal log-likelihood function from Eq. (24) with the Rosenbrock function from Eq. (49) is indicated by a star marker.

calculate the nugget instead. All of the different methods to address the ill-conditioning of the gradient-enhanced covariance
matrix result in different linear systems being solved. As such, in the iterative process of minimizing the Rosenbrock function
the Bayesian optimizer using the different methods will take different paths in the parameter space. The goal of these various
methods is to alleviate the ill-conditioning problem of the Bayesian optimizer to enable it to find the minimum of the Rosenbrock
function in the fewest number of iterations as possible, i.e. minimize the number of function and gradient evaluations of the
Rosenbrock function.

Five separate runs of the Bayesian optimizers for each of the methods were performed, each initiated with one starting point.
The starting points were the same for each of the methods and were selected from a Latin hypercube sampling from the open
source Surrogate Modeling Toolbox37 with lower and upper parameter bounds of –10 and 10, respectively. With the use of
gradient-free GPs, a Bayesian optimizer would need to be initiated with several starting points in order for the posterior of
the GP to be an accurate surrogate2. However, a single starting point is sufficient to initialize the gradient-enhanced Bayesian
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(a) Gaussian kernel (b) Matérn 5
2 kernel (c) Rational quadratic kernel

F I G U R E 6 Plots of log(κ(Σ̇∇)) with X from Eq. (50), σ̂f = 10–6, σ̂∇f = 0.1, and the nugget is calculated with Eq. (45) with
κmax = 1010. The star marker indicates the location in the hyperparameter space where the marginal log-likelihood is maximized
with function and gradient evaluations coming from the Rosenbrock function from Eq. (49).

(a) Objective for d = 5 (b) Objective for d = 10 (c) Objective for d = 20

(d) Optimality for d = 5 (e) Optimality for d = 10 (f) Optimality for d = 20

F I G U R E 7 Bayesian optimization of the Rosenbrock function from Eq. (49) using the baseline, rescaling, and precondition-
ing methods for d ∈ {5, 10, 20}. The plots show the lowest evaluated objective or optimality, i.e. the ℓ2 norm of the gradient of
Eq. (49), for each optimization run at each iteration.

optimizer. The selected acquisition function is the upper-confidence function

q(x) = µGP(x) – ωσGP(x), (53)

where ω ≥ 0 promotes exploitation when it is small, and exploration when it is large. We use ω = 0 since we are interested in
local optimization for the unimodal Rosenbrock function. The gradient-based SLSQP optimizer from the Python library SciPy is
used to select the hyperparameters by maximizing the marginal log-likelihood. The same optimizer is used to minimize the
acquisition function to select the next point in the parameter space to evaluate the Rosenbrock function. A trust region is used in
the minimization of the acquisition function, similar to the one used by Eriksson et al.38, where a Bayesian optimizer was also
used for local minimization. However, our trust region is set to be a hypersphere instead of a hyperrectangle.



20 Marchildon and Zingg

In Fig. 7 the objective and optimality, which is the ℓ2 norm of the gradient, are compared for the Bayesian optimizer using
the baseline, rescaling, and preconditioning methods. The plots for the objective and optimality show similar trends and we
thus focus on the latter. There are two important observations from the optimality plots: the depth and rate of convergence of
the optimality. In all cases, the rescaling and preconditioning methods converge the optimality several orders of magnitude
deeper than the baseline method. In fact, the rescaling and preconditioning methods converge the optimality to below 10–12 in all
test cases. Meanwhile, the deepest optimality that the baseline method achieves is 10–4. As the dimensionality increases, the
optimizer with the baseline method is not able to converge the optimality as deeply and can only achieve an optimality of 10–1

for the d = 20 case. The optimizer with the rescaling and preconditioning methods is thus able to converge the optimality 5 to 9
additional orders of magnitude relative to the optimizer with the baseline method. For the baseline method, the hyperparameters
γ are selected by solving Eq. (29), where the marginal log-likelihood is maximized with an upper bound on the condition number.
As the optimality is converged, the evaluation points get closer together in the parameter space and this makes the ill-conditioning
of the gradient-enhanced covariance matrix worse32. Consequently, solving Eq. (29) results in hyperparameters that provide a
lower marginal log-likelihood since the upper bound on the condition number becomes a more onerous constraint. The rescaling
and baseline methods do not suffer from this since, by construction, they guarantee that the selected hyperparameters maximize
the marginal log-likelihood without being constrained by the condition number of the covariance matrix.

