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Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-
product spectral-element operators in collapsed coordinates. The proposed approach enables the
construction of provably stable discretizations of arbitrary order which combine the geometric flex-
ibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization
algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral
spectral-element operators of any order which possess the SBP property (i.e. satisfying a discrete
analogue of integration by parts) as well as a tensor-product decomposition. Such operators are
then employed within the context of discontinuous spectral-element methods based on nodal ex-
pansions collocated at the tensor-product quadrature nodes as well as modal expansions employing
Proriol-Koornwinder-Dubiner polynomials, the latter approach resolving the time step limitation as-
sociated with the singularity of the collapsed coordinate transformation. Energy-stable formulations
for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a
weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The
proposed schemes are compared to those using non-tensorial multidimensional SBP operators, and
are found to offer comparable accuracy to such schemes in the context of smooth linear advection
problems on curved meshes, but at a reduced computational cost for higher polynomial degrees.
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1. Introduction. High-fidelity simulations of multiscale phenomena in science
and engineering governed by time-dependent conservation laws require efficient, ro-
bust, and automated numerical methods suitable for complex geometries. Discontin-
uous spectral-element methods (DSEMs)1 provide a promising approach to meeting
these needs, as they are amenable to performant algorithms on modern hardware
and are flexible in their support for local adaptation to geometric and solution fea-
tures by varying the element size (i.e. h-adaptivity) or by varying the polynomial
degree of the approximation within each element (i.e. p-adaptivity). While robust-
ness has traditionally been a concern for such methods, modern formulations based
on the summation-by-parts (SBP) property produce mathematical guarantees that
discretizations will respect certain properties of the partial differential equations they
approximate, facilitating the construction of provably stable and conservative high-
order methods for a wide variety of problems.

The SBP approach, originally proposed by Kreiss and Scherer in the context of
finite-difference methods [24], has proven instrumental in bringing about a recent par-
adigm shift in the construction and analysis of linearly and nonlinearly stable DSEMs
for conservation laws (see, for example, Chen and Shu [9] and Gassner and Winters [15]
for reviews of such developments). Although the multidimensional SBP property in-
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Fig. 1: Illustration of the collapsed coordinate transformation ξ = χ(η) from the square to
the reference triangle (top) and from the cube to the reference tetrahedron (bottom)

troduced by Hicken et al. [17] facilitates the construction of provably stable schemes
suitable for complex geometries and solution adaptivity through the use of triangular
and tetrahedral elements, the operators which constitute such discretizations lack a
tensor-product structure. As a consequence, such schemes are not amenable to the
sum-factorization algorithms commonly employed on quadrilateral and hexahedral
elements, wherein tensor-product operators are applied in a dimension-by-dimension
manner, a highly efficient approach originating with the work of Orszag in the context
of spectral methods [30]. Considering a polynomial spectral-element approximation
of degree p in d spatial dimensions, local operations such as spatial differentiation are
typically of O(p2d) complexity when no such tensor-product structure is exploited.
Hence, noting that sum factorization generally results in algorithms of O(pd+1) com-
plexity, the benefits of existing triangular and tetrahedral SBP operators with respect
to geometric flexibility and suitability for adaptation are obtained at the expense
of a significantly increased operation count relative to tensor-product operators on
quadrilaterals and hexahedra, particularly at higher polynomial degrees.

The use of a collapsed coordinate transformation as shown in Fig. 1, sometimes
referred to as a Duffy transformation [14], allows for the geometric flexibility of sim-
plicial elements (as well as other element types such as prisms and pyramids) to be
exploited alongside the aforementioned computational benefits of a tensor-product
operator structure. Beginning with theoretical development by Dubiner [13] and the
subsequent application of such ideas to continuous Galerkin (CG) methods [35,36] as
well as discontinuous Galerkin (DG) methods [20, 26], collapsed-coordinate formula-
tions have proven essential to the efficient use of triangular and tetrahedral SEMs at
higher polynomial degrees. Moreover, such schemes have been shown in recent years
to be amenable to efficient implementation on modern hardware (see, for example,
Moxey et al. [29]). Despite these successes, which are exemplified by the open-source
spectral-element framework Nektar++ [1], existing tensor-product formulations in col-
lapsed coordinates are subject to the aforementioned stability issues afflicting conven-
tional SEM discretizations, which generally rely on ad hoc techniques such as modal
filtering (which requires careful tuning in order to avoid excessively contaminating the
numerical solution [16, section 5.3]) or over-integration (which incurs additional cost
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while still not ensuring stability [39]) to achieve robustness in practice. Discretiza-
tions based on the SBP property, by contrast, do not require such problem-dependent
remedies to ensure robustness, and may be systematically applied to complex prob-
lems with stability and conservation properties guaranteed by construction, without
reliance on the exact integration of variational forms to establish such results.2

Motivated by the desire for efficient, provably stable discretizations of arbitrary
order on triangles and tetrahedra, this paper presents a comprehensive extension of the
SBP framework to tensor-product spectral-element operators in collapsed coordinates.
Although the focus of this paper is on energy-stable discretizations for linear problems,
the proposed operators also constitute the fundamental building blocks of entropy-
stable schemes for nonlinear problems. Our main contributions are outlined below.

• A methodology is presented for constructing tensor-product spectral-element
operators of any order with the SBP property on the reference triangle and
tetrahedron, which are used within a split formulation to obtain conservative,
free-stream preserving, and energy-stable DSEMs on curvilinear meshes.

• Nodal and modal variants of the above approach are proposed, which differ
primarily due to the presence of an additional polynomial projection in the
latter case, which alleviates the explicit time step restriction resulting from
the singular nature of the collapsed coordinate transformation.

• In the case of the modal formulation, we exploit the “warped” tensor-product
structure of the Proriol-Koornwinder-Dubiner polynomial basis functions [13,
21,32] alongside a weight-adjusted approximation to the inverse of the curvi-
linear mass matrix proposed by Chan et al. [6], resulting in an explicit al-
gorithm for computing the time derivative on a given element in O(pd+1)
floating-point operations, with minimal storage requirements.

• Considering smooth linear advection problems on curved triangular and tetra-
hedral meshes, the proposed nodal and modal schemes both exhibit optimal
O(hp+1) convergence with respect to the element size h when the mesh is
refined with the degree p held fixed and an upwind numerical flux is used. In
the case of the modal formulation with an upwind or central numerical flux,
exponential convergence is observed when p is increased with h held fixed.

• Compared to methods of the same degree employing symmetric nodal sets
on triangles and tetrahedra, the proposed schemes are found to be similar in
accuracy and (in the case of the modal approach) spectral radius, but require
significantly fewer floating-point operations at higher polynomial degrees.

We now describe the structure of the remainder of this paper. In section 2, we review
the SBP framework and associated notation employed throughout this work. Tensor-
product SBP operators on the reference triangle and tetrahedron are then introduced
in sections 3 and 4, respectively, and are used to construct nodal and modal DSEM
formulations on curvilinear meshes in section 5. We describe strategies for efficient
implementation of the proposed schemes in section 6. Numerical experiments are
presented and discussed in section 7, and concluding remarks are provided in section 8.

2. Preliminaries.

2.1. Notation. The notation in this paper follows that introduced by the au-
thors in [27] and [28]. Single underlines are used to denote vectors (treated as column

2This is important due to the aforementioned cost of over-integration as well as the fact that the
variational formulations of many conservation laws of practical interest (for example, the conservative
forms of the compressible Euler and Navier-Stokes equations) involve non-polynomial terms which
are impractical, if not impossible, to integrate exactly using standard quadrature rules.
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matrices), whereas double underlines denote matrices. Symbols in bold are used
specifically to denote Cartesian (i.e. spatial) vectors, for which we employ the usual
dot product x·y := x1y1+· · ·+xdyd and Euclidean norm ‖x‖2 := x·x, and del operator
∇x := [∂/∂x1, . . . , ∂/∂xd]

T. The symbols R, R+, R+
0 , N, N0, and Sd−1 denote the real

numbers, the positive real numbers, the non-negative real numbers, the natural num-
bers (excluding zero), the natural numbers including zero, and the unit (d−1)-sphere
Sd−1 := {x ∈ Rd : ‖x‖ = 1}, respectively. The symbols 0(N) and 1(N) are reserved
for vectors of length N ∈ N containing all zeros and all ones, respectively, and we use
{1 : N} as shorthand for {1, 2, . . . , N}. Given a bounded domain D ⊂ Rd, we use ∂D
to denote its boundary and D̄ := D∪ ∂D to denote its closure; the interior of a closed
domain D is then given by D̊ := D \ ∂D. The space of polynomials of maximum total
degree p ∈ N0 onD is then defined as Pp(D) := span{D 3 x 7→ xα1

1 · · ·x
αd
d : α ∈ N (p)}

in terms of the multi-index set N (p) := {α ∈ Nd0 : α1 + · · · + αd ≤ p}, which is of
cardinality N∗p :=

(
p+d
d

)
. Other relevant notational conventions and definitions are

introduced as they appear.

2.2. Summation-by-parts operators. Whether or not explicit in their con-
struction, existing energy-stable and entropy-stable spectral-element methods on sim-
plicial elements typically rely on the multidimensional summation-by-parts property
introduced by Hicken et al. [17], who proposed a definition equivalent to the following.

Definition 2.1 (Nodal SBP operator). Let Ω̂ ⊂ Rd denote a compact, connected

domain, on which we define a set of Nq ∈ N distinct nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂, and

let u := [U(ξ(1)), . . . , U(ξ(Nq))]T and v := [V (ξ(1)), . . . , V (ξ(Nq))]T contain the nodal
values of functions U, V : Ω̂→ R. A matrix D (m) ∈ RNq×Nq approximating the partial
derivative ∂/∂ξm is then a nodal SBP operator of degree p ∈ N0 if it satisfies

(2.1) D (m)v =
[
(∂V/∂ξm)(ξ(1)), . . . , (∂V/∂ξm)(ξ(Nq))

]T
, ∀V ∈ Pp(Ω̂),

and may be decomposed as D (m) = W−1Q (m) such that W ∈ RNq×Nq is symmetric

positive-definite (SPD), Q (m) ∈ RNq×Nq satisfies Q (m) + (Q (m))T = E (m), and

(2.2) uTE (m)v =

∫
∂Ω̂

U(ξ)V (ξ)n̂m(ξ) dŝ, ∀U, V ∈ Pr(Ω̂),

holds for some r ≥ p, where n̂ : ∂Ω̂→ Sd−1 is the outward unit normal vector to Ω̂.

