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This paper presents a three-dimensional Newton-Krylov flow solver for the Navier-
Stokes equations which uses summation-by-parts (SBP) operators on multi-block struc-
tured grids. Simultaneous approximation terms (SAT’s) are used to enforce the boundary
conditions and the coupling of block interfaces. The discrete equations are solved iter-
atively with an inexact Newton method. The linear system of each Newton iteration is
solved using a Krylov subspace iterative method with an approximate-Schur parallel pre-
conditioner. The algorithm is validated against an established two-dimensional flow solver.
Additionally, results are presented for laminar flow around the ONERA M6 wing, as well as
low Reynolds number flow around a sphere. Using 384 processors, the solver is capable of
obtaining the steady-state solution (reducing the flow residual by 12 orders of magnitude)
on a 4.1 million node grid around the ONERA M6 wing in 4.2 minutes. Convergence to 3
significant figures in force coefficients is achieved in 83 seconds. Parallel scaling tests show
that the algorithm scales well with the number of processors used. The results show that
the SBP-SAT discretization, solved with the parallel Newton-Krylov-Schur algorithm, is
an efficient option for three-dimensional Navier-Stokes solutions, with the SAT’s providing
several advantages in enforcing boundary conditions and block coupling.

I. Introduction

State-of-the-art flow solvers are capable of accurately simulating the flow around three-dimensional air-
craft configurations. Some of these are coupled with optimization algorithms which allow for the aerodynamic
shape optimization of aircraft geometries for specific objectives, but the size and complexity of the optimiza-
tion problem in three dimensions presents a challenge from the perspective of computational cost. This
paper presents the description of a flow solution algorithm that is well suited to functioning as the core of a
three-dimensional aerodynamic shape optimizer.

For computations of high-Reynolds-number turbulent flows over complex geometries, the choice at present
is between unstructured and multi-block structured meshes, with various hybrid approaches also in use. The
present research is motivated by two advantages associated with structured meshes. They are inherently
efficient, where efficiency is a measure of accuracy per unit cost. In particular, structured solvers are more
efficient than unstructured solvers when higher-order spatial discretizations are used.1, 2 This paper presents
progress toward an efficient parallel three-dimensional multi-block structured solver for turbulent flows over
aerodynamic geometries. It extends previous work2, 3 on an efficient parallel Newton-Krylov flow solver for
the Euler equations.

An important issue in the development of algorithms for structured multi-block meshes is the treatment
of boundaries and block interfaces in a manner that is stable, accurate, and efficient. Multi-block meshes can
be implemented using either patched or overlapping blocks. Simultaneous approximation terms (SAT’s) can
be used when treating block boundary nodes. They were originally developed to treat boundary conditions
in an accurate and time-stable manner,4 and later extended to deal with block interfaces.5–7 Svärd et

al.8, 9 and Nordström et al.10 have shown the application of SAT’s for the Navier-Stokes equations to
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unsteady problems, as well as some steady model problems. The SAT approach, which works on the basis of
penalty application, has several advantages over more traditional approaches. It eliminates the need for mesh
continuity across block interfaces, reduces the communication for parallel algorithms, and ensures linear time
stability when coupled with summation-by-parts (SBP) operators. However, SAT’s have received limited use
in computational aerodynamics applications. They present a difficulty in that they can necessitate the use
of small time steps with explicit solvers.11 Hence, the combination of SAT’s with a parallel Newton-Krylov
solver has the potential to be an efficient approach. The objective of this paper is to demonstrate that such
a combination can be an efficient algorithm for the solution of laminar flows over aerodynamic geometries.
This is an important step toward the development of an efficient higher-order solver for turbulent flows.

The paper is divided into the following sections. Section II presents an overview of the governing equa-
tions, as well as the spatial discretization used, including the SAT’s at block interfaces and boundaries.
Section III provides details on the Newton-Krylov-Schur method used to solve the large nonlinear system
resulting from the discretization of the Navier-Stokes equations. In Section IV, results will be presented
comparing the flow solutions produced by the new algorithm against results obtained from an established
flow solver, as well as experimental data. Conclusions will be presented in Section V.