It is clear from Fig. 7 that the optimizer utilizing the preconditioning method achieves the fastest rate of convergence of the
three methods for d = 5 and d = 10. Meanwhile, for the d = 20 test case the optimizer utilizing the rescaling and preconditioning
methods achieve similar results. The slower convergence of the optimality for the optimizer using the rescaling method was also
observed in Marchildon and Zingg32 for test cases with the Rosenbrock function with d = 2 and d = 5. This was found to be a
consequence of the rescaling method providing a surrogate with gradients that have larger errors relative to the baseline method.

In summary, the use of the preconditioning method with a gradient-enhanced Bayesian optimizer enables the optimality to be
converged more deeply than with the use of the baseline method, and in fewer iterations than with the rescaling method.

7 CONCLUSIONS

The posterior of a gradient-enhanced GP provides a more accurate probabilistic surrogate than its gradient-free counterpart
but the ill-conditioning of its covariance matrix has been a hindrance to its use. The preconditioning method from this paper
improves upon the secondary method from Dalbey15. The contributions of this paper are to derive a smaller nugget sufficient to
bound the condition number of the preconditioned gradient-enhanced covariance matrix, to provide the gradients required to
perform gradient-based optimization of the hyperparameters with this method, to handle cases with noisy function and gradient
evaluations, and to do so with a method that is less computationally expensive than the one from Dalbey15. The method is simple
to implement, as detailed in Algorithm 1 from Section 5.6. For the Gaussian kernel it was proven that a nugget value that is
sufficient to bound the condition number of the preconditioned gradient-enhanced covariance matrix scales in the worst case as
ηK̇∇

= O(nx
√

d).
The benefits of using the preconditioning method relative to the baseline and rescaling methods are summarized in Table 1.

With the preconditioning method, all of the data points can be kept and there is no minimum distance requirement between
evaluation points in the parameter space. Unlike the rescaling method, the points can even be collocated, which may be
beneficial when the evaluations of the function of interest and of its gradient are noisy. Since the preconditioning method ensures
that κ(Σ̇∇(γ)) ≤ κmax ∀γ > 0, no constraint is required when maximizing the marginal log-likelihood. This simplifies the
optimization and reduces its computational cost. The preconditioning method also provides a correlation matrix, which makes
the GP easier to interpret. Eq. (45) can be used to provide a nugget value sufficient to ensure that κ(Σ̇∇) ≤ κmax for use with
any kernel. Finally, the preconditioning method can be straightforwardly applied to Hessian-enhanced covariance matrices
by preconditioning the matrix and then adding a nugget calculated with the same methodology as presented in Section 5.5.
As described in Section 5.6, the preconditioning method with its preconditioning then regularization is equivalent to adding a
non-constant nugget to the covariance matrix. Finally, the preconditioning method ensures that the Cholesky decomposition is
always performed on a matrix with a condition number smaller than κmax.

In Section 6.5 the Rosenbrock function was optimized for d ∈ {5, 10, 20} with a Bayesian optimizer using the baseline,
rescaling and preconditioning methods. The Bayesian optimizer with the preconditioning method converged the optimality an
additional 5-9 orders of magnitude relative to the optimizer with the baseline method. Furthermore, the preconditioning method
enabled the Bayesian optimizer to converge the optimality more quickly than when the rescaling method is used, particularly for
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the lower-dimensional problems. The slower convergence of a Bayesian optimizer using the rescaling method was previously
identified to be the result of its surrogate having gradients with larger errors. In conclusion, the preconditioning method bounds
the condition number of the preconditioned gradient-enhanced covariance matrix and it enables a Bayesian optimizer to achieve
deeper and faster convergence relative to the use of either the baseline or rescaling methods.