The SBP property serves as a discrete analogue of integration by parts, as given by

(2.3)

∫
Ω̂

U(ξ)
∂V (ξ)

∂ξm
dξ

≈

+

∫
Ω̂

∂U(ξ)

∂ξm
V (ξ) dξ

≈

=

∫
∂Ω̂

U(ξ)V (ξ)n̂m(ξ) dŝ

≈

.

uTQ (m)v + uT
(
Q (m)

)T
v = uTE (m)v

We refer to any SBP operator for which the associated matrix W is diagonal as a
diagonal-norm SBP operator, referring to the role of such a matrix in defining a
discrete norm in which stability may be proven. In such a case, the diagonal entries
of W constitute the weights {ω(i)}i∈{1:Nq} ⊂ R+ for a quadrature rule satisfying

(2.4)

Nq∑
i=1

V (ξ(i))ω(i) =

∫
Ω̂

V (ξ) dξ, ∀V ∈ Pτ (Ω̂),

where τ ≥ 2p− 1 for any diagonal-norm SBP operator of degree p [17, Theorem 3.2].
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2.3. Decomposition of the boundary operators. To employ SBP operators
satisfying the conditions of Definition 2.1 within the context of an SEM, we construct
such operators on a canonical reference element and use a coordinate transformation
to obtain operators on each physical element of the mesh. Let us now assume that
the reference element Ω̂ ⊂ Rd is a polytope and partition its boundary into Nf ∈ N
closed subsets {Γ̂(ζ)}ζ∈{1:Nf} with disjoint interiors, referred to as facets, on which

the outward unit normal n(ζ) ∈ Sd−1 is assumed to be constant. On each facet, we

introduce N
(ζ)
qf ∈ N quadrature nodes and corresponding weights, which are given by

(2.5) {ξ(ζ,i)}
i∈{1:N

(ζ)
qf
} ⊂ Γ̂(ζ), {ω(ζ,i)}

i∈{1:N
(ζ)
qf
} ⊂ R+

0 .

As in Del Rey Fernández et al. [12, section 3], we then restrict our attention to the
class of SBP operators for which the boundary matrices take the form

(2.6) E (m) :=

Nf∑
ζ=1

n̂(ζ)
m

(
R(ζ)

)T
B (ζ)R(ζ),

where B (ζ) ∈ RN
(ζ)
qf
×N(ζ)

qf is a diagonal matrix with entries B
(ζ)
ij := ω(ζ,i)δij , and R(ζ) ∈

RN
(ζ)
qf
×Nq is an interpolation/extrapolation operator of degree r(ζ) ≥ p, satisfying

(2.7) R(ζ)v =
[
V (ξ(ζ,1)), . . . , V (ξ

(ζ,N(ζ)
qf

)
)
]T
, ∀V ∈ Pr(ζ)(Ω̂).

Such a decomposition is critical for the weak imposition of boundary conditions and
interface coupling for discontinuous approximation spaces, as in the case of a DSEM.

2.4. Curvilinear meshes. Let Ω ⊂ Rd denote an open, bounded, connected
spatial domain with a piecewise smooth boundary ∂Ω and outward unit normal vector
n : ∂Ω → Sd−1. The domain is partitioned into a mesh {Ω(κ)}κ∈{1:Ne} consisting of
Ne ∈ N compact, connected elements of characteristic size h ∈ R+, satisfying

(2.8)

Ne⋃
κ=1

Ω(κ) = Ω̄ and Ω̊(κ) ∩ Ω̊(ν) = ∅, ∀κ 6= ν.

Each element is further assumed to be the image of a polytopal reference element
Ω̂ ⊂ Rd under a smooth, time-invariant mapping X(κ) : Ω̂ → Ω(κ). The Jacobian of
such a mapping is denoted by ∇ξX(κ)(ξ) ∈ Rd×d, where the determinant J (κ)(ξ) :=

det(∇ξX(κ)(ξ)) is assumed to be positive for all ξ ∈ Ω̂. The outward unit normal
vector n(κ,ζ) : Γ(κ,ζ) → Sd−1 to the facet Γ(κ,ζ) ⊂ ∂Ω(κ), which is the image of
Γ̂(ζ) ⊂ ∂Ω̂ under the mapping X(κ), is then given according to Nanson’s formula,

(2.9) J (κ,ζ)(ξ)n(κ,ζ)(X(κ)(ξ)) = J (κ)(ξ)(∇ξX(κ)(ξ))−Tn(ζ),

where we define J (κ,ζ)(ξ) := ‖J (κ)(ξ)(∇ξX(κ)(ξ))−T‖. We then form the diagonal

matrices J (κ),Λ(κ,l,m) ∈ RNq×Nq and J (κ,ζ),N (κ,ζ,m) ∈ RN
(ζ)
qf
×N(ζ)

qf given by

(2.10)
J

(κ)
ij := J (κ)(ξ(i))δij , Λ

(κ,l,m)
ij := [J (κ)(ξ(i))(∇ξX(κ)(ξ(i)))−1]lmδij ,

J
(κ,ζ)
ij := J (κ,ζ)(ξ(ζ,i))δij , N

(κ,ζ,m)
ij := n(κ,ζ)

m (X(κ)(ξ(ζ,i)))δij ,

containing the values of the geometric factors and normals at the quadrature nodes.
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2.5. Approximation on the physical element. Given any diagonal-norm
SBP operator on the reference element, we can use the split (i.e. skew-symmetric)
formulation proposed by Crean et al. [10, section 5] to approximate ∂/∂xm under

the mapping x = X(κ)(ξ) using the operator D (κ,m) := (W J (κ))−1Q (κ,m), where we

define

(2.11) Q (κ,m) :=
1

2

d∑
l=1

(
Λ(κ,l,m)W D (l) −

(
D (l)

)T
W Λ(κ,l,m)

)
+

1

2
E (κ,m),

with

(2.12) E (κ,m) :=

Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)N (κ,ζ,m)R(ζ).

While polynomials of degree p on the physical element are not, in general, differen-
tiated exactly when X(κ) is not an affine mapping, it was shown in [10, Theorem 9]
that the error in the resulting split-form approximation to ∂/∂xm is of O(hp) under
suitable assumptions. In addition to the SBP property on the physical element,

(2.13) Q (κ,m) +
(
Q (κ,m)

)T
= E (κ,m), ∀m ∈ {1 : d},

which follows directly from (2.11), proofs of conservation, free-stream preservation,
and nonlinear stability (i.e. entropy stability) typically require the discrete metric
identities to be satisfied, as given by

(2.14) D (κ,m)1(Nq) = 0(Nq), ∀m ∈ {1 : d}.

Assuming that the metric terms and normals in (2.10) are computed analytically, it
was shown in [10, Theorems 6 and 8] that (2.14) holds for physical operators construc-

ted as in (2.11) if the mapping is a polynomial X(κ) ∈ [Ppg (Ω̂)]d of degree pg ≤ p+ 1
in two dimensions or pg ≤ bp/2c+ 1 in three dimensions. Otherwise, approximations
such as the conservative curl form proposed by Kopriva [22, section 7] and extended
to simplicial meshes by Chan and Wilcox [8, section 5] or the optimization-based
approach introduced in [10, section 5.4] may be used to ensure that (2.14) is satisfied.

3. Tensor-product approximations on the reference triangle. We now
turn to the main theoretical contribution of this paper, which is to construct a new
class of SBP operators of arbitrary order employing tensor-product approximations in
collapsed coordinates. We will begin with the triangular case in this section, describing
the extension to tetrahedra in section 4. The reference domain is taken here to be

(3.1) Ω̂ :=
{
ξ ∈ [−1, 1]2 : ξ1 + ξ2 ≤ 0

}
,

where, as a convention, we number the facets (i.e. edges of the triangle) as

(3.2)
Γ̂(1) :=

{
ξ ∈ Ω̂ : ξ2 = −1

}
, Γ̂(2) :=

{
ξ ∈ Ω̂ : ξ1 + ξ2 = 0

}
,

Γ̂(3) :=
{
ξ ∈ Ω̂ : ξ1 = −1

}
.

The outward unit normal vectors to each facet are then given by

(3.3) n̂(1) =

[
0
−1

]
, n̂(2) =

[
1/
√

2

1/
√

2

]
, n̂(3) =

[
−1
0

]
.
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The proposed schemes are constructed based on a collapsed coordinate system η ∈
[−1, 1]2, from which any point can be mapped onto the reference coordinate system
ξ ∈ Ω̂ through the mapping χ : [−1, 1]2 → Ω̂ depicted in Fig. 1, which is given by

(3.4) χ(η) :=

[
1
2 (1 + η1)(1− η2)− 1

η2

]
,

where we adopt a similar notation to that employed by Karniadakis and Sherwin [19,
section 3.2]. Such a mapping has an inverse defined for ξ ∈ Ω̂ \ {[−1, 1]T} by

(3.5) χ−1(ξ) :=

[
2(1 + ξ1)/(1− ξ2)− 1

ξ2

]
.

It is then straightforward to show that integrals on the reference element can be
expressed in terms of the collapsed coordinate system as

(3.6)

∫
Ω̂

V (ξ) dξ =

∫ 1

−1

∫ 1

−1

V (χ(η))
1− η2

2
dη1dη2.

