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In this paper, shape optimization is used to minimize aerodynamic noise in an unsteady
trailing-edge flow. First, a generic time-dependent optimal design problem is introduced
and the derivation of the discrete adjoint equations in a general approach is outlined. The
presented framework is then applied to a time-dependent laminar flow past an acoustically
compact airfoil. The results show a significant reduction of up to 94 percent in the total
radiated acoustic power with reasonable computational cost using fifteen shape design
variables.

Nomenclature

a∞ Free stream speed of sound c Chord length
C̄L Mean lift coefficient C̄D Mean drag coefficient
In Objective function at time step n J Objective function
∂J
∂Y Gradient of objective function M∞ Free stream Mach number
N Total number of time steps N∗ Number of coarse time steps
p Pressure Qn Flow variables at time step n
Rn Unsteady flow residual (∇QnRn)T Transpose of the unsteady flow Jacobian
R Flow residual Re Reynolds number
S Airfoil surface t Time
T Final time u∞ Free stream velocity
Y Design variables L Lagrangian
ρ∞ Free stream density ψn Adjoint variables at time step n
∆t Time discretization step ∆t∗ Coarse time discretization step

I. Introduction and Motivation

The use of steady-state aerodynamic optimization methods in the computational fluid dynamics (CFD)
community is fairly well established.1–4 In particular the use of adjoint methods, which has been pioneered
by Jameson5 for steady aeronautical design optimization, has proved to be very beneficial since its cost is
independent of the number of design variables.

The application of numerical optimization to airframe-generated noise, however, has not received as
much attention, but with the significant quieting of modern engines, airframe noise now competes with
engine noise.6 Thus airframe-generated noise is an important component of the total noise radiated from
commercial aircraft, especially during aircraft approach and landing, when engines operate at reduced thrust,
and airframe components (such as high-lift devices) are in the deployed state.7 Future Federal Aviation
Administration noise regulations, the projected growth in air travel and the increase in population density
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near airports will require future civil aircraft to be substantially quieter than current ones. Consequently,
the attempt to understand and reduce airframe noise has become an important research topic.8

Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated
noise. This paper presents a general framework to calculate the gradient in a nonlinear unsteady flow
environment via the discrete adjoint method. The presented framework is then applied to an aerodynamic
noise reduction problem involving unsteady laminar trailing-edge flow similar to one presented by Marsden
et al.9

II. Formulation of the Discrete Time-dependent Optimal Control Problem

In the following we assume that we control an unsteady flow in the time interval [0, T ] with an initial
flow solution Q0 at t = 0. In this section we use the implicit Euler time-marching method to discretize the
governing equations in time. This is not a restriction, since it is straightforward to modify the equations
to use any other time-marching method (e.g. see the Appendix for the derivation with the second-order
backwards difference (BDF2) time-marching method, which is used to obtain the results).

We introduce a cost function

J =
N∑

n=1

In(Qn, Y ), (1)

where the function In= In(Qn, Y ) depends on the time-dependent flow solution Qn and design variables Y .
N can be calculated from the relation T = N∆t, where ∆t is the chosen time discretization step. We then
assume that R = R(Qn, Y ) contains the spatially discretized convective and viscous fluxes as well as the
boundary conditions and that

Rn(Qn, Qn−1, Y ) :=
Qn −Qn−1

∆t
+ R(Qn, Y ) = 0 (2)

defines implicitly the time-dependent flow solution Qn for n = 1, . . . , N . It does not matter how one solves
equation (2) as long as Rn = 0 for all n, since this is the requirement for the following derivation.