II. Governing Equations and Discretization

A. The Navier-Stokes Equations

The work presented in this paper deals with the three-dimensional Navier-Stokes equations, given by:

∂tQ+ ∂xE+ ∂yF+ ∂zG =
1

Re

(

∂xEv + ∂yFv + ∂zGv

)

, (1)
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Additionally, ρ is density, a is sound speed, e is energy, p is pressure, l is chord length, µ is viscosity, u,
v, and w are the velocity components, and τ is the Newtonian stress tensor. The ‘∞’ subscript denotes a
free-stream value for the given quantity. The preceding variables have been made dimensionless by the use
of the free-stream values of density and sound speed, as well as chord length. Viscosity is calculated using a
dimensionless form of Sutherland’s law:12

µ =
a3(1 + S∗/T∞)

a2 + S∗/T∞
, (2)

where S∗ = 198.6oR and T∞ = 460oR.
Applying the coordinate transformation (x, y, z) → (ξ, η, ζ), which allows us to treat the governing

equations on a uniform computational grid, the Navier-Stokes equations can be re-written as

∂tQ̂+ ∂ξÊ+ ∂ηF̂+ ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (3)

where

Q̂ = J−1Q,

Ê = J−1
(

ξxE+ ξyF+ ξzG
)

, F̂ = J−1
(

ηxE+ ηyF+ ηzG
)

, Ĝ = J−1
(

ζxE+ ζyF+ ζzG
)

,

Êv = J−1
(

ξxEv + ξyFv + ξzGv

)

, F̂v = J−1
(

ηxEv + ηyFv + ηzGv

)

, Ĝv = J−1
(

ζxEv + ζyFv + ζzGv

)

,
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and J is the metric Jacobian that results from the coordinate transformation. The notation ξx, for example,
is a shorthand form of ∂xξ. The viscous stresses also undergo the coordinate transformation and result in
the following expressions:

τxx = 4
3 (µ+ µt)(ξxuξ + ηxuη + ζxuζ)−

2
3 (µ+ µt) (ξyvξ + ηyvη + ζyvζ + ξzwξ + ηzwη + ζzwζ)

τxy = (µ+ µt) (ξyuξ + ηyuη + ζyuζ + ξxvξ + ηxvη + ζxvζ)

τxz = (µ+ µt) (ξzuξ + ηzuη + ζzuζ + ξxwξ + ηxwη + ζxwζ)

τyx = τxy

τyy = 4
3 (µ+ µt)(ξyvξ + ηyvη + ζyvζ)−

2
3 (µ+ µt) (ξxuξ + ηxuη + ζxuζ + ξzwξ + ηzwη + ζzwζ)

τyz = (µ+ µt) (ξzvξ + ηzvη + ζzvζ + ξywξ + ηywη + ζywζ)

τzx = τxz

τzy = τyz

τzz = 4
3 (µ+ µt)(ξzwξ + ηzwη + ζzwζ)−

2
3 (µ+ µt) (ξxuξ + ηxuη + ζxuζ + ξyvξ + ηyvη + ζyvζ)

Ev,5 = uτxx + vτxy + wτxz + (µPr−1 + µtPr−1
t )(γ − 1)−1[ξx∂ξ(a

2) + ηx∂η(a
2) + ζx∂ζ(a

2)]

Fv,5 = uτyx + vτyy + wτyz + (µPr−1 + µtPr−1
t )(γ − 1)−1[ξy∂ξ(a

2) + ηy∂η(a
2) + ζy∂ζ(a

2)]

Gv,5 = uτzx + vτzy + wτzz + (µPr−1 + µtPr−1
t )(γ − 1)−1[ξz∂ξ(a

2) + ηz∂η(a
2) + ζz∂ζ(a

2)]

where µt is the kinetic eddy viscosity, Pr and Prt are the laminar and turbulent Prandtl numbers, taken as
0.72 and 0.90, respectively, and γ = 1.4 for air.

B. Spatial Discretization

The spatial discretization is obtained from the Navier-Stokes equations (3) by the use of SBP operators,
while inter-block coupling and boundary conditions are enforced by the use of SAT’s. The following will
present a brief summary of the two concepts as they apply to the current algorithm. For more details,
including the theory behind their development, please refer to references 8–10,13, 14.