The preconditioning method can also be used with gradient-enhanced GPs applied to various other applications such as
uncertainty quantification, classification, and regression2,3,4. In all of these cases, using a gradient-enhanced GP provides a more
accurate surrogate compared to the use of a gradient-free GP. The advantage of using a gradient-enhanced GP increases as the
number of parameters increases.
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APPENDIX

A PROOFS

A.1 Proof for Proposition 2

We consider the noise-free preconditioned matrix K̇∇ since the magnitude of its entries are largest in this case, as explained in
the proof for Proposition 1. The derivation of the upper bound for the sum of the absolute value of the off-diagonal entries is the
same for any of the last nxd rows of K̇∇, which comes from Eq. (32). Without loss of generality, we consider the b-th row of K̇∇,
where b = pnx + m, and p and m can take any integer values that satisfy 1 ≤ p ≤ d and 1 ≤ m ≤ nx:

nx∑
i=1
i ̸=b

∣∣∣K̇∇

∣∣∣
bi

=
nx∑
i=1
i̸=m

∣∣ẋmp – ẋip
∣∣ +

d∑
j=1

∣∣δjp –
(
ẋmp – ẋip

) (
ẋmj – ẋij

)∣∣ exp
(

–
∥ẋm: – ẋi:∥2

2

2

)

≤
nx∑
i=1
i ̸=m

∣∣ẋmp – ẋip
∣∣ + 1 +

d∑
j=1
j̸=p

∣∣(ẋmp – ẋip
) (

ẋmj – ẋij
)∣∣
 exp

(
–
∥ẋm: – ẋi:∥2

2

2

)

=
nx∑
i=1
i ̸=m

1 +
∣∣ẋmp – ẋip

∣∣
1 +

nx∑
j=1
j̸=p

∣∣ẋmj – ẋij
∣∣

 exp

(
–
∥ẋm: – ẋi:∥2

2

2

)

≤ (nx – 1) max
ν≥0, w̌≥0

(
1 + ν

(
1 + 1̌⊤p w̌

))
exp

(
–

1
2
(
ν2 + w̌⊤w̌

))
, (A1)

where ν = |ẋmp – ẋip| and w̌j = |ẋmj – ẋij|, except for w̌p = 0. Similarly 1̌p is a vector of ones of length d with a zero at its p-th entry.
The first inequality is a result of K̇∇ being a correlation matrix as explained in Section 5.1.

An analogous approach to the one taken in Proposition 1 can be used to show that the maximization of Eq. (A1) requires
w̌ = α1̌p, i.e. that all but the p-th entries in w̌ are equal. Using w̌ = α1̌p with Eq. (A1) gives

g1(ν,α; d) = (ν + 1 + (d – 1)αν) e– ν2+(d–1)α2

2 . (A2)

We thus need to prove that (nx – 1)g1(ν,α; d) < uG(nx, d) for ν,α ≥ 0 and d ∈ Z+. The following lemma considers the case for
d = 1.

Lemma 2. For d = 1 we have

(nx – 1) max
ν≥0,α≥0

g1(ν,α; d = 1) = uG(nx, d = 1) = (nx – 1)
1 +

√
5

2
e– 3–

√
5

4 , (A3)

where g1(ν,α; d) comes from Eq. (A2) and uG(nx, d) comes from Eq. (43).

Proof. For d = 1 the parameter α cancels out and we thus have a scalar function that we seek to maximize, giving

∂g1(ν; d = 1)
∂ν

=
∂
(

(ν + 1) e– ν2
2

)
∂ν

= –
(
ν2 + ν – 1

)
e– ν2

2 = 0

ν∗d=1 =
–1 +

√
5

2
,

where only the positive root was kept since ν ≥ 0 and it is straightforward to verify that this critical point maximizes
g1(ν,α; d = 1). Eq. (A3) is recovered by evaluating g1 with ν = ν∗d=1 and d = 1, which completes the proof.

To consider the cases for d ≥ 2 we need to find the values of α and ν that maximize g1(ν,α; d) from Eq. (A2). The following
lemma considers the maximization of g1 with respect to α.



24 Marchildon and Zingg

Lemma 3. For ν,α ≥ 0 and d ≥ 2 we have g1(ν,α; d) ≤ g2(ν; d), where g1 comes from Eq. (A2) and

g2(ν; d) =
(
ν + 1 +

√
h1(ν; d)

2

)
e– ν2

2 +h2(ν;d), (A4)

where

h1(ν; d) = (ν + 1)2 + 4ν2(d – 1) (A5)

h2(ν; d) =
(ν + 1)

√
h1(ν; d) – (ν + 1)2

4ν2(d – 1)
–

1
2

. (A6)

Proof. The maximum of g1(ν,α; d) with respect to α is identified by calculating its derivative, setting it to zero, and solving for
α:

∂g1(ν,α; d)
∂α

= –(d – 1)
(
(d – 1)να2 + (ν + 1)α – ν

)
e– ν2+(d–1)α2

2 = 0

α∗ =
–(ν + 1) +

√
(ν + 1)2 + 4ν2(d – 1)

2ν(d – 1)
,

where only the positive root of the quadratic equation is kept since α must be positive, and it is straightforward to verify that
this provides the maximum of g1(ν,α; d). The function g2(ν; d) from Eq. (A4) is recovered by evaluating g1(ν,α∗; d), which
completes the proof.