The task of minimizing the cost function J subject to Rn = 0 for all n can now be written as an
unconstrained optimization problem of minimizing the Lagrangian function

L =
N∑

n=1

In(Qn, Y ) +
N∑

n=1

(ψn)TRn(Qn, Qn−1, Y ) (3)

with respect to Q1, . . . , QN and ψ1, . . . , ψN , where ψ1, . . . , ψN are the N vectors of Lagrange multipliers.
A necessary condition for an extremal is that the gradient of L with respect to Q1, . . . , QN and ψ1, . . . , ψN

should vanish. Since we start with Q0 and calculate the states Q1, . . . , QN using the constraints given by
equation (2), we ensure that ∇ψnL = 0 for n = 1, . . . , N automatically. The Lagrange multipliers ψn must
now be chosen such that ∇QnL = 0 for n = 1, . . . , N , which leads to

0 = ∇QnIn + (ψn)T∇QnRn + (ψn+1)T∇QnRn+1 for n = 1, . . . , N−1 (4)
0 = ∇QN IN + (ψN )T∇QNRN . (5)

This can be written equivalently as

ψN = −
(
(∇QNRN )T

)−1
(∇QN IN )T (6)

ψn = −
(
(∇QnRn)T

)−1 [
(∇QnIn)T + (∇QnRn+1)T ψn+1

]
for n = N−1, . . . , 1. (7)

Since Q1, . . . , QN have been calculated from the current iterate of Y , the Lagrange multipliers ψn can
be calculated recursively backwards from the terminal boundary condition (6) using (7). The system of
equations (6) and (7) is known as the system of adjoint equations for the model (2), or as the adjoint model.
In this context, the Lagrange multipliers are also known as the adjoint variables.

Finally, one can evaluate the gradient of J with respect to the design variables Y , which can then be
used in a gradient-based optimization algorithm such as BFGS10–13 to find the optimum:

∂J

∂Y
=

∂L
∂Y

=
N∑

n=1

∇Y In(Qn, Y ) +
N∑

n=1

(ψn)T∇Y R(Qn, Y ). (8)
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In summary, the gradient is determined by the solution of the adjoint equations in reverse time from
the terminal boundary condition and the partial derivatives of the flow residual and objective function with
respect to the design variables (while Qn is held constant). One can also see that the computational costs of
unsteady optimization problems are directly proportional to the desired number of time steps and (almost)
independent of the number of design variables.

III. The Aerodynamic Noise Reduction Problem

We now present an unsteady aerodynamic noise reduction problem which applies the above framework
in practice. The airfoil geometry, which is a shortened version of the airfoil used in experiments by Blake,14
is shown in Figure 1. This geometry is very similar to the one used by Marsden et al.9 in their noise
minimization using a surrogate management framework. The airfoil chord is 10 times its thickness, the free
stream Mach number is M∞ = 0.2 with a Reynolds number of Re = 10, 000, and the angle of attack is 0◦.

x

y

0 0.2 0.4 0.6 0.8 1

-0.05

0

0.05

Figure 1: Blake airfoil used in unsteady laminar flow problem with the thickness constraint line (dashed). The right
half of the upper surface is allowed to deform and the fifteen B-spline control points which are used as design variables
are shown as squares.

For unsteady laminar flow past an airfoil at low Mach number, the acoustic wavelength associated with
the vortex shedding is typically long relative to the airfoil chord.9 The noise generation from such an
acoustically compact airfoil can be expressed using Curle’s extension to the Lighthill theory15 and a cost
function J , which is proportional to the total radiated acoustic power can be derived:16

J =
(

∂

∂t

∫

S
njp1j(y, t)ds

)2

+
(

∂

∂t

∫

S
njp2j(y, t)ds

)2

. (9)

Here, pij is the compressive stress tensor, nj are the normalized components of the outward normal to the
airfoil surface S, and y is the airfoil surface position vector. The overbar denotes time-averaging over the
chosen time interval, and repeated indices follow the usual Einstein summation convention. The radiation
in this case is of dipole type, caused by the fluctuating lift and drag forces; the reader is referred to Wang
et al.17 for more details on airfoil self-noise due to vortex shedding.

The geometry of the airfoil is described with cubic B-spline curves,4 which means that some of the y-
coordinates of the B-spline control points in the upper right half of the airfoil can easily be used as shape
design variables (see Figure 1). Since the cost of our adjoint approach is independent of the number of design
variables, we decided to use considerably more shape design variables than the five that Marsden et al.9 could
afford in their study using a surrogate management framework. We use fifteen shape design variables in this
research, thus giving the airfoil more freedom in the design space to take the most beneficial shape as given
by the BFGS optimizer.18,19 However, we impose thickness constraints via a quadratic penalty method to
ensure that the airfoil has a certain minimum thickness. We apply the same minimum thickness as imposed
by Marsden et al., which is given by a straight line connecting the left edge of the deformation region and
the trailing edge, as shown in Figure 1.