Similarly, partial derivatives with respect to each reference coordinate may be com-
puted in terms of the collapsed coordinate system via the chain rule as

∂V

∂ξ1
(χ(η)) =

2

1− η2

∂

∂η1
V (χ(η)),(3.7a)

∂V

∂ξ2
(χ(η)) =

(
1 + η1

1− η2

∂

∂η1
+

∂

∂η2

)
V (χ(η)),(3.7b)

where we note that such expressions are undefined at the top edge (i.e. η2 = 1), which
collapses onto the singular vertex ξ = [−1, 1]T under the transformation in (3.4).

3.1. Nodal sets and interpolants. Let q1, q2 ∈ N0 denote the degrees of the
polynomial approximations with respect to η1 and η2, respectively, and define q :=
min(q1, q2). Note that we allow for the use of different polynomial degrees in each
direction, where such flexibility could be exploited, for example, within the context of
anisotropic p-adaptivity. Considering Jacobi weight functions of the form $(a,b)(η) :=
(1 − η)a(1 + η)b for generality, we construct Gaussian quadrature rules with nodes
and weights

(3.8)
{η(i)

1 }i∈{0:q1} ⊂ [−1, 1], {η(i)
2 }i∈{0:q2} ⊂ [−1, 1),

{ω(i)
1 }i∈{0:q1} ⊂ R+, {ω(i)

2 }i∈{0:q2} ⊂ R+,

where the rule in the ηm direction employs qm + 1 distinct nodes and satisfies

(3.9)

qm∑
i=0

V (η(i)
m )ω(i)

m =

∫ 1

−1

V (ηm)$(am,bm)(ηm) dηm, ∀V ∈ P
τ
(am,bm)
m

([−1, 1]),

such that am, bm > −1 and τ
(am,bm)
m = 2qm + δ, where δ = 1 for Jacobi-Gauss (JG)

quadrature rules, δ = 0 for Jacobi-Gauss-Radau (JGR) quadrature rules, and δ = −1

for Jacobi-Gauss-Lobatto (JGL) quadrature rules.3 Lagrange bases {`(i)m }i∈{0:qm} are

3Gaussian quadrature is discussed in more detail, for example, in [19, appendix B]. In the case
of (am, bm) = (0, 0), we recover the familiar Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR),
and Legendre-Gauss-Lobatto (LGL) quadrature rules for integration with respect to the unit weight.
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then defined on the above quadrature nodes for m ∈ {1 : 2} as

(3.10) `(i)m (ηm) :=
∏

j∈{0:qm}\{i}

ηm − η(j)
m

η
(j)
m − η(i)

m

,

which can be used to construct the interpolant of a given function V : Ω̂→ R as

(3.11) (IqV )(χ(η)) :=

q1∑
α1=0

q2∑
α2=0

V (χ(η
(α1)
1 , η

(α2)
2 ))`

(α1)
1 (η1)`

(α2)
2 (η2).

The above interpolant is, in general, a rational function with a singularity at ξ =
[−1, 1]T when expressed in reference coordinates under the inverse mapping in (3.5).
However, despite being based on a rational function space (the approximation proper-
ties of which are analyzed by Shen et al. [34] and Li and Wang [25]), the interpolation
is exact for all polynomials of up to degree q, as characterized by the following lemma.

Lemma 3.1. The tensor-product interpolation operator defined in (3.11) is exact
for any polynomial V ∈ Pq(Ω̂), satisfying (IqV )(ξ) = V (ξ) for all ξ ∈ Ω̂ \ {[−1, 1]T}.

Proof. First, we note that any monomial of the form π(α1,α2)(ξ) := ξα1
1 ξα2

2 with
α ∈ N (q) can be expressed in terms of the collapsed coordinate system as

(3.12) π(α1,α2)(χ(η)) =
(

1
2 (1 + η1)(1− η2)− 1

)α1
ηα2

2 ,

which is of maximum degree α1 in η1 and of maximum degree α1 + α2 in η2. Since
α1 ≤ q1 and α1 +α2 ≤ q2 for all α ∈ N (q), it follows from expressing any polynomial
V ∈ Pq(Ω̂) as a linear combination of monomials in the form of (3.12) that V ◦χ lies
within the span of the tensor-product basis, and is therefore interpolated exactly.

3.2. Volume quadrature. Let σ : {0 : q1}×{0 : q2} → {1 : Nq} represent a bi-
jective mapping which defines an ordering of the Nq := (q1 +1)(q2 +1) volume quadra-
ture nodes. Denoting by α ∈ {0 : q1}×{0 : q2} the multi-index associated with a given

node, we therefore obtain the multidimensional quadrature nodes {ξ(i)}i∈{1:Nq} ⊂ Ω̂

as ξ(σ(α)) := χ(η
(α1)
1 , η

(α2)
2 ), with corresponding weights {ω(i)}i∈{1:Nq} ⊂ R+ given

by

(3.13) ω(σ(α)) :=
1− η(α2)

2

2
ω

(α1)
1 ω

(α2)
2

for (a1, b1) = (0, 0) and (a2, b2) = (0, 0), or, alternatively, by

(3.14) ω(σ(α)) :=
1

2
ω

(α1)
1 ω

(α2)
2

if a Jacobi-type quadrature rule with (a2, b2) = (1, 0) is instead used as in [35, section

2.2.1] to subsume the factor of 1−η(α2)
2 in (3.13) arising from the change of variables.

3.3. Facet quadrature. To integrate over each facet, we let qf ∈ N0 and intro-

duce an additional set of nodes {η(i)
f }i∈{0:qf} ⊂ [−1, 1] with corresponding quadrature

weights {ω(i)
f }i∈{0:qf} ⊂ R+

0 , defining a rule of degree τ
(0,0)
f ∈ N0, satisfying

(3.15)

qf∑
i=0

V (η
(i)
f )ω

(i)
f =

∫ 1

−1

V (ηf ) dηf , ∀V ∈ P
τ
(0,0)
f

([−1, 1]).
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Using the numbering convention in (3.2), we can then define the N
(ζ)
qf := qf + 1 facet

quadrature nodes {ξ(ζ,i)}
i∈{1:N

(ζ)
qf
} ⊂ Γ̂(ζ) and weights {ω(ζ,i)}

i∈{1:N
(ζ)
qf
} ⊂ R+

0 as

(3.16)
ξ(1,i) := χ(η

(i−1)
f ,−1), ξ(2,i) := χ(1, η

(i−1)
f ), ξ(3,i) := χ(−1, η

(i−1)
f ),

ω(1,i) := ω
(i−1)
f , ω(2,i) :=

√
2ω

(i−1)
f , ω(3,i) := ω

(i−1)
f ,

where we have assumed that the same rule is used for integration over each of the
three edges of the triangle, up to the uniform scaling factor of

√
2 for the hypotenuse.

3.4. Summation-by-parts operators. The linear operators describing partial
differentiation of the interpolant in (3.11) at each volume quadrature node as well as
those describing the evaluation of such an interpolant at each facet quadrature node

can be represented in terms of the matrices D (m) ∈ RNq×Nq and R(ζ) ∈ RN
(ζ)
qf
×Nq as

D (m)v =
[
(∂IqV/∂ξm)(ξ(1)), . . . , (∂IqV/∂ξm)(ξ(Nq))

]T
,(3.17a)

R(ζ)v =
[
(IqV )(ξ(ζ,1)), . . . , (IqV )(ξ

(ζ,N(ζ)
qf

)
)
]T
,(3.17b)

where, using (3.7) and (3.16), the entries of such matrices are obtained as

D
(1)
σ(α)σ(β)

:=
2

1− η(α2)
2

d`
(β1)
1

dη1
(η

(α1)
1 )δα2β2

,(3.18a)

D
(2)
σ(α)σ(β)

:=
1 + η

(α1)
1

1− η(α2)
2

d`
(β1)
1

dη1
(η

(α1)
1 )δα2β2 + δα1β1

d`
(β2)
2

dη2
(η

(α2)
2 ),(3.18b)

and

(3.19)
R

(1)
i+1,σ(β)

:= `
(β1)
1 (η

(i)
f )`

(β2)
2 (−1), R

(2)
i+1,σ(β)

:= `
(β1)
1 (1)`

(β2)
2 (η

(i)
f ),

R
(3)
i+1,σ(β)

:= `
(β1)
1 (−1)`

(β2)
2 (η

(i)
f ).

Defining diagonal matrices W ∈ RNq×Nq and B (ζ) ∈ RN
(ζ)
qf
×N(ζ)

qf with entries given in

terms of the volume and facet quadrature weights, respectively, as Wij := ω(i)δij and
Bij := ω(ζ,i)δij , the following theorem provides sufficient conditions under which the
proposed operators satisfy the requirements of Definition 2.1.

Theorem 3.2. Assuming that the one-dimensional quadrature rules in (3.8) sat-

isfy (3.9) with τ
(0,0)
1 ≥ 2q1 and τ

(0,0)
2 ≥ 2q2, and that the facet quadrature rule satisfies

(3.15) with τ
(0,0)
f ≥ 2 max(q1, q2), the matrices in (3.18a) and (3.18b) are diagonal-

norm SBP operators of degree q, with boundary operators given as in (2.6).

