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The objective of the present paper is to demonstrate the effectiveness of a spa-
tial discretization based on summation-by-parts (SBP) operators with simultaneous
approximation terms (SATs) in combination with a parallel Newton-Krylov-Schur al-
gorithm for solving the three-dimensional Reynolds-averaged Navier-Stokes equations
coupled with the Spalart-Allmaras one-equation turbulence model. The algorithm
employs second-order SBP operators on multi-block structured grids with SATs to
enforce block interface coupling and boundary conditions. The discrete equations are
solved iteratively with an inexact-Newton method, while the linear system at each
Newton iteration is solved using a flexible Krylov subspace iterative method with an
approximate-Schur parallel preconditioner. The algorithm is verified and validated
through the solution of two-dimensional model problems, highlighting the correspon-
dence of the current algorithm with several established flow solvers. A transonic so-
lution over the ONERA M6 wing on a mesh with 15.1 million nodes shows good
agreement with experiment. Using 128 processors, the residual is reduced by twelve
orders of magnitude in 86 minutes. The solution of transonic flow over the Common
Research Model wing-body geometry exhibits the expected grid convergence behav-
ior. The algorithm performs well in solving flows around non-planar geometries and
flows with explicitly specified laminar-to-turbulent transition locations. Parallel scal-
ing studies highlight the excellent scaling characteristics of the algorithm on cases with
up to 6656 processors and grids with over 150 million nodes.

Nomenclature

A local (node) flow Jacobian
A global flow Jacobian
CD, Cd coefficient of drag
CL, Cl coefficient of lift
CM coefficient of moment
Cp, Cf coefficients of pressure and friction
d distance to closest surface boundary
D1, D2 SBP operators for first and second derivative
e energy

Ê, F̂, Ĝ inviscid flux vectors

Êv, F̂v, Ĝv viscous flux vectors
I identity matrix
J metric Jacobian
l reference chord length
M Mach number
N number of nodes in computational domain
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p pressure
Pr ,Pr t laminar and turbulent Prandtl number
Q conservative flow variables at individual node
Q conservative flow vector for computational domain
R flow residual vector for computational domain
Re Reynolds number
S∗ Sutherland’s law constant (198.6◦R)
Sr, Sc, Sa row and column scaling matrices

S, S̃ vorticity and vorticity-like term
∆t time step value
T temperature
u, v, w Cartesian velocities
U, V,W contravariant velocities
x, y, z Cartesian coordinate axes
γ specific heat
ǫ Frechet derivative perturbation parameter
κ2, κ4 dissipation coefficients
µ, µt laminar and turbulent viscosity
ν̃ turbulence variable
ρ density
σ dissipation lumping factor
τij viscous stress tensor
ξ, η, ζ computational coordinate axes

I. Introduction

RECENT advances in computer architecture and numerical methods have paved the way for
massively parallel computational infrastructure. Leveraging the ever-increasing access to super-
computer clusters with excess of tens of thousands of processors, large-scale CFD simulations are
becoming more suitable for dealing with problems of practical interest. However, accurate simula-
tions of such flows necessitate the solution of very large problems, with the results from the AIAA
Drag Prediction Workshop [1] indicating that grids with over O(108) grid nodes are required for
grid-converged lift and drag values for flows over a wing-body configuration, with the 5th workshop
of the series making use of grids with up to 150 million nodes. Following this trend, algorithms that
scale well with thousands of processors are required to make efficient use of computational resources.

Established Reynolds-averaged Navier-Stokes (RANS) solvers, such as OVERFLOW [2],
FUN3D [3], Flo3xx [4], and NSU3D [5], implement a variety of numerical approaches. These in-
clude the use of structured or unstructured grids, finite-volume, finite-element, or finite-difference
approximations, explicit or implicit solution strategies, and a wide range of linear solvers and pre-
conditioners. Newton-Krylov methods have been shown to solve turbulent flow problems efficiently
in serial implementations [6, 7]. Wong and Zingg [8] applied the Newton-Krylov method to the
solution of three-dimensional aerodynamic flows on unstructured grids. This paper presents an effi-
cient parallel three-dimensional multi-block structured solver for turbulent flows over aerodynamic
geometries, extending previous work [9, 10] on an efficient parallel Newton-Krylov flow solver for
the Euler equations and the Navier-Stokes equations in the laminar flow regime. The combination
of techniques employed in the current solver also has the benefit of lending itself to a unified ap-
proach for performing both steady and implicit unsteady computations [11]. An efficient and robust
Newton-Krylov flow solver can readily serve as the core of an aerodynamic optimization algorithm,
as was demonstrated by Nemec and Zingg [12] for two-dimensional turbulent flow and by Hicken and
Zingg [13] for three-dimensional inviscid flow. More recent work by Osusky and Zingg [14] has made
use of the current flow solution algorithm for three-dimensional aerodynamic shape optimization in
the turbulent flow regime.

The choice of spatial discretization method and grid type is heavily influenced by the class of
flows and the complexity of geometries the algorithm is to be applied to; the current algorithm is
intended for solving compressible turbulent flows around clean geometries, either for analysis or op-
timization. For smooth geometries, Shu [15] states that finite-difference methods are more efficient
in terms of computational cost and programming complexity than finite-volume or discontinuous-
Galerkin methods. Furthermore, finite-difference methods extend to higher-order in a straightfor-
ward and efficient manner. Structured multi-block grids provide a relatively straightforward means
of creating meshes around complex three-dimensional geometries. By breaking the computational
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domain into several subdomains, or blocks, the approach lends itself readily for use with parallel
solution algorithms. The grids can also easily provide higher resolution of boundary layers without
adversely affecting the grid spacing elsewhere in the domain. Grids created using this method,
however, introduce block interfaces into the computational domain. The treatment of the spatial
discretization at interfaces can impact the efficiency of an algorithm, especially in large parallel ap-
plications. In the current algorithm, simultaneous approximation terms (SATs) are used to impose
boundary conditions, as well as inter-block solution coupling, through a penalty method approach.
SATs were originally introduced to treat boundary conditions in an accurate and time-stable manner
[16], and later extended to deal with block interfaces [17–19]. Svärd et al. [20, 21] and Nordström et

al. [22] have shown the application of SATs for the Navier-Stokes equations to unsteady problems,
as well as some steady model problems. This approach has several advantages over more traditional
approaches: it eliminates the need for mesh continuity across block interfaces, further simplifying
mesh generation; it reduces the communication for parallel algorithms, especially when extended to
higher-order discretizations; and it ensures linear time stability when coupled with summation-by-
parts (SBP) operators. SBP operators provide finite-difference approximations to derivatives, while
also presenting a systematic means of deriving higher-order operators with a stable and suitably
high-order boundary treatment. Consequently, a high-order SBP-SAT finite-difference discretization
is a promising alternative to other high-order approaches, such as finite-volume and discontinuous-
Galerkin methods. However, the SBP-SAT approach has received limited use in computational
aerodynamics applications, in part because SATs present a difficulty in that they can necessitate
the use of small time steps with explicit solvers [23]. Hence, the combination of SATs with a parallel
Newton-Krylov solver has the potential to be an efficient approach, as demonstrated by Hicken and
Zingg [9].

Parallel preconditioning is a critical component of a scalable Newton-Krylov algorithm. Hicken
et al. [24] have shown that an approximate-Schur preconditioner scales well to at least 1000 pro-
cessors when inviscid and laminar flows are considered. The objective of the present paper is to
demonstrate the applicability of a spatial discretization based on