1. Summation-by-Parts Operators

A globally second-order accurate operator for a first derivative is given by

D1 = P−1Q, (4)

where
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,

and h takes on the value of the spatial difference in the pertinent coordinate direction, either ∆ξ, ∆η, or
∆ζ. In the context of the uniform computational grid, h has a value of 1 for all three coordinate directions.

Numerical dissipation is added to the system using the scalar dissipation model developed by Jameson
et al.15 and later refined by Pulliam.16 The model consists of second- and fourth-difference dissipation
operators, whose magnitudes are controlled by the κ2 and κ4 coefficients, respectively. For the results
presented in this paper, κ2 is set to 0, while κ4 typically has a value of 0.02.

When one turns to the discretization of the viscous terms, two types of second derivatives are present,
which will be referred to as cross- and double-derivatives, respectively. The cross-derivatives, which have the
form

∂ξ (b∂ηu) , (5)

where b is a variable coefficient, can be discretized by the use of (4), resulting in an operator of the form
DξbDηu. As an example, this operator produces the following discretization at an interior point:

∂ξ (b∂ηu)j,k,m =
1

2
bj+1,k,m

(

uj+1,k+1,m − uj+1,k−1,m

2

)

−
1

2
bj−1,k,m

(

uj−1,k+1,m − uj−1,k−1,m

2

)

, (6)
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where the subscripts (j, k,m) denote indices in the ξ, η, and ζ directions, respectively. At block boundaries,
a first-order one-sided difference operator would result for either, or both, of the derivatives in (5).

The double-derivatives possess the following form:

∂ξ (b∂ξu) . (7)

An SBP operator for such a term, denoted D2, was presented by Mattsson et al.:17

D2 = P−1
(

−DT B̃D + BS
)

, (8)
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,

and N is the number of nodes in a given coordinate direction. For an internal node, this will result in the
narrow stencil used by Pulliam16 (with k and m subscripts suppressed):

∂ξ(b∂ξu)j =
1

2
(bj+1 + bj)(uj+1 − uj)−

1

2
(bj + bj−1)(uj − uj−1). (9)

At the high- and low-side boundaries, where one-sided differences are employed, the discretization takes on
the form

∂ξ(b∂ξu)j=jmin
= −bj [2(uj+1 − uj)− (uj+2 − uj+1)] + bj+1(uj+1 − uj),

∂ξ(b∂ξu)j=jmax
= bj [2(uj − uj−1)− (uj−1 − uj−2)]− bj−1(uj − uj−1).

(10)

2. Simultaneous Approximation Terms

Closely tied to the use of SBP operators for spatial discretization is the use of Simultaneous Approximation
Terms (SAT’s). SAT’s are penalty terms that are added to the equations on block boundaries only, be
they domain boundaries or interfaces to other blocks within the domain. Depending on their position, their
function is either to enforce the necessary boundary conditions, or to preserve the solution coupling between
blocks.

The purpose of this section is not to derive the forms of the various SAT’s used, but rather to present
the implementation used in the present algorithm. See references 3, 18 for an analysis and derivation of the
SAT terms applied in the case of the Euler equations. A brief summary will be presented here. All SAT
terms that follow are shown in the form in which they would be added to the right-hand side of (3). The
precise form of the inviscid, or Euler, portion of the SAT’s on the low side of a block is:

−1

J
A+

ξ (Q−Qexternal) , (11)

where
A+

ξ =
Aξ+|Aξ|

2 , Aξ = ∂Ê

∂Q̂
,

and Q are the flow variables on the boundary node in the current block. |Aξ| denotes X
−1 |Λ|X , where X

is the right eigenmatrix of Aξ, and Λ contains the eigenvalues along its diagonal. At a high-side boundary
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A−
ξ is used to capture the incoming characteristics and the sign of the penalty is reversed. When dealing

with boundaries normal to the other two coordinate directions, Aξ is replaced by either Aη or Aζ .
Qexternal takes on the “target” values to which the local values of Q are being forced. When dealing with

a block interface, these are the flow variable values on a coincident node in a neighbouring block, or, when
dealing with a far-field boundary, they can be the free-stream flow variable values. A number of different
boundary conditions, such as a slip-wall or symmetry plane, can be enforced using this approach for the Euler
equations. In each case, the SAT works on a principle very similar to characteristic boundary conditions.