Proof. The accuracy conditions in (2.1) and (2.2) in Definition 2.1 follow from
Lemma 3.1 and the polynomial exactness of the facet quadrature rules, while the
positive-definiteness of W results from the fact that the weights in (3.13) are positive
when there is no node at η2 = 1, as implied by (3.8). It therefore remains to show
that the SBP property is satisfied. Beginning with the ξ1 direction, we define the
matrix Q (1) := W D (1) and note that the denominator in (3.18a) is cancelled by the

factor 1− η(α2)
2 appearing in (3.13). Using the cardinal property `

(i)
m (η

(j)
m ) = δij of
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the Lagrange basis and the polynomial exactness of the quadrature, we then obtain

Q
(1)
σ(α)σ(β) =

∫ 1

−1

`
(α1)
1 (η1)

d`
(β1)
1

dη1
(η1) dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1−1

∫ 1

−1

`
(α2)
2 (η2)`

(β2)
2 (η2) dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

,(3.20a)

E
(1)
σ(α)σ(β) = `

(α1)
1 `

(β1)
1

∣∣1
−1

∫ 1

−1

`
(α2)
2 (ηf )`

(β2)
2 (ηf ) dηf︸ ︷︷ ︸

τ
(0,0)
f ≥ 2q2

,(3.20b)

where the latter expression follows from substitution of (3.19) and (3.3) into (2.6), and
the SBP property results from a straightforward application of integration by parts

to obtain Q
(1)
σ(α)σ(β) = E

(1)
σ(α)σ(β) − Q

(1)
σ(β)σ(α). Similarly, considering the ξ2 direction

and noting that a cancellation of 1− η(α2)
2 also occurs for Q (2) := W D (2), we obtain

Q
(2)
σ(α)σ(β) =

∫ 1

−1

1 + η1

2
`
(α1)
1 (η1)

d`
(β1)
1

dη1
(η1) dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

`
(α2)
2 (η2)`

(β2)
2 (η2) dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

(3.21a)

+

∫ 1

−1

`
(α1)
1 (η1)`

(β1)
1 (η1) dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2
`
(α2)
2 (η2)

∂`
(β2)
2

∂η2
(η2) dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

,

E
(2)
σ(α)σ(β) = `

(α1)
1 (1)`

(β1)
1 (1)

∫ 1

−1

`
(α2)
2 (ηf )`

(β2)
2 (ηf ) dηf︸ ︷︷ ︸

τ
(0,0)
f ≥ 2q2

(3.21b)

− `(α2)
2 (−1)`

(β2)
2 (−1)

∫ 1

−1

`
(α1)
1 (ηf )`

(β1)
1 (ηf ) dηf︸ ︷︷ ︸

τ
(0,0)
f ≥ 2q1

.

Applying integration by parts and the product rule to (3.21a), we obtain Q
(2)
σ(α)σ(β) =

E
(2)
σ(α)σ(β) −Q

(2)
σ(β)σ(α), and hence the SBP property is satisfied in the ξ2 direction.

Remark 3.3. The discrete derivative operators in (3.18a) and (3.18b) are of the
same form as those proposed in [35, section 2.2.3]. However, while the quadrature rules
employed in their work are constructed as in (3.14) in order to subsume the Jacobian
determinant of the coordinate transformation appearing in integrals such as (3.6), such
choices do not, in general, result in nodal SBP operators on the reference triangle in

the sense of Definition 2.1. This is because the factor of 1− η(α2)
2 in (3.13), which is

subsumed through the use of a Jacobi weight with (a2, b2) = (1, 0) in (3.14), is precisely
what leads to the cancellation of the denominators in (3.18a) and (3.18b) when D (1)

and D (2) are pre-multiplied by W , enabling the exact evaluation of the integrals
in (3.20a) and (3.21a), respectively. While the nodal operators for (a2, b2) = (1, 0)
remain exact for polynomials of degree q as a consequence of Lemma 3.1, they do
not, in general, satisfy the SBP property. Theorem 3.2 therefore requires the use of
quadrature rules based on the unit (i.e. Legendre) weight for both η1 and η2. As an
example, we note that SBP operators of any polynomial degree q can be constructed
using LG quadrature rules with q+1 nodes in the η1, η2, and ηf coordinate directions.
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4. Tensor-product approximations on the reference tetrahedron. We
now extend the methodology presented in section 3 to the three-dimensional case,
wherein approximations are constructed on the reference tetrahedron given by

(4.1) Ω̂ :=
{
ξ ∈ [−1, 1]3 : ξ1 + ξ2 + ξ3 ≤ −1

}
.

The facets (i.e. faces of the tetrahedron) are numbered as

(4.2)
Γ̂(1) :=

{
ξ ∈ Ω̂ : ξ2 = −1

}
, Γ̂(2) :=

{
ξ ∈ Ω̂ : ξ1 + ξ2 + ξ3 = −1

}
,

Γ̂(3) :=
{
ξ ∈ Ω̂ : ξ1 = −1

}
, Γ̂(4) :=

{
ξ ∈ Ω̂ : ξ3 = −1

}
,

with corresponding outward unit normal vectors

(4.3) n̂(1) =

 0
−1
0

, n̂(2) =

1/
√

3

1/
√

3

1/
√

3

, n̂(3) =

−1
0
0

, n̂(4) =

 0
0
−1

.
As described, for example, in [19, section 3.2], the collapsed coordinate transformation
χ : [−1, 1]3 → Ω̂ from the cube onto the tetrahedron in (4.1) shown in Fig. 1 is
constructed from three successive applications of (3.4) in order to obtain

(4.4) χ(η) :=

 1
4 (1 + η1)(1− η2)(1− η2)− 1

1
2 (1 + η2)(1− η3)− 1

η3

,
which has an inverse defined for ξ ∈ Ω̂ \ {[−1, 1,−1]T, [−1,−1, 1]T} by

(4.5) χ−1(ξ) :=

2(1 + ξ1)/(−ξ2 − ξ3)− 1
2(1 + ξ2)/(1− ξ3)− 1

ξ3

.
Integrals can then be evaluated in collapsed coordinates as

(4.6)

∫
Ω̂

V (ξ) dξ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

V (χ(η))
(1− η2)(1− η3)2

8
dη1dη2dη3,

whereas partial derivatives can be evaluated using the chain rule as

∂V

∂ξ1
(χ(η)) =

4

(1− η2)(1− η3)

∂

∂η1
V (χ(η)),(4.7a)

∂V

∂ξ2
(χ(η)) =

(
2(1 + η1)

(1− η2)(1− η3)

∂

∂η1
+

2

1− η3

∂

∂η2

)
V (χ(η)),(4.7b)

∂V

∂ξ3
(χ(η)) =

(
2(1 + η1)

(1− η2)(1− η3)

∂

∂η1
+

1 + η2

1− η3

∂

∂η2
+

∂

∂η3

)
V (χ(η)).(4.7c)

4.1. Nodal sets and interpolants. Let q1, q2, q3 ∈ N0 denote the degrees of the
approximations with respect to η1, η2, and η3, respectively, with q := min(q1, q2, q3),
and define Gaussian quadrature rules with (distinct) nodes and weights given by

(4.8)
{η(i)

1 }i∈{0:q1} ⊂ [−1, 1], {η(i)
2 }i∈{0:q2} ⊂ [−1, 1), {η(i)

3 }i∈{0:q3} ⊂ [−1, 1),

{ω(i)
1 }i∈{0:q1} ⊂ R+, {ω(i)

2 }i∈{0:q2} ⊂ R+, {ω(i)
3 }i∈{0:q3} ⊂ R+,
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satisfying accuracy conditions analogous to (3.9) for m ∈ {1 : 3}. Defining Lagrange

bases {`(i)m }i∈{0:qm} as in (3.10), we obtain the three-dimensional interpolant

(4.9)
(IqV )(χ(η)) :=

q1∑
α1=0

q2∑
α2=0

q3∑
α3=0

V (χ(η
(α1)
1 , η

(α2)
2 , η

(α3)
3 ))

× `(α1)
1 (η1)`

(α2)
2 (η2)`

(α3)
3 (η3),

whose degree q polynomial exactness is characterized with the following lemma.

Lemma 4.1. The interpolation operator in (4.9) is exact for any polynomial V ∈
Pq(Ω̂), satisfying (IqV )(ξ) = V (ξ) for all ξ ∈ Ω̂ \ {[−1, 1,−1]T, [−1,−1, 1]T}.

Proof. The proof is similar to that of Lemma 3.1, wherein we express the mono-
mial π(α1,α2,α3)(ξ) := ξα1

1 ξα2
2 ξα3

3 with α ∈ N (q) in terms of the collapsed coordinate
system under the mapping in (4.4) to obtain

(4.10)
π(α1,α2,α3)(χ(η)) =

(
1
4 (1 + η1)(1− η2)(1− η3)− 1

)α1

×
(

1
2 (1 + η2)(1− η3)− 1

)α2
ηα3

3 ,

which is of maximum degree α1 in η1, α1 + α2 in η2, and α1 + α2 + α3 in η3. The
accuracy of the interpolation then follows from the fact that α1 ≤ q1, α1 + α2 ≤ q2,
and α1 + α2 + α3 ≤ q3 for all α ∈ N (q), placing any function V ◦ χ which can be
expressed as a linear combination of such monomials within the span of the tensor-
product Lagrange basis used for the interpolation in (4.9).

4.2. Volume quadrature. Let σ : {0 : q1} × {0 : q2} × {0 : q3} → {1 :
Nq} denote a bijective mapping inducing an ordering of the Nq := (q1 + 1)(q2 +

1)(q3 + 1) volume quadrature nodes, which are given on the tetrahedron by ξ(σ(α)) :=

χ(η
(α1)
1 , η

(α2)
2 , η

(α3)
2 ). If (a1, b1) = (a2, b2) = (a3, b3) = (0, 0), the corresponding

quadrature weights for the approximation of (4.6) are then given by

(4.11) ω(σ(α)) :=
(1− η(α2)

2 )(1− η(α3)
3 )2

8
ω

(α1)
1 ω

(α2)
2 ,

whereas if (a1, b1) = (a2, b2) = (0, 0) and (a3, b3) = (1, 0), we obtain

(4.12) ω(σ(α)) :=
(1− η(α2)

2 )(1− η(α3)
3 )

8
ω

(α1)
1 ω

(α2)
2 .

By a similar argument to that in Remark 3.3, it can be shown that, unlike the quad-
rature rules specified above, the choices of (a1, b1) = (0, 0), (a2, b2) = (1, 0), and
(a3, b3) = (2, 0) employed in [36, section 3.1] do not, in general, result in SBP opera-
tors on the volume quadrature nodes, and are thus not considered in this work.