We use a C-mesh with 298× 95 nodes, which is a good compromise between the accuracy of the flow
solution and the computational effort required. In order to solve the underlying two-dimensional unsteady
compressible thin-layer Navier-Stokes equations in non-dimensional form we use our flow solver PROBE20

with the second-order accurate BDF2 time-marching method. The spatial discretization of the steady flow
residual R = R(Qn, Y ) is the same as that used in ARC2D.21 It consists of second-order centered-difference
operators with second- and fourth-difference scalar artificial dissipation. We use an inexact Newton strat-
egy20,22 to drive the discretized unsteady flow residual Rn to 10−12 at each time step n. The main com-

3 of 9

American Institute of Aeronautics and Astronautics



ponents of this strategy include the matrix-free generalized minimum residual (GMRES) method23 and an
incomplete lower-upper factorization24 ILU(k) right preconditioner with a fill level of k = 4 to inexactly solve
the linear system, which results from applying Newton’s method to equation (2). The preconditioner is based
on a first-order approximation of the flow Jacobian matrix, and the matrix-vector products required at each
GMRES iteration are formed with first-order finite differences. The non-dimensionalization is accomplished
with the following scaling parameters: the free stream density ρ∞, the airfoil chord c as a length scale, the
free stream speed of sound a∞ as a velocity scale, and c/a∞ as a time scale. Our Reynolds number of 10, 000
is based on the free stream velocity u∞ and the chord length c. Marsden et al. used a very similar scaling to
present their results, although they used u∞ as the velocity scale. In order to convert the objective function
value from our scaling to Marsden’s scaling we have to divide it by (M∞)6, and we have to multiply our
non-dimensionalized time by M∞ to be able to compare it to Marsden’s non-dimensionalized time. For the
remainder of this paper we will report all our results with Marsden’s scaling to ease comparisons.

The Bi-CGSTAB algorithm25 is used to solve the linear systems in the adjoint equations with an absolute
convergence tolerance of 10−6 and right preconditioning with ILU(5) is applied to accelerate convergence.
We found Bi-CGSTAB to be about fifty percent faster in solving the unsteady adjoint equations than
GMRES, which we still use in our unsteady flow solves as mentioned above because there are no significant
computational savings by using Bi-CGSTAB for the few linear iterations we have to use per nonlinear
(outer) iteration. However, for a steady-state adjoint problem Bi-CGSTAB works not nearly as well and we
are using GMRES instead. The reason for this is most likely accounted for by the fact that (∇QnRn)T is
more diagonally dominant than the transpose of the steady flow Jacobian (∇QR)T due to the extra terms
on the diagonal, which makes this matrix more suited for the use of Bi-CGSTAB.

We also found that the algebraic grid movement algorithm used by Nemec and Zingg26 is not capable of
dealing with the occasional fairly large shape changes. Thus we use a quasi-linear elasticity mesh movement
method27,28 with three increments.

IV. Results

The laminar flow around the original Blake airfoil exhibits unsteady vortex shedding, which leads to an
oscillatory cost function as shown in Figure 2 using a time step size of ∆t = 0.005. The agreement between
our cost function for the original Blake airfoil and the one shown in Marsden et al.9 is reasonably good, even
though our grid is about five times coarser.
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0.1

0.2

0.3
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0.6

t

J

Figure 2: Instantaneous (thin line) and time-averaged (thick line) cost function for the original Blake airfoil vs. time.
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In the actual optimization runs we use the discrete version of the time-averaged cost function given by
equation (9) once it is sufficiently converged. After each shape modification the flow solve is warmstarted
from the original Blake airfoil periodic steady state solution and the flow is allowed to evolve for some time
to establish a new periodic steady state before the cost function is calculated (compare with Figure 6). We
“jump” over this unphysical adjusting period as quickly as possible by taking a bigger time step ∆t∗ = 0.01
for the first N∗= 300 steps. Once we reach our desired control window [3, 10] (where we time average the
objective function), we use a smaller time step ∆t = 0.005 for another 1400 steps, for a total of N = 1700
steps covering a time interval of [0, 10] for each flow solve. The corresponding adjoint equations resulting
from a variable time step are given in the Appendix.