The solution of the Navier-Stokes equations requires viscous SAT terms to be added in addition to the
inviscid SAT terms presented in (11). The basis of the viscous SAT’s is presented by Nordström et al.10 and
is summarized below, with special attention being paid to each type of block boundary.

The first type of viscous SAT is the far-field boundary SAT. In the ξ-direction, this term has the form

σV

Re

(

Êv − gv

)

, (12)

where Êv is the local viscous flux, and gv is the “target” value of the viscous flux. Since this boundary is
supposed to force the solution towards free-stream conditions, gv = 0. Additionally, σV = 1 at a low-side
boundary, and -1 at a high-side boundary.

The no-slip wall boundary condition is enforced with the use of a different type of term, which is again
added on top of the Euler SAT. The form of the viscous portion of the no-slip wall SAT, again for a boundary
at the low or high side of a block in the ξ-direction, is

σW

Re
I (Q−Qw) , (13)

where

σW ≤ −
ξ2x + ξ2y + ξ2z

J

µ

2ρ
max

(

γ

Pr
,
5

3

)

, Qw = [ρ2, 0, 0, 0, e2]
T
.

σW is calculated based on local values, while Qw is constructed in order to enforce an adiabatic no-slip wall
boundary condition. The three momentum components are forced toward zero, thus satisfying the no-slip
condition, while ρ2 and e2 are calculated in such a way as to force zero temperature and pressure gradients
normal to the wall. In the present scheme, ρ2 is taken from one node above the solid surface, while e2 is
calculated based on the pressure of said node with zero velocity. Along with zero velocity, this enforces a
zero density and pressure gradient, which in turn enforces the zero temperature gradient condition.

Block interfaces are treated in a similar way, but with unique viscous SAT terms. The form used is:

−
σiV

JRe

(

ξ2xB11 + ξ2yB22 + ξ2zB33

)

(Q−Q2) , (14)

where
σiV ≤ 0.5

for stability and Q2 are the values of the flow variables on the coincident node in the adjoining block. The
metric terms change to η or ζ depending on the coordinate direction normal to the interface. The B-matrices
are related to the viscous Jacobian, and are derived based on Nordström et al.10 Refer to the Appendix for
their complete forms. Interface SAT’s also make use of (12), where gv is replaced by Êv2, the viscous flux
on the coincident node in the adjoining block.

In order to reduce the size of the computational domain, symmetry boundaries can be imposed. SAT’s
are again used to impose this boundary condition by using (11) to impose a purely tangential flow (Qexternal

is constructed in such a way as to force the normal velocity component to zero). In addition, (13) is used to
enforce a zero normal gradient in all conservative variables.

The following is used to enforce the inviscid SAT on an outflow boundary in a viscous flow:

σI

J
A−

ξ (Qjmax
−Qjmax−1) , (15)

in which the boundary is assumed to be on the high side of a block in the ξ-direction. The modification
is appropriate in dealing with the viscous wake region. The advantage of this approach is that it requires
minimal modification to the existing Euler SAT term, which uses the free-stream flow conditions instead of
Qjmax−1. An alternate approach to dealing with the outflow condition is presented by Svärd et al.8
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III. Solution Methodology

Applying the SBP-SAT discretization described in the previous section to the steady Navier-Stokes
equations results in a large system of nonlinear equations:

R(Q) = 0, (16)

where Q represents the complete solution vector. When time-marched to steady state with the implicit Euler
time-marching method, this system results in a large set of linear equations of the form:19

(

I

∆t
+A(n)

)

∆Q(n) = −R(n), (17)

where n is the outer iteration, ∆t is the time step, I is an identity matrix, R(n) = R(Q(n)), ∆Q(n) =
Q(n+1) −Q(n), and

A(n) =
∂R(n)

∂Q(n)

is the flow Jacobian.
In the infinite time step limit, the above describes Newton’s method and will converge quadratically if

a suitable initial iterate, Q(0), is known. This must be sufficiently close to the solution of (16). Since it
is unlikely that any initial guess made for a steady-state solution will satisfy this requirement, the present
algorithm makes use of a start-up phase whose purpose it is to find a suitable initial iterate. The following
sections describe each of the phases as they apply to the solution of the Navier-Stokes equations. It should
be noted that both phases result in a large set of linear equations at each iteration, which are solved to a
specified tolerance using a Krylov iterative solver such as GMRES.