4.3. Facet quadrature. As the facets of the tetrahedron are triangular, a col-
lapsed coordinate system can be defined on each one, which we orient so as to align
with the volume coordinate system. Letting qf1, qf2 ∈ N0, we can therefore define a
tensor-product quadrature rule in terms of the one-dimensional nodes and weights

(4.13)
{η(i)
f1}i∈{0:qf1} ⊂ [−1, 1], {η(i)

f2}i∈{0:qf2} ⊂ [−1, 1],

{ω(i)
f1}i∈{0:qf1} ⊂ R+

0 , {ω(i)
f2}i∈{0:qf2} ⊂ R+

0 ,
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satisfying accuracy conditions as in (3.9) for quadrature degrees τ
(af1,bf1)
f1 , τ

(af2,bf2)
f2 ∈

N0 and Jacobi weights with exponents af1, bf1, af2, bf2 > −1. Using the bijective

mapping σf : {0 : qf1} × {0 : qf2} → {1 : N
(ζ)
qf }, where N

(ζ)
qf := (qf1 + 1)(qf2 + 1)

denotes the number of quadrature nodes on each facet, we obtain

(4.14)
ξ(1,σf (α)) := χ(η

(α1)
f1 ,−1, η

(α2)
f2 ), ξ(2,σf (α)) := χ(1, η

(α1)
f1 , η

(α2)
f2 ),

ξ(3,σf (α)) := χ(−1, η
(α1)
f1 , η

(α2)
f2 ), ξ(4,σf (α)) := χ(η

(α1)
f1 , η

(α2)
f2 ,−1),

with corresponding quadrature weights given for (af1, bf1) = (af2, bf2) = (0, 0) as

(4.15)
ω(1,σf (α)) :=

1− η(α2)
f2

2
ω

(α1)
f1 ω

(α2)
f2 , ω(2,σf (α)) :=

√
3(1− η(α2)

f2 )

2
ω

(α1)
f1 ω

(α2)
f2 ,

ω(3,σf (α)) :=
1− η(α2)

f2

2
ω

(α1)
f1 ω

(α2)
f2 , ω(4,σf (α)) :=

1− η(α2)
f2

2
ω

(α1)
f1 ω

(α2)
f2 ,

where we also have the option of using a Jacobi quadrature rule with (af2, bf2) = (1, 0)

as in (3.14) to subsume the factors of 1−η(α2)
f2 appearing in the weights defined above.

Remark 4.2. Due to the fact that the nodes in (4.14) are arranged asymmetrically
on each facet, special attention must be paid to the orientation of the local coordinate
systems within each element in order for the facet quadrature nodes to align in phys-
ical space. In this work, such alignment is achieved following the second algorithm
suggested in [36, section 2.3], which was originally proposed by Warburton et al. [38].

4.4. Summation-by-parts operators. Using (4.7) to differentiate the inter-
polant in (4.9) with respect to the reference coordinate system, we obtain the entries
of the differentiation matrices D (m) ∈ RNq×Nq in (3.17a) in the tetrahedral case as

D
(1)
σ(α)σ(β)

:=
4

(1− η(α2)
2 )(1− η(α3)

3 )

d`
(β1)
1

dη1
(η

(α1)
1 )δα2β2δα3β3 ,(4.16a)

D
(2)
σ(α)σ(β)

:=
2(1 + η

(α1)
1 )

(1− η(α2)
2 )(1− η(α3)

3 )

d`
(β1)
1

dη1
(η

(α1)
1 )δα2β2

δα3α3
(4.16b)

+
2

1− η(α3)
3

δα1β1

d`
(β2)
2

dη2
(η

(α2)
2 )δα3β3

,

D
(3)
σ(α)σ(β)

:=
2(1 + η

(α1)
1 )

(1− η(α2)
2 )(1− η(α3)

3 )

d`
(β1)
1

dη1
(η

(α1)
1 )δα2β2δα3α3(4.16c)

+
1 + η

(α2)
2

1− η(α3)
3

δα1β1

d`
(β2)
2

dη2
(η

(α2)
2 )δα3β3

+ δα1β1
δα2β2

d`
(β3)
3

dη3
(η

(α3)
3 ).

The entries of R(ζ) ∈ RNq×N
(ζ)
qf in (3.17b) are likewise obtained using (4.13) as

R
(1)
σf (α)σ(β)

:= `
(β1)
1 (η

(α1)
f1 )`

(β2)
2 (−1)`

(β3)
3 (η

(α2)
f2 ),(4.17a)

R
(2)
σf (α)σ(β)

:= `
(β1)
1 (1)`

(β2)
2 (η

(α1)
f1 )`

(β3)
3 (η

(α2)
f2 ),(4.17b)

R
(3)
σf (α)σ(β)

:= `
(β1)
1 (−1)`

(β2)
2 (η

(α1)
f1 )`

(β3)
3 (η

(α2)
f2 ),(4.17c)

R
(4)
σf (α)σ(β)

:= `
(β1)
1 (η

(α1)
f1 )`

(β2)
2 (η

(α2)
f2 )`

(β3)
3 (−1),(4.17d)

resulting in the following three-dimensional analogue of Theorem 3.2.
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Theorem 4.3. Assuming that the volume quadrature rules in (4.8) satisfy (3.9)

with τ
(0,0)
1 ≥ 2q1, τ

(0,0)
2 ≥ 2q2 + 1, and either τ

(0,0)
3 ≥ 2q3 + 1 or τ

(1,0)
3 ≥ 2q3, and that

the facet quadrature rules satisfy analogous conditions with τ
(0,0)
f1 ≥ 2 max(q1, q2) and

either τ
(0,0)
f2 ≥ 2 max(q2, q3) + 1 or τ

(1,0)
f2 ≥ 2 max(q2, q3), the matrices in (4.16) are

diagonal-norm SBP operators of degree q, with boundary operators given as in (2.6).

Proof. The proof is similar to that of Theorem 3.2, with the accuracy conditions
in (2.1) resulting from Lemma 4.1. As for the SBP property, we define Q (1) := W D (1),

which, noting the cancellation of the factor (1− η(α2)
2 )(1− η(α3)

3 ), results in

(4.18) Q
(1)
σ(α)σ(β) =

∫ 1

−1

`
(α1)
1

d`
(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1−1

∫ 1

−1

`
(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2
`
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

,

where the dependence of the Lagrange polynomials on the variable of integration has
been suppressed within such one-dimensional integral factors for a clearer presenta-
tion, and we have used the cardinal property of the Lagrange basis and the polynomial
exactness of the quadrature rules to obtain such an expression. Expressing the bound-
ary operator E (1) given in (2.6) in terms of the interpolation/extrapolation operators
in (4.17) as well as the normals in (4.3), and using the exactness of the facet quadra-
ture rules in subsection 4.3, we likewise obtain

(4.19) E
(1)
σ(α)σ(β) = `

(α1)
1 `

(β1)
1

∣∣1
−1

∫ 1

−1

`
(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2
`
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ

(1,0)
f2 ≥ 2q3

.

The SBP property in the ξ1 direction then follows from applying integration by parts
to the first factor in (4.18). Similarly, defining Q (2) := W D (2) results in

(4.20) Q
(2)
σ(α)σ(β) =∫ 1

−1

1 + η1

2
`
(α1)
1

d`
(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

`
(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2
`
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

+

∫ 1

−1

`
(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2
`
(α2)
2

d`
(β2)
2

dη2
dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2
`
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

and

(4.21) E
(2)
σ(α)σ(β) = `

(α1)
1 (1)`

(β1)
1 (1)

∫ 1

−1

`
(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2
`
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ

(1,0)
f2 ≥ 2q3

− `(α2)
2 (−1)`

(β2)
2 (−1)

∫ 1

−1

`
(α1)
1 `

(β1)
1 dηf1︸ ︷︷ ︸

τ0,0
f1 ≥ 2q1

∫ 1

−1

1− ηf2

2
`
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ

(1,0)
f2 ≥ 2q3

,
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with the SBP property in the ξ2 direction resulting from the application of integration
by parts and the product rule to (4.20). Finally, one can similarly show that the SBP
property in the ξ3 direction follows from expressing the entries of Q (3) := W D (3) as

(4.22) Q
(3)
σ(α)σ(β) =∫ 1

−1

1 + η1

2
`
(α1)
1

d`
(β1)
1

dη1
dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

`
(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2

∫ 1

−1

1− η3

2
`
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

+

∫ 1

−1

`
(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

(1− η2)(1 + η2)

4
`
(α2)
2

d`
(β2)
2

dη2
dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2+1

∫ 1

−1

1− η3

2
`
(α3)
3 `

(β3)
3 dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

+

∫ 1

−1

`
(α1)
1 `

(β1)
1 dη1︸ ︷︷ ︸

τ
(0,0)
1 ≥ 2q1

∫ 1

−1

1− η2

2
`
(α2)
2 `

(β2)
2 dη2︸ ︷︷ ︸

τ
(0,0)
2 ≥ 2q2+1

∫ 1

−1

(1− η3)2

4
`
(α3)
3

d`
(β3)
3

dη3
dη3︸ ︷︷ ︸

τ
(0,0)
3 ≥ 2q3+1 or τ

(1,0)
3 ≥ 2q3

and those of the corresponding boundary operator as

(4.23) E
(3)
σ(α)σ(β) = `

(α1)
1 (1)`

(β1)
1 (1)

∫ 1

−1

`
(α2)
2 `

(β2)
2 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q2

∫ 1

−1

1− ηf2

2
`
(α3)
3 `

(β3)
3 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q3+1 or τ

(1,0)
f2 ≥ 2q3

− `(α3)
3 (−1)`

(β3)
3 (−1)

∫ 1

−1

`
(α1)
1 `

(β1)
1 dηf1︸ ︷︷ ︸

τ
(0,0)
f1 ≥ 2q1

∫ 1

−1

1− ηf2

2
`
(α2)
2 `

(β2)
2 dηf2︸ ︷︷ ︸

τ
(0,0)
f2 ≥ 2q2+1 or τ

(1,0)
f2 ≥ 2q2

.

The conditions in (2.2) then follow from the fact that polynomials of degree q are
extrapolated exactly to the boundaries as in (2.7) as a consequence of Lemma 4.1 and
the fact that facet quadrature rules satisfying the stated assumptions are exact for the
traces of polynomials of degree 2q, which can be shown by expressing such polynomials
in terms of the (ηf1, ηf2) coordinate system in a similar manner to (3.12).