X

Y

0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05
J=1.33E-5
J=1.07E-5
J=3.00E-5
J=8.52E-6

Figure 3: The initial airfoil shapes.

We start the optimization procedure from four different initial shapes, which are shown together with
their objective function values (without the quadratic penalty for thickness constraint violation) in Figure 3:

1. The original Blake airfoil (in red)

2. The airfoil defined through the thickness constraint line (in green)

3. The airfoil that results from setting all fifteen design variables to their specified upper bound (in blue)

4. The airfoil that results from setting all fifteen design variables to their specified lower bound (in black)

The first three initial shapes do not violate any thickness constraints; however, the fourth one does.
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Figure 4: Convergence histories of the aeroacoustic shape design problems using fifteen design variables.
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The convergence histories of these aeroacoustic shape design problems are shown in Figure 4. The
objective functions are always scaled with the initial objective function value of the original Blake airfoil
J0 = 1.33 · 10−5 to make comparisons easier. One can see that all objective functions are driven to much
smaller values in about two to eight design iterations and that the improvement after that is only marginal.
Starting from the original Blake airfoil leads to the best airfoil in terms of total radiated acoustic power.
The reduction is about 94 percent from the initial value and thus much larger than the 80 percent achieved
by Marsden et al.9 using five design variables. The gradient norms are only reduced by one to two orders of
magnitude, implying that the optimizer did not fully converge due to stalls in the line search algorithm.

X
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-0.05
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0.05
J=7.64E-7
J=8.69E-7
J=9.06E-7
J=9.37E-7

Figure 5: Final improved airfoil shapes (solid) and initial airfoil shapes (dashed).

Figure 5 shows the final improved airfoil shapes together with their objective function values (this time
with the quadratic penalty for thickness constraint violation included), which are very interesting and com-
pletely unexpected. The increase in the trailing-edge angle to decrease the trailing-edge noise was also found
by Marsden et al. and was theoretically predicted by Howe29 for turbulent flow. However, the “wavy” part
of the airfoil is a novel result and to the best of the authors’ knowledge has only been reported by Rumpfkeil
and Zingg30,31 in a previous study. Presumably Marsden et al. did not obtain similar “wavy” shapes due
to the fact that they used only five design variables and thus did not give their optimizer enough freedom
to come up with these novel shapes.

Initial Improved

C̄L C̄D C̄L/C̄D C̄L C̄D C̄L/C̄D

Original Blake 0.284 0.076 3.75 0.279 0.049 5.72

Thickness line 0.265 0.054 4.95 0.279 0.049 5.67

Upper bound 0.134 0.119 1.12 0.276 0.049 5.66

Lower bound 0.305 0.055 5.57 0.279 0.049 5.66

Table 1: A comparison of the mean lift and drag coefficients for the initial and improved airfoils.

A comparison of the mean lift and drag coefficients for the initial and improved airfoils is displayed in
Table 1. We do not have to add a lift constraint or a penalty for decreased lift to the objective function
since the mean lift coefficients for all improved airfoils either stay about the same or increase in comparison
to their initial values. The mean drag coefficients are decreased in all cases. This means the optimizer has
not only produced aeroacoustically improved airfoils, but also as a byproduct the initial airfoils have been
aerodynamically enhanced.

The time histories of CL and CD for the original Blake airfoil before and after the optimization are shown
in Figure 6. One can clearly see the unphysical adjusting period for the improved airfoil in the time interval
[0, 3] before it reaches its new somewhat periodic steady state. A reduced mean drag as well as reduced
oscillation amplitudes for the improved airfoil are also visible.

We also tried to save computational time and storage by saving the flowfield in the control window only
every second time step. We have used this approach very successfully in previous studies.30,32 However,
in this case this approach does not work very well, since the optimizer is barely able to improve the initial
airfoils even slightly with this inexact gradient information.
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Figure 6: Time histories of CL and CD for the original Blake airfoil before and after optimization. The histories of
the initial (dashed) and improved (solid) airfoils vs. time (∆t = 0.005) are shown.