A. Approximate-Newton Phase

The approximate-Newton method uses implicit Euler time-stepping in order to find a suitable initial iterate
for Newton’s method. Since we are not interested in a time-accurate solution, some useful modifications can
be made. These include a first-order Jacobian matrix, a spatially varying time step, and the use of a lagged
Jacobian update.

A first-order Jacobian matrix, A1, has been shown to be an effective replacement of the true Jacobian,
A, during the start-up phase.20, 21 Two approximations are made when creating the first-order approxima-
tion to the Jacobian. When dealing with the inviscid terms, the fourth-difference dissipation coefficient,
κ4, is combined with the second-difference dissipation coefficient, κ2, to form a modified second-difference
dissipation coefficient, κ̃2, such that

κ̃2 = κ2 + σκ4,

where σ is a lumping factor. A value of σ = 6 has been shown to work well for the Navier-Stokes solutions
with scalar dissipation.22 The modified fourth-difference dissipation coefficient, κ̃4, is set to zero. Applying
this lumping approach reduces the accuracy of the Jacobian to first-order. However, this does not impact
the order of accuracy of the final solution. Moreover, it also reduces the number of matrix entries of the
inviscid terms.

The viscous terms, however, still possess a relatively large stencil. To mitigate this, the cross-derivative
terms of (5) are dropped when constructing the first-order Jacobian, and only the double derivative terms
(7) are linearized. This approach reduces the stencil of all interior nodes to nearest neighbours only, which
is substantially smaller than that of the full Jacobian.

Most of the SAT’s do not require modification when used as part of A1, as they only use information
from one local node. The exception to this is the viscous flux SAT component found in the far-field and
interface terms. What is done here, analogous to dropping the cross-derivative terms in the internal scheme,
is that the tangential components of the viscous stresses are not linearized.

The use of the implicit Euler method necessitates the specification of a time step, whose inverse is added
to the diagonal elements of A1. A spatially varying time step has been shown to improve the convergence
rates of Newton-Krylov algorithms, leading to the use of the following value:

∆t
(n)
j,k,m =

Jj,k,m∆t
(n)
ref

1 +
√

Jj,k,m
, (18)
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where (j,k,m) denotes the node to which this time step is being applied. Since the solver uses the unscaled

flow variables Q, instead of the transformed variables Q̂, the J term that results from the coordinate
transformation is lumped into the numerator of (18). The reference time step is

∆t
(n)
ref = a(b)n,

where typical values used are a = 0.1 and b ∈ [1.1, 1.6].
The first-order Jacobian is factored using block incomplete lower-upper factorization (BILU) with fill level

p in order to construct the preconditioner used throughout the solution process. This is a computationally
expensive task, especially in the approximate-Newton phase, which requires many outer iterations. Previous
work3, 23 has shown that lagging the update of the preconditioner (freezing it for a number of iterations)
during the start-up phase can positively impact the efficiency of the flow solver.

An approximate-Schur24 parallel preconditioner is used in the current algorithm. An additive-Schwarz25

approach will be evaluated in the future, which will help determine which one is better suited to the class of
problems being tackled.

An important part of using a start-up phase is knowing when a suitable iterate has been found to initiate
the inexact-Newton phase. For this purpose, the relative drop in the residual is used:

R
(n)
d ≡

||R(n)||2
||R(0)||2

. (19)

Once this value reaches 0.01, i.e. the residual has dropped by 2 orders of magnitude in the approximate-
Newton phase, the algorithm is switched to the inexact-Newton method.