Remark 4.4. As an example of a set of quadrature rules satisfying the require-
ments of Theorem 4.3, we note that LG quadrature rules in the η1, η2, and ηf1

coordinates and JG quadrature rules with (a, b) = (1, 0) in the η3 and ηf2 coordinates
result in SBP operators of degree q when q + 1 nodes are used in each direction.

5. Discontinuous spectral-element methods on curvilinear meshes. The
operators introduced in sections 3 and 4 are applied in this section to the construction
of energy-stable DSEM approximations on curvilinear meshes. As a model problem,
we consider a scalar conservation law governing the evolution of a quantity U(x, t) ∈ R
on the domain Ω ⊂ Rd over the time interval (0, T ) ⊂ R+

0 , taking the form

∂U(x, t)

∂t
+∇x · F (U(x, t)) = 0, ∀ (x, t) ∈ Ω× (0, T ),(5.1a)

U(x, 0) = U0(x), ∀x ∈ Ω,(5.1b)

subject to appropriate boundary conditions, where F (U(x, t)) ∈ Rd denotes the flux
vector and U0(x) ∈ R denotes the initial data. We focus particularly on the linear
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advection equation with periodic boundary conditions, corresponding to F (U(x, t)) =
aU(x, t) for an advection velocity a ∈ Rd, which is assumed here to be constant.

5.1. Nodal and modal expansions. Using a mesh constructed as in subsec-
tion 2.4 and the tensor-product nodal approximations introduced in sections 3 and 4,
we can approximate U(x, t) and F (U(x, t)) in collapsed coordinates as

U(X(κ)(χ(η)), t) ≈
q1∑

α1=0

· · ·
qd∑

αd=0

u
(h,κ)
σ(α) (t)`

(α1)
1 (η1) · · · `(αd)

d (ηd),(5.2a)

F (U(X(κ)(χ(η)), t)) ≈
q1∑

α1=0

· · ·
qd∑

αd=0

F (u
(h,κ)
σ(α) (t))`

(α1)
1 (η1) · · · `(αd)

d (ηd).(5.2b)

Although it is often advantageous from an efficiency perspective to collocate the so-
lution degrees of freedom with the volume quadrature points by directly evolving the
nodal solution vector u(h,κ)(t) ∈ RNq , there are two disadvantages to such an ap-
proach within the present context. First, the number of tensor-product quadrature
nodes Nq can be much larger than the cardinality N∗q of a total-degree polynomial

basis for the space Pq(Ω̂). Second, the collapsed edge introduces a clustering of reso-
lution near the singularity, and therefore limits the maximum stable time step size for
explicit schemes.4 We therefore propose as an alternative the use of a modal approach,
wherein a basis {φ(i)}i∈{1:N∗

p } for Pp(Ω̂) with p ≤ q is used to represent the solution
on the reference element in terms of the modal expansion coefficients ũ(h,κ)(t) ∈ RN

∗
p

as

(5.3) U(X(κ)(ξ), t) ≈
N∗
p∑

i=1

ũ
(h,κ)
i (t)φ(i)(ξ),

which is evaluated at each node to obtain the coefficients u(h,κ)(t) for the nodal
expansion in (5.2a). This mapping from modal to nodal space can be expressed in
terms of the generalized Vandermonde matrix V ∈ RNq×N

∗
p as

(5.4) u(h,κ)(t) = V ũ(h,κ)(t), Vij := φ(j)(ξ(i)).

Note that since any polynomial V ∈ Pp(Ω̂) with p ≤ q admits a unique expansion
in terms of the tensor-product Lagrange basis, the mapping in (5.4) is injective and
hence V is of rank N∗p (i.e. full column rank), regardless of the chosen basis for Pp(Ω̂).
We must, however, carefully choose such a basis to ensure that the cost of applying
V is minimized and the tensor-product structure of the discretization is preserved.

5.2. Proriol-Koornwinder-Dubiner basis functions. In order to construct
polynomial bases on the triangle and tetrahedron for which operations such as (5.4)
are amenable to sum factorization, we follow [19, section 3.2] and define

(5.5)
ψ

(α1)
1 (η1) :=

√
2P (0,0)

α1
(η1), ψ

(α1,α2)
2 (η2) := (1− η2)α1P (2α1+1,0)

α2
(η2),

ψ
(α1,α2,α3)
3 (η3) := 2(1− η3)α1+α2P (2α1+2α2+2,0)

α3
(η3),

in terms of the normalized Jacobi polynomials P
(a,b)
i ∈ Pi([−1, 1]), which are orthonor-

mal with respect to the weight functions $(a,b)(η) := (1 − η)a(1 + η)b considered in

4Quoting Dubiner [13] concerning the time step restriction for tensor-product polynomials in
collapsed coordinates, “[resolution] is a good thing, but this is a case of too much of a good thing.”
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subsection 3.1, and can be constructed through recurrence relations, as shown, for
example, by Hesthaven and Warburton [16, appendix A]. The Proriol-Koornwinder-
Dubiner (PKD) polynomials [13,21,32] are then given on the reference triangle as

(5.6) φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ

(α1,α2)
2 (η2),

and on the reference tetrahedron as

(5.7) φ(π(α))(χ(η)) := ψ
(α1)
1 (η1)ψ

(α1,α2)
2 (η2)ψ

(α1,α2,α3)
3 (η3),

where we order the multi-indices α ∈ N (p) using the bijection π : N (p) → {1 :
N∗p }. Although the resulting matrix V is not a standard tensor-product operator, the
“warped” tensor-product structure of the PKD basis allows for such a matrix (as well
as its transpose) to be applied through sum factorization, as described, for example,
in [19, sections 4.1.6.1 and 4.1.6.2]. Moreover, such bases are orthonormal with respect
to the L2 inner product on the reference element, resulting in the reference mass
matrix M := V TW V being the identity matrix if the quadrature rule in (2.4) is of
degree τ ≥ 2p. As will be discussed in section 6, the proposed algorithms exploit both
the tensor-product structure and the orthonormality of the PKD basis.

5.3. Discretization using SBP operators. Integrating (5.1a) by parts over a
mesh element against a smooth test function V , we obtain a local weak formulation,
which, suppressing dependence on x and t for brevity, is given by

(5.8)

∫
Ω(κ)

V
∂U

∂t
dx =

∫
Ω(κ)

∇xV · F (U) dx−
∫
∂Ω(κ)

V F ∗(U−, U+,n) ds,

where, as with standard DG methods such as those described in [16], the normal flux
component F (U) ·n has been replaced by a numerical flux function (see, for example,
Toro [37]). For the linear advection equation, the numerical flux takes the form

(5.9) F ∗(U−, U+,n) :=
1

2

(
F (U−) + F (U+)

)
· n− λ

2

∣∣a · n∣∣(U+ − U−),

recovering an upwind flux for λ = 1 and a central flux for λ = 0, where U−, U+ ∈ R
are the internal and external solution states, respectively, and n ∈ Sd−1 denotes
the outward unit normal vector. Discretizing the right-hand side of (5.8) using SBP
operators on the physical element constructed as in subsection 2.5, we obtain

(5.10) r(h,κ)(t) :=

d∑
m=1

(
Q (κ,m)

)T
f (h,κ,m)(t)−

Nf∑
ζ=1

(
R(ζ)

)T
B (ζ)J (κ,ζ)f (∗,κ,ζ)(t),

where the physical flux components are evaluated at the volume quadrature nodes as

(5.11) f (h,κ,m)(t) :=
[
Fm(u

(h,κ)
1 (t)), . . . , Fm(u

(h,κ)
Nq

(t))
]T
,

and the numerical flux is evaluated at the facet quadrature nodes in terms of the

interior state u(h,κ,ζ)(t) := R(ζ)u(h,κ)(t) and the exterior state u(+,κ,ζ)(t) ∈ RN
(ζ)
qf as

(5.12) f (∗,κ,ζ)(t) :=


F ∗
(
u

(h,κ,ζ)
1 (t), u

(+,κ,ζ)
1 (t), n(κ,ζ)(X(κ)(ξ(1)))

)
...

F ∗
(
u

(h,κ,ζ)

N
(ζ)
qf

(t), u
(+,κ,ζ)

N
(ζ)
qf

(t), n(κ,ζ)(X(κ)(ξ
(N(ζ)

qf
)
))
)
.



18 TRISTAN MONTOYA AND DAVID W. ZINGG

The semi-discrete nodal and modal formulations are then given, respectively, by

W J (κ) du(h,κ)(t)

dt
= r(h,κ)(t),(5.13a)

M (κ) dũ(h,κ)(t)

dt
= V Tr(h,κ)(t),(5.13b)

where M (κ) := V TW J (κ)V denotes the physical mass matrix. The initial condition

in (5.1b) is imposed for the nodal approach by restricting U0(X(κ)(ξ)) to the volume
quadrature nodes, whereas for the modal approach, we solve the projection problem

(5.14) M (κ)u(h,κ)(0) = V TW J (κ)
[
U0(X(κ)(ξ(1))), . . . , U0(X(κ)(ξ(Nq)))

]T
.

Due to Theorems 3.2 and 4.3 as well as the use of the split formulation in (2.11)
encapsulated within Q (κ,m), the discretizations in (5.13a) and (5.13b) directly inherit
the accuracy, conservation, free-stream preservation, and energy stability properties
afforded through the use of diagonal-norm multidimensional SBP operators (see, for
example, Hicken et al. [17] and Del Rey Fernández et al. [11,12]). Proofs of such results
for the specific discretizations in this work follow directly from a straightforward
generalization of the analysis in [27, section 4.3] to include tetrahedral elements.