Both
√

h1(ν; d) and h2(ν; d) from Eqs. (A5) and (A6), respectively, are non-polynomial functions that make it impractical to
find a closed-form maximum solution for g2(ν; d). The following two lemmas provide upper bounds for these non-polynomial
functions.

Lemma 4. For ν ≥ 0 and d ≥ 2, we have the bound
√

h1(ν; d) ≤ h3(ν; d), where h1(ν; d) comes from Eq. (A5) and h3(ν; d) is
the following C0 continuous piecewise polynomial:

h3(ν; d) =

{
(2
√

d – 1)ν + 1 if 0 ≤ ν ≤ 1

2
√

dν if ν > 1.
(A7)

Proof. For 0 ≤ ν ≤ 1 and d ≥ 2 we start by showing that h2
3 ≥ h1:(

(2
√

d – 1)ν + 1
)2

≥ (ν + 1)2 + 4ν2(d – 1)

4ν(1 – ν)(
√

d – 1) ≥ 0.

Next we demonstrate that h2
3 ≥ h1(ν; d) for ν ≥ 1:(

2
√

dν
)2

≥ (ν + 1)2 + 4ν2(d – 1)(
ν +

1
3

)
(ν – 1) ≥ 0.

Finally, it is straightforward to verify that h3(ν; d) is C0 continuous:

lim
ν→1–

h3(ν; d) = lim
ν→1+

h3(ν; d) = 2
√

d, (A8)

which completes the proof.

Lemma 5. The maximum value for h2(ν; d) from Eq. (A6) for ν ≥ 0 and d ∈ Z+ is

max
ν≥0

h2(ν; d) = lim
ν→0

h2(ν, d) = 0. (A9)
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Proof. We start by proving that h2(ν; d) is monotonically decreasing with respect to ν by showing that its derivative with respect
to ν is nonpositive for ν ≥ 0 and d ∈ Z+

∂h2(ν; d)
∂ν

= –
(

h1 – (ν + 1)
√

h1 – 2ν2(d – 1)
2ν3

√
h1(d – 1)

)
.

Since the denominator of ∂h2(ν;d)
∂ν is always nonnegative for ν ≥ 0 and d ∈ Z+, we only need to show that its numerator is also

nonnegative for the same range of parameters:

h1 – (ν + 1)
√

h1 – 2ν2(d – 1) ≥ 0[
h1 – 2ν2(d – 1)

]2 ≥
[
(ν + 1)

√
h1

]2

h1
(
h1 –

[
(ν + 1)2 + 4ν2(d – 1)

])
+ 4ν4(d – 1)2 ≥ 0

4ν4(d – 1)2 ≥ 0,

where h1 comes from Eq. (A5) and it straightforward to verify that h1 – 2ν2(d – 1) > 0 for ν ≥ 0 and d ∈ Z+ and thus, squaring
this term on the second line does not change its sign. Since h2(ν; d) is monotonically decreasing with respect to ν for ν ≥ 0 and
d ∈ Z+, its maximum is at ν = 0. To evaluate h2(ν; d) we use a limit and apply l’Hôpital’s rule twice:

lim
ν→0

h2(ν; d) = lim
ν→0

[
(ν + 1)

√
h1 – (ν + 1)2

4(d – 1)ν2

]
–

1
2

= lim
ν→0

[
2
√

h1 + 4ν(d–1)√
h1

– 2(ν + 1)

8ν(d – 1)

]
–

1
2

= lim
ν→0

 4(ν+1)(d–1)
h3/2

1
+ (8d–6)ν+2√

h1
– 2

8(d – 1)

 –
1
2

= 0,

where h1(ν; d) comes from Eq. (A5) and this completes the proof.