B. Inexact-Newton Phase

The inexact-Newton phase uses a different scheme for the reference time step. This scheme is designed to
ramp the time step toward infinity more rapidly than in the approximate-Newton phase, eliminating the
inverse time term from the diagonal of the left-hand-side of the discretized Navier-Stokes equations. The
present work involves the use of a scheme developed by Mulder and van Leer,26 by which a new reference
time step is calculated and used in (18):

∆t
(n)
ref = max

[

α
(

R
(n)
d

)−β

,∆t
(n−1)
ref

]

,

where β ∈ [1.8, 2.0] and α is calculated as

α = a(b)nNewt

(

R
(nNewt)
d

)β

,

and nNewt is the first iteration of the inexact-Newton phase.
In contrast with the approximate-Newton method, this method uses the exact, second-order accurate

Jacobian. However, since we use a Krylov subspace method, we do not need to form the Jacobian matrix, A,
explicitly. Instead, only Jacobian-vector products are required, which can be approximated using a first-order
forward difference:

A(n)v ≈
R(Q(n) + ǫv) −R(Q(n))

ǫ
.

The parameter ǫ is determined from

ǫ =

√

Nuδ

vTv
,

where Nu is the number of unknowns and δ = 10−13. The approximate Jacobian, A1, is still used for
preconditioning the system.

Finally, it should be emphasized that neither the approximate-Newton nor the inexact-Newton phases
solve their respective linear systems exactly. Instead, the following inequality is used to govern how far the
system is solved:

||R(n) +A(n)∆Q(n)||2 ≤ ηn||R
(n)||2,

where the forcing parameter ηn is specified. If it is too small, the linear system will be over-solved and will
take too much time, but if it is too large, non-linear convergence will suffer. For the present work, a value
of 0.1 is used for the approximate-Newton phase, while 0.01 is used for the inexact-Newton phase.
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Table 1: 2D grid parameters

Grid Grid Size Nodes off wall Nodes in wake Off-wall spacing

coarse 71x17 17 11 5.4e-4

medium 141x33 33 21 2.3e-4

fine 281x65 65 41 1.0e-4
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(a) coarse (b) medium (c) fine

Figure 1: Grids used in convergence study

IV. Results

The results presented in this section highlight the the use of the SBP-SAT approach in solving the Navier-
Stokes equations for laminar flow over a NACA 0012 airfoil. A series of refined grids was created that is
used with the three-dimensional solver developed here, called DIABLO, as well as an extensively verified
and validated two-dimensional finite-difference Newton-Krylov algorithm, OPTIMA2D,27 that does not use
SAT’s. The spatial discretization in OPTIMA2D is essentially the same as that in the well-known ARC2D.16

The purpose of this comparison is to highlight the effects of using the SBP-SAT approach and the behaviour
of the flow solution on a series of refined grids. In addition, the effect of introducing additional interfaces
into the computational domain will be examined. A series of three-dimensional flow solutions around an
ONERA M6 wing are also presented, highlighting the use of the solver on an H-H topology multi-block grid.
The parallel scaling of the algorithm is examined by computing the solution around an ONERA M6 wing
with up to 384 processors. Finally, flow solutions around a sphere at low Reynolds numbers are computed,
and the drag values are compared to published experimental results.

A. NACA 0012 Grid Convergence Study

1. Grids

The finest grid used in this study was created using an elliptical grid generation program around the NACA
0012 airfoil geometry. The two coarser grids were created by removing every second grid node in both
coordinate directions. The grid topology is a single-block C-mesh, with a single interface present at the
wake-cut. Table 1 provides a summary of the grid characteristics for the three meshes used in this study,
while Figure 1 shows the grids themselves.

To highlight the use of SAT interfaces in a multi-block setting, a series of grids with additional interfaces
at the trailing edge of the airfoil were created, each having 3 blocks and 3 interfaces linking those blocks
together. The added interfaces extend vertically up and down from the trailing edge of the airfoil.
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Figure 2: Cp contours around NACA 0012 airfoil
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Figure 3: Cf contours around NACA 0012 airfoil (plotted negative on the lower surface for clarity)

2. Flow Solutions

The flow parameters for the grid convergence study are

Ma = 0.63, Re = 600, α = 2.0o,

where α is the angle of attack.
Converged steady-state flow solutions were obtained for all grids by reducing the initial flow residual

by 12 orders of magnitude. As the contours of the flow solutions themselves are not appreciably different
between the two solvers, the focus here is on the coefficients of pressure and skin friction, which determine
the lift and drag. The coefficient of pressure, Cp, plots can be seen in Figure 2, while Figure 3 presents the
coefficient of skin friction, Cf , plots for all three grid levels. As demonstrated by the Cp plots, the solutions
produced by DIABLO match very closely with those produced by OPTIMA2D on all three grid levels. The
plots of Cf show that, as grid refinement decreases, the skin friction predicted by OPTIMA2D decreases,
while that predicted by DIABLO increases. The agreement is excellent on the finest grid.