V. Conclusion

The discrete adjoint method was successfully applied to unsteady laminar trailing edge optimization
resulting in a significant reduction in the total radiated acoustic power. The resulting improved airfoils
showcase very interesting and completely unexpected shapes, thereby showing the power of numerical shape
optimization, which can lead to counterintuitive results. It would be very interesting to see the improved
shapes tested in a wind tunnel to confirm that the predicted reduction in total radiated acoustic power is
achieved in reality. The general framework presented to derive the unsteady discrete adjoint equations for
optimal control can also be used for many other inherently unsteady optimization problems. Our future
work will focus on the ability to modify a high-lift airfoil configuration to reduce the radiated noise while
maintaining good aerodynamic performance.

Appendix

In this appendix, we derive the discrete adjoint equations in the form in which we use them to present
our results. We warmstart our flow solve at t = 0 which implies that we know Q0 and Q−1. We also want
to “jump” over the adjusting period as quickly as possible thus taking a bigger time step ∆t∗ for N∗ time
steps. Once we reach the domain where we actually want to control the problem we use a smaller time step
∆t for N−N∗ time steps. Thus we have a total of N time steps and to keep the second-order time accuracy,
the time-dependent flow solution Qn is implicitly defined through the following unsteady residuals:

Rn(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 + Qn−2

2∆t∗
+ R(Qn, Y ) = 0 for n = 1, . . . , N∗

RN∗+1(QN∗+1, QN∗
, QN∗−1, Y ) :=

(2∆t∆t∗ + ∆t∗2)QN∗+1 − (∆t + ∆t∗)2QN∗
+ ∆t2QN∗−1

∆t∆t∗(∆t + ∆t∗)
+ R(QN∗+1, Y ) = 0
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Rn(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 + Qn−2

2∆t
+ R(Qn, Y ) = 0 for n = N∗+ 2, . . . , N.

The problem of minimizing the discrete objective function given by J =
∑N

n=N∗+1 In(Qn, Y ) is then
equivalent to the unconstrained optimization problem of minimizing the Lagrangian function

L =
N∑

n=N∗+1

In(Qn, Y ) +
N∑

n=1

(ψn)TRn(Qn, Qn−1, Qn−2, Y )

with respect to Q1, . . . , QN and ψ1, . . . , ψN . This leads to the following equations for ψn:

0 = (ψn)T∇QnRn + (ψn+1)T∇QnRn+1 + (ψn+2)T∇QnRn+2 for n = 1, . . . , N∗

0 = ∇QnIn + (ψn)T∇QnRn + (ψn+1)T∇QnRn+1 + (ψn+2)T∇QnRn+2 for n = N∗+1, . . . , N−2
0 = ∇QN−1IN−1 + (ψN )T∇QN−1RN + (ψN−1)T∇QN−1RN−1

0 = ∇QN IN + (ψN )T∇QNRN ,

which can be written equivalently as

ψn =






−
(
(∇QnRn)T

)−1[(∇QnIn)T
]

for n = N

−
(
(∇QnRn)T

)−1[(∇QnIn)T + (∇QnRn+1)T ψn+1
]

for n = N − 1
−

(
(∇QnRn)T

)−1[(∇QnIn)T + (∇QnRn+1)T ψn+1+ (∇QnRn+2)T ψn+2
]

for n = N−2, . . . , N∗+1
−

(
(∇QnRn)T

)−1[ (∇QnRn+1)T ψn+1+ (∇QnRn+2)T ψn+2
]

for n = N∗, . . . , 1

A little care must be taken in calculating derivatives of RN∗+1with respect to Qn since the factors in front
of QN∗+1, QN∗

and QN∗−1differ slightly from the usual scheme. The gradient of J with respect to the design
variables Y is then given by

∂J

∂Y
=

∂L
∂Y

=
N∑

n=N∗+1

∇Y In(Qn, Y ) +
N∑

n=1

(ψn)T∇Y R(Qn, Y ).
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