5.4. Weight-adjusted approximation of the mass matrix inverse. The
mass matrix M (κ) appearing on the left-hand side of (5.13b) is dense when the map-
ping from the reference element to the physical element is not affine, with an inverse
that lacks a tensor-product structure. Obtaining the time derivative for such a scheme
in the context of explicit temporal integration thus requires either the storage and ap-
plication of a non-tensorial factorization or inverse, or, otherwise, the solution of a
linear system. To obtain a fully explicit formulation for the time derivative in (5.13b),
we therefore adopt the following weight-adjusted approximation from Chan et al. [6]:

(5.15)
(
M (κ)

)−1 ≈ M−1V TW
(
J (κ)

)−1
V M−1 =:

(
M̃ (κ)

)−1
.

The above approximation was initially proposed for the purpose of reducing storage,
but in the present context has the additional advantage of retaining the tensor-product
structure which is otherwise lost by taking the inverse of the mass matrix, allowing
for all operations involved in evaluating the time derivative to be performed through
sum factorization. Although this work represents the first application, to the authors’
knowledge, of the weight-adjusted methodology to tensor-product SEM formulations
on simplices, the restoration of a tensor-product structure using a weight-adjusted
approximation was previously exploited, for example, in the context of isogeometric
analysis by Chan and Evans [5] as well as for Galerkin difference methods by Kozdon
et al. [23]. Following a similar analysis to that in [6], energy stability can then be
established with respect to the discrete norm induced by the modified mass matrix
M̃ (κ) under the same conditions as required for the unmodified scheme. Additionally,
our implementation makes use of a further modification proposed by Chan and Wilcox
[8, Lemma 2], wherein J (κ) is approximated using a projection of J (κ) onto Pp(Ω̂),
which, while having a negligible impact on the accuracy of the scheme, ensures discrete
conservation when the volume quadrature rule in (2.4) is of at least degree τ ≥ 2p.

6. Efficient implementation. In this section, we discuss the efficient imple-
mentation of the proposed schemes, particularly in conjunction with explicit time
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integration. With the exception of the numerical flux evaluation, all operations are
local to a given element, and can therefore be executed in parallel in a straightforward
manner. Several strategies for computing such local operations are described below.

6.1. Reference-operator algorithms. Expressing (5.10) in terms of operators
on the reference element and separating the volume and facet contributions, we obtain

(6.1)

r(h,κ)(t) =

d∑
l=1

d∑
m=1

((
D (l)

)T[ 1
2W Λ(κ,l,m)

]
f (h,κ,m)(t)

−
[

1
2W Λ(κ,l,m)

]
D (l)f (h,κ,m)(t)

)

−
Nf∑
ζ=1

(
R(ζ)

)T[
B (ζ)J (κ,ζ)

](
f (∗,κ,ζ)(t)−

d∑
m=1

[
1
2N (κ,ζ,m)

]
R(ζ)f (h,κ,m)(t)

)
,

where square brackets are used to denote operators which must be precomputed and
stored for each element, which in (6.1) are all diagonal. For discretizations on trian-
gles and tetrahedra using non-tensorial operators, the reference operators D (l) and

R(ζ) are typically stored as dense matrices and applied, for example, using standard
BLAS operations. In the context of the proposed schemes, however, we have the ad-
ditional option of exploiting the tensor-product structure of such operators through
sum factorization. To obtain a further optimization in such cases, we redefine the
following operators:

[
1
2W Λ(κ,l,m)

]
σ(α)σ(β)

← 1

2

d∑
n=1

[
J (κ)(ξ(σ(α)))(∇ξX(κ)(ξ(σ(α))))−1

]
nm

(6.2)

×
[
(∇ηχ(η

(α1)
1 , . . . , η

(αd)
d ))−1

]
ln
ω(σ(α))δσ(α)σ(β),[

D (l)
]
σ(α)σ(β)

←
d`

(βl)
l

dηl
(η

(αl)
l )

∏
m∈{1:d}\{l}

δαmβm .(6.3)

These modifications combine the geometric factors arising from the transformations
χ : [−1, 1]d → Ω̂ and X(κ) : Ω̂→ Ω(κ), allowing for the volume contributions in (6.1)
to be evaluated in collapsed coordinates with an equivalent cost per element to that
of a comparable tensor-product discretization on curved quadrilaterals or hexahedra.
To evaluate the time derivative for the nodal formulation, we simply pre-multiply the
right-hand-side vector by the inverse of the diagonal nodal mass matrix, resulting in

(6.4)
du(h,κ)(t)

dt
=
[(

W J (κ)
)−1
]
r(h,κ)(t).

For the weight-adjusted modal formulation, the time derivative is given explicitly as

(6.5)
dũ(h,κ)(t)

dt
= M−1V T

[
W
(
J (κ)

)−1
]
V M−1V Tr(h,κ)(t),

where we recall that the application of M−1 can be avoided by choosing an orthonor-
mal basis and using a volume quadrature rule of degree 2p or higher. Since the
use of the PKD basis in subsection 5.2 allows for V and V T to be applied using
sum factorization, and all other operators are either diagonal or possess a standard
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Kronecker-product structure, the number of operations required for evaluating the
time derivative in either (6.4) or (6.5) scales as O(pd+1), assuming in the triangular
case that q1, q2, and qf scale as O(p), and in the the tetrahedral case that q1, q2, q3,
qf1, and qf2 scale as O(p). Asymptotically, this compares favourably to the O(p2d)
complexity of a standard (i.e. non-tensor-product) multidimensional scheme similarly
employing O(pd) volume quadrature nodes and O(pd−1) facet quadrature nodes.

6.2. Physical-operator algorithms. Whether or not sum factorization is em-
ployed, and whether a nodal or modal formulation is chosen, the algorithms described
in subsection 6.1 all share the feature of avoiding the precomputation and storage of
dense operator matrices for each physical element. If such memory considerations are
not a constraint, however, one has the option of instead precomputing physical oper-
ator matrices, an approach which can be competitive with sum factorization at lower
polynomial degrees despite scaling asymptotically as O(p2d). The time derivative can
then be obtained for the nodal formulation as

(6.6)

du(h,κ)(t)

dt
=

d∑
m=1

[(
W J (κ)

)−1(
Q (κ,m)

)T]
f (h,κ,m)(t)

−
Nf∑
ζ=1

[(
W J (κ)

)−1(
R(ζ)

)T
B (ζ)J (κ,ζ)

]
f (∗,κ,ζ)(t),

and for the modal formulation as

(6.7)

dũ(h,κ)(t)

dt
=

d∑
m=1

[(
M̃ (κ)

)−1
V T
(
Q (κ,m)

)T]
f (h,κ,m)(t)

−
Nf∑
ζ=1

[(
M̃ (κ)

)−1
V T
(
R(ζ)

)T
B (ζ)J (κ,ζ)

]
f (∗,κ,ζ)(t),

where, although we have used M̃ (κ) instead of M (κ) for consistency with (6.5), there
is no advantage in operation count (aside from that of precomputing the inverse) nor
in storage to using such an approximation for physical-operator algorithms.

7. Numerical experiments. In this section, we assess the numerical prop-
erties of the proposed split-form DSEMs on triangles and tetrahedra using tensor-
product SBP operators within the context of linear advection problems on curvilinear
meshes and compare such schemes to those of the same form using multidimensional
SBP operators based on symmetric quadrature rules. The scripts required to run all
simulations described in this section as well as the Jupyter notebooks used to gen-
erate the figures are provided within the reproducibility repository https://github.
com/tristanmontoya/ReproduceSBPSimplex, employing the open-source Julia code
StableSpectralElements.jl developed by the first author, which is available at
https://github.com/tristanmontoya/StableSpectralElements.jl.

7.1. Problem setup and curvilinear mesh generation. We solve the lin-
ear advection equation on the domain Ω := (0, 1)d, with an advection velocity of
a := [1, 1]T in two dimensions and a := [1, 1, 1]T in three dimensions, where periodic
boundary conditions are applied in all directions and the initial condition in (5.1b) is
given by U0(x) := sin(2πx1) · · · sin(2πxd). The mesh is generated by splitting a Carte-
sian grid of quadrilateral or hexahedral elements with M ∈ N edges in each direction

https://github.com/tristanmontoya/ReproduceSBPSimplex
https://github.com/tristanmontoya/ReproduceSBPSimplex
https://github.com/tristanmontoya/StableSpectralElements.jl
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into triangles or tetrahedra of equal size and using an affine transformation to map
the interpolation nodes for a degree pg ∈ N Lagrange basis onto each element, which
in the present work correspond to those generated through the interpolatory warp-
and-blend procedure of Chan and Warburton [7]. Following Chan et al. [4, section 5],
such a mesh is curved by perturbing the interpolation node positions as

(7.1)
x̃1 ← x1 + ε cos

(
π
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2

))
cos
(
3π
(
x2 − 1

2

))
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x̃2 ← x2 + ε sin
(
4π
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2

))
cos
(
π
(
x2 − 1

2

))
,

in two dimensions, and as

(7.2)

x̃2 ← x2 + ε cos
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3π
(
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2

))
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π
(
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2

))
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π
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2

))
,

x̃1 ← x1 + ε cos
(
π
(
x1 − 1

2

))
sin
(
4π
(
x̃2 − 1

2

))
cos
(
π
(
x3 − 1

2

))
,

x̃3 ← x3 + ε cos
(
π
(
x̃1 − 1

2

))
cos
(
2π
(
x̃2 − 1

2

))
cos
(
π
(
x3 − 1

2

))
,

in three dimensions, where we take ε = 1/16 in both cases. The new node positions x̃

are then used to construct the curvilinear mapping X(κ) ∈ [Ppg (Ω̂)]d from reference
to physical coordinates through Lagrange interpolation, from which the geometric
factors in (2.10) can be obtained analytically. We take pg = 3 in the triangular case
and pg = 2 in the tetrahedral case, such that the discrete metric identities in (2.14) are
automatically satisfied for SBP operators of any polynomial degree p ≥ 2. The systems
of ordinary differential equations resulting from the proposed spatial discretizations
of (5.1a) are then integrated in time until T = 1 using a Julia implementation [33]
of the five-stage, fourth-order explicit low-storage Runge-Kutta method of Carpenter
and Kennedy [2], with the time step taken to be sufficiently small for the error due to
the temporal discretization to be dominated by that due to the spatial discretization.