Thanks to Lemmas 4 and 5 it is now possible to derive a closed-form solution for an upper bound of g2(ν; d) from Eq. (A4) for
ν ≥ 0 and d ≥ 2. This is considered in the following two lemmas that consider the case for 0 ≤ ν ≤ 1 and ν > 1, respectively.

Lemma 6. For 0 ≤ ν ≤ 1 and d ≥ 2 we have (nx – 1)g2(ν; d) < uG(nx, d), where g2(ν; d) and uG(nx, d) come from Eqs. (A4)
and (43), respectively.

Proof. The function g2(ν; d) from Eq. (A4) contains the nonlinear functions h1(ν; d) and h2(ν; d) from Eqs. (A5) and (A6),
respectively. We use the upper bounds provided by Lemmas 4 and 5 for these functions and 0 ≤ ν ≤ 1 to get g2(ν; d) < g3(ν; d),
where

g3(ν; d) =
ν + 1 +

[
(2
√

d – 1)ν + 1
]

2
e– ν2

2

=
(√

dν + 1
)

e– ν2
2 . (A10)

We now find the value of ν that maximizes g3(ν; d)

∂g3

∂ν
=
(√

d – ν
(√

dν + 1
))

e– ν2
2 = 0

ν∗3 =
–1 +

√
1 + 4d

2
√

d
, (A11)

where only the positive root was kept and it is straightforward to verify that 0 < ν∗ < 1 for d ≥ 2, and that this is the maximum
for the function g3. Using ν∗3 from Eq. (A11) gives (nx – 1)g3(ν∗3 ; d) = uG(nx, d), where uG(nx, d) comes from Eq. (43). Therefore,
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we have for d ≥ 2:
(nx – 1) max

0≤ν≤1
g2(ν; d) < (nx – 1) max

0≤ν≤1
g3(ν; d) = (nx – 1)g3(ν∗3 ; d) = uG(nx, d), (A12)

which completes the proof.

Lemma 7. We have (nx – 1)g2(ν; d) < uG(nx, d) for ν ≥ 1 and d ≥ 2, where g2(ν; d) and uG(nx, d) come from Eqs. (A4) and
(43), respectively.

Proof. We now consider the case for ν > 1 by substituting h3(ν; d) from Eq. (A7) for ν > 1 into g2(ν; d) for
√

h1(ν; d) and using
the results from Lemma 5 for an upper bound on h2(ν; d). We get the bound g2(ν; d) ≤ g4(ν; d), where

g4(ν; d) =
ν + 1 +

[
2
√

dν
]

2
e– ν2

2 . (A13)

We now find the value of ν ≥ 1 that maximizes g4(ν; d):

∂g4

∂ν
=

(
2
√

d + 1
)

– ν
((

2
√

d + 1
)
ν + 1

)
2

e– ν2
2 = 0

(2
√

d + 1)ν2 + ν – (2
√

d + 1) = 0

ν∗4 =
–1 +

√
1 + 4

(
2
√

d + 1
)2

2(2
√

d + 1)
,

where only the positive root was kept and it is straightforward to show that this provides the maximum for g4(ν; d). However, we
now demonstrate that this root does not satisfy the constraint ν ≥ 1:

ν∗4 <
–1 +

[
1 + 2

(
2
√

d + 1
)]

2(2
√

d + 1)
= 1,

where we used the inequality
√

b1 + b2 <
√

b1 +
√

b2 for b1, b2 > 0. Since there are no roots for ν ≥ 1 that maximize g4(ν; d) for
d ≥ 2, it is either maximized at ν = 1 or ν → ∞. For lim ν → ∞ we have g4(ν; d) = 0 and for ν = 1 we have

(nx – 1)g4(ν = 1, d) = (nx – 1)g3(ν = 1, d) < (nx – 1)g3(ν∗3 , d) = uG(nx, d), (A14)

where g3 = g4 for ν = 1 since both functions used the relation
√

h1(ν; d) ≤ h3(ν; d) and it was shown in Lemma 4 that h3(ν)
from Eq. (A7) is C0 continuous. We thus have (nx – 1)g2(ν; d) < uG(nx, d) for ν ≥ 1 and d ≥ 2, which completes the proof.

It has been proven that the function g1 from Eq. (A2), which provides an upper bound for the sum of absolute values for the
off-diagonal entries for any of the last nxd rows of K̇∇, is smaller than uG(nx, d) for nx, d ∈ Z+, which completes the proof.
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