SAT’s do not enforce boundary and interface conditions exactly; instead, they force the solution at the
appropriate node toward the desired value. In the case of the airfoil surface, the solution is forced towards
a no-slip wall condition, but this is only achieved in the limit as h goes to 0. The surface velocity is not
exactly zero, as it is in OPTIMA2D. Figure 4 presents the largest surface velocity error as it varies with the
number of nodes in the ξ-direction for each grid. The slope of this plot provides the convergence rate for the
method. Hence, the velocity is converging at a second-order rate, as expected.

The same behavior was observed when the solution was computed on the grids that had the additional
interfaces inserted at the trailing edge of the airfoil, so no Cp and Cf plots are presented for those cases.
Instead, a qualitative comparison of the density contours at the trailing edge is presented in Figure 5,
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Figure 5: Density contours at the trailing edge of NACA 0012 airfoil (thicker lines represent block interfaces)

highlighting that the presence of the interfaces has a negligible impact on the converged solution. Both
solutions shown were computed on the finest grids.

Finally, Table 2 compares the lift and drag values produced by OPTIMA2D and DIABLO. The values
once again demonstrate the effect that the solid-surface SAT’s have on the solution. While the finest grids,
where the SAT’s are most successful in enforcing the no-slip condition, produce close correspondence between
OPTIMA2D and DIABLO, this is not the case for the coarser grids. In addition, the introduction of the
extra interfaces has little effect on the lift and drag values produced by DIABLO. The values of Cd computed
using DIABLO on the coarse mesh are closer to the fine mesh results than those computed with OPTIMA2D.

Figure 6a shows the convergence histories for all three grid levels in the 1-block case. The plot shows the
number of linear (GMRES) iterations in both solution phases. The symbols along the lines show the outer
iterations.

B. ONERA M6 Wing Flow Solutions

To demonstrate the use of DIABLO on a three-dimensional multi-block grid, a grid refinement study was
carried out on a series of 48-block grids around an ONERA M6 wing. The grids consist of an H-H topology
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Table 2: Lift and Drag coefficients for C-mesh (p and f denote pressure and friction contributions, respec-
tively; t denotes total)

Grid OPTIMA2D DIABLO (1 blk) DIABLO (3 blk)

Cl Cd Cl/Cd Cl Cd Cl/Cd Cl Cd Cl/Cd

p 0.0613 0.0556 0.0555

coarse f 0.0677 0.0980 0.0979

t 0.1294 0.1290 1.0031 0.1029 0.1536 0.6699 0.1030 0.1534 0.6714

p 0.0624 0.0557 0.0557

medium f 0.1050 0.1061 0.1060

t 0.1063 0.1675 0.6349 0.0994 0.1617 0.6147 0.0996 0.1617 0.6160

p 0.0626 0.0559 0.0559

fine f 0.1090 0.1095 0.1095

t 0.1029 0.1717 0.5997 0.1042 0.1653 0.6303 0.1043 0.1653 0.6310
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Figure 6: DIABLO convergence histories

mesh (see Figure 7). Flow parameters for this case are

Ma = 0.63, Re = 600, α = 2.0o.

All solutions were calculated using 48 processors, with each block of the computational domain assigned to
one processor. All blocks have the same size, so the problem is load balanced.

A three-dimensional grid presents a number of challenges that are not present in a two-dimensional C-
mesh. Most notably, the wing tip, where several blocks come together, provides a good test of the SAT’s
ability to produce smooth solutions across block interfaces. Several different types of SAT’s are applied at
the tip, accounting for the surface of the wing, as well as the interfaces present at this location. Figure 8
presents the Mach number contours at the wing tip (viewed from above). The solution is continuous across
the interfaces, and the no-slip condition is enforced (to order h2) on the solid surface boundaries of all blocks,
where the Mach number is reduced to zero.