7.2. Multidimensional and tensor-product SBP operators. To provide
a point of comparison for the novel tensor-product discretizations presented in this
paper, we construct multidimensional SBP operators using symmetric quadrature
rules on the reference element as described by Chan [3, Lemma 1]. Specifically, for
SBP operators of degree p on the triangle, we use degree 2p Xiao-Gimbutas quadrature
rules [40] for volume integration and degree 2p + 1 LG quadrature rules for facet
integration. On the tetrahedron, we use degree 2p Jaśkowiec-Sukumar quadrature
rules [18] for volume integration and degree 2p triangular quadrature rules from [40] for
facet integration. The resulting operators are henceforth denoted as multidimensional
to distinguish them from the tensor-product operators introduced in this work, and
are available for degrees p ≤ 25 on the triangle and p ≤ 10 on the tetrahedron.
The tensor-product SBP operators which we construct on the triangle employ LG
quadrature rules with p + 1 nodes for integration with respect to η1, η2, and ηf ,
corresponding to q1 = q2 = qf = p, whereas those on the tetrahedron employ LG
quadrature rules for η1 and η2 alongside a JG quadrature rule with (a3, b3) = (1, 0)
for η3, with p + 1 nodes in each direction (i.e. taking q1 = q2 = q3 = p). The facet
quadrature on the tetrahedron consists of an LG rule in the ηf1 direction and a JG
rule with (af2, bf2) = (1, 0) in the ηf2 direction, where we use p + 1 nodes in each
direction, corresponding to qf1 = qf2 = p. As such quadrature rules satisfy the
conditions of Theorems 3.2 and 4.3, valid SBP operators in the sense of Definition 2.1
are obtained for all polynomial degrees.
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Fig. 2: Time evolution of the conservation and energy residuals for tensor-product discretiza-
tions on triangles (top row) and tetrahedra (bottom row) plotted at 101 equispaced snapshots

7.3. Conservation and energy stability. Considering nodal formulations as
well as modal formulations5 using the proposed tensor-product SBP operators on
triangles and tetrahedra, we plot the time evolution of the conservation residual and
the energy residual in Fig. 2, where we present results for p = 4 and M = 2 as an
illustrative example. Such quantities are given in the present context by

Conservation residual :=

Ne∑
κ=1

(
1(Nq)

)T
W J (κ) du(h,κ)(t)

dt
,(7.3a)

Energy residual :=


Ne∑
κ=1

(
u(h,κ)(t)

)T
W J (κ) du(h,κ)(t)

dt
(nodal)

Ne∑
κ=1

(
ũ(h,κ)(t)

)T
M̃ (κ) dũ(h,κ)(t)

dt
(modal)

,(7.3b)

corresponding to the time derivative of the discretely integrated numerical solution
and that of the discrete solution energy, respectively. As expected for conservative
and energy-stable SBP discretizations, the conservation residual remains on the order
of machine precision for both the upwind and central variants of the nodal and modal
tensor-product schemes on triangles as well as tetrahedra, while the energy residual
is on the order of machine precision for a central numerical flux and negative for an
upwind numerical flux. Note that we have deliberately used coarse meshes for such
tests in order to demonstrate that the conservation and energy stability properties are
satisfied discretely at finite resolution, rather than only in the limit of mesh refinement.

7.4. Spectral radius. While the proposed spatial discretizations of the linear
advection equation are provably energy stable in a semi-discrete sense, the stability

5The weight-adjusted approximation in (5.15) is used for all results involving modal formulations.
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Fig. 3: Variation in spectral radius of the semi-discrete advection operator with polynomial
degree for discretizations on triangles (top row) and tetrahedra (bottom row); solid and dashed
lines denote upwind and central numerical fluxes, respectively

of the fully discrete problem requires the spectrum of the semi-discrete operator to lie
within the stability region of the chosen time-marching method. Thus, for explicit time
integration, the maximum stable time step size is dictated by the spectral radius of the
global semi-discrete operator. Fig. 3 illustrates the effect of varying the polynomial
degree on the spectral radius of the semi-discrete advection operator for nodal and
modal formulations using multidimensional as well as tensor-product operators on
triangles and tetrahedra, keeping the mesh fixed at M = 2. Considering the nodal and
modal multidimensional schemes, the spectral radius grows roughly quadratically with
the polynomial degree in the case of a central flux, with slightly slower growth observed
for an upwind flux. The spectral radii as well as their growth rates with respect to
the polynomial degree are much larger for the nodal tensor-product schemes than for
all other methods, which, as predicted in subsection 5.1, results in a severe restriction
on the time step when such schemes are used with explicit temporal integration. This
is remedied through the use of the modal formulation, for which the spectral radii are
very similar to those of the multidimensional schemes. Such behaviour is consistent
with the literature (see, for example, [19, section 6.3]) and favours the use of the
modal formulation at higher polynomial degrees, at least for explicit schemes.

7.5. Accuracy. Evaluating the discrete L2 error for each scheme using its as-
sociated volume quadrature rule and plotting with respect to the nominal element
size h = 1/M , we see from Fig. 4 that for p = 4, all methods considered converge
as O(hp+1) in the case of an upwind numerical flux, with similar accuracy levels on
a given mesh observed for all schemes. While the specific formulations considered in
this study are comparable to one another in accuracy for a given mesh, we note that
the error magnitudes could be reduced while maintaining the same order of accuracy
through the use of over-integration (i.e. increasing the number of volume quadrature
nodes) for accuracy rather than stability purposes, a possibility not explored in this



24 TRISTAN MONTOYA AND DAVID W. ZINGG

Fig. 4: Convergence with respect to h and p for discretizations of the linear advection equa-
tion on triangles (top row) and tetrahedra (bottom row); solid and dashed lines denote upwind
and central numerical fluxes, respectively

paper. Performing p-refinement with M = 2 using a nodal formulation with mul-
tidimensional operators and a modal formulation with tensor-product operators, we
see that on triangles, the modal tensor-product formulation is slightly more accurate
than the nodal multidimensional formulation for high polynomial degrees, while on
tetrahedra, the schemes are of comparable accuracy for degrees in which both types
of operators are available.6 Such results indicate that for this model problem, the pro-
posed tensor-product operators on triangles and tetrahedra are at least as accurate
as their multidimensional counterparts for a given mesh and polynomial degree.

7.6. Operation count. Fig. 5 displays the number of floating-point operations
incurred in evaluating the time derivative on a single element for each scheme at
varying polynomial degrees, including the evaluation of the physical flux at all vol-
ume quadrature nodes and the evaluation of the numerical flux at all facet quadrature
nodes.7 Since the results in subsection 7.5 indicate that for a given number of ele-
ments and a given polynomial degree, the accuracy of the proposed tensor-product
approach is comparable to that of a multidimensional scheme employing a symmetric
quadrature rule, such an analysis is expected to provide a fair efficiency comparison,
assuming that the implementations of all methods are similarly optimized and that
the resulting algorithms are compute-bound rather than memory-bound. If only the
reference-operator algorithms described in subsection 6.1 are considered (i.e. ignor-
ing the dashed lines in Fig. 5), we see that the sum-factorization algorithms used

6Symmetric quadrature rules suitable for the construction of multidimensional diagonal-norm
SBP operators of degree p > 10 on the tetrahedron are not available in the literature, to the best of
the authors’ knowledge. Moreover, the analysis in subsection 7.6 suggests that schemes employing
such operators, if they were to be constructed, would be less efficient than those which we propose.

7The operation count for each algorithm (implemented in native Julia without calls to BLAS)
was evaluated using GFlops.jl, which is available at https://github.com/triscale-innov/GFlops.jl.

https://github.com/triscale-innov/GFlops.jl
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Fig. 5: Floating-point operation count for local time derivative evaluation on triangles (left)
and tetrahedra (right); solid and dashed lines denote reference-operator and physical-operator
algorithms, respectively

for the proposed tensor-product operators yield a significant reduction in operation
count relative to the multidimensional operators for all orders of accuracy, scaling
approximately as O(pd+1) for both the nodal and modal tensor-product formulations,
in contrast with the O(p2d) scaling of the nodal and modal multidimensional formula-
tions. If, however, memory is not a limiting factor, the physical-operator algorithms
described in subsection 6.2, which require the precomputation and storage of operator
matrices for each element, allow for the multidmensional operators to be competitive
with the proposed tensor-product operators at lower polynomial degrees. Specifically,
if we consider the dashed lines in Fig. 5, the physical-operator implementation of the
multidimensional modal formulation, while asymptotically requiring O(p2d) opera-
tions, is nevertheless cheaper than the O(pd+1) sum-factorization implementation of
the tensor-product modal formulation for p ≤ 9 on triangles and p ≤ 5 on tetrahedra.

8. Conclusions. In this paper, we have presented an extension of the SBP
framework to tensor-product operators in collapsed coordinates, enabling the con-
struction of efficient, stable, and conservative discontinuous spectral-element methods
of arbitrary order on triangles and tetrahedra. Using a split formulation to obtain
operators on curvilinear meshes, a projection onto the Proriol-Koornwinder-Dubiner
polynomial basis to mitigate the time step restriction resulting from the singularity of
the collapsed coordinate transformation, and a weight-adjusted approximation of the
curvilinear modal mass matrix to explicitly obtain the local time derivative, the syn-
ergy of such technologies from a multitude of research communities has resulted in a
promising methodology for the construction of efficient and robust spatial discretiza-
tions of conservation laws suitable for complex geometries. Future work includes the
application of such operators within entropy-stable discretizations of nonlinear sys-
tems of conservation laws and to problems with diffusive terms, the development of
suitable preconditioners for their use with implicit time integration, the construction
of tensor-product SBP operators on prismatic and pyramidal elements, and efficiency
comparisons involving practical problems in fluid dynamics and other disciplines.
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[32] J. Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle,
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