Figure 6b presents the convergence history of the flow solutions around the ONERA M6 wing on all three
grid levels. Table 3 presents a summary of some grid parameters, as well as the final CPU time required to
reduce the residual 12 orders of magnitude and the final lift and drag coefficient values obtained on all grid
levels. On the finest mesh, which has roughly 4 million nodes, the solver converges the values of CL and CD

to 3 significant figures in 26 minutes using 48 processors.
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Table 3: Summary of grid characteristics and results for 48-block ONERA M6 wing flow solutions

Grid Block Grid Size Solution Time Lift Drag Lift/Drag

Dimensions (nodes) (min) CL CD CL/CD

coarse 10x14x11 73,920 0.78 0.0984 0.1019 0.9657

medium 19x27x21 517,104 5.87 0.0920 0.1588 0.5793

fine 37x53x41 3,859,248 92.5 0.0878 0.1679 0.5229
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Figure 9: Scaling performance results. The ideal time and efficiency values are based on the 24 processor
case.

C. Parallel Scaling

In order to demonstrate the parallel performance of the current algorithm, a 384-block H-H topology grid
around an ONERA M6 wing was created, with (19x27x21) nodes per block, and an off-wall spacing of
10−4 chord units. The total grid size is approximately 4.1 million nodes. All runs were performed on the
general-purpose cluster of SciNet, which uses Nehalem processors interconnected with non-blocking 4x-DDR
InfiniBand.

The results presented in Figure 9 show that the algorithm scales well with the number of processors.
Comparison to ideal scaling based on the 24 processor case shows that the algorithm’s performance does
not deteriorate as more processors are used to compute a flow solution. It should be noted that the precon-
ditioner effectively changes as the number of processors increases due to the distribution of blocks among
the processors. This results in a slightly different solution algorithm for each number of processors, which
explains the super-linear speedup observed in the figure. Using 384 processors, the solver is capable of ob-
taining the steady-state solution (reducing the flow residual by 12 orders of magnitude) in 4.2 minutes, while
convergence to 3 significant figures in force coefficients is achieved in 83 seconds.

D. Flow Around a Sphere at Low Reynolds Numbers

The final set of results demonstrate the calculation of laminar flow around a sphere at low Reynolds numbers.
This case permits a direct comparison to experimental drag values and highlights the ability of the solver to
predict relatively complex three-dimensional flows which include flow separation. The flow parameters for
the cases were

Ma = 0.25, Re = 20 to 200, α = 0.0o.

A 5-block mesh is used with a 10−4 sphere diameter units off-wall spacing, 9,000 surface nodes, and 360,000
total nodes.

The results show excellent agreement with the experimental drag data of Roos and Willmarth,28 as can
be seen in Figure 10. Moreover, Figure 11 demonstrates that the solver correctly captures the flow contours
of a separated, recirculating flow at a Reynolds number of 118, as compared to the experimental results of
Taneda.29

V. Conclusions

The SBP-SAT approach was shown to provide accurate laminar flow solutions to the Navier-Stokes equa-
tions when used within a Newton-Krylov-Schur algorithm. Validation against an established two-dimensional
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Figure 11: Recirculating flow behind sphere at Re = 118

solver showed that the accuracy of the SAT-based approach is comparable to the traditional approach. The
non-zero surface velocities which result from the SAT-based enforcement of boundary conditions converge
at a second-order rate, as expected. The inclusion of interfaces in the grid structure does not introduce
appreciable changes to the converged steady-state solution, and the SAT’s produce smooth solutions across
block interfaces, even in areas where many interfaces meet.

The solution of a three-dimensional flow around an ONERA M6 wing demonstrates that the current
algorithm can be readily applied to a mesh consisting of many blocks. The SBP-SAT approach can be
applied to a computational domain with an arbitrary number of blocks, which, when solved on a large
number of processors, can greatly reduce the time needed to obtain accurate solutions. The algorithm has
very good parallel efficiency in the range of processors considered (24 to 384).

Finally, computations of the flow around a sphere for a range of low Reynolds numbers highlight the
capabilities of the solver in not only correctly predicting the drag, but also in capturing complex flow
features, such as flow separation and recirculation.
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Appendix

The following are the complete forms of the conservative formulation of the Bii matrices, where i = 1, 2, 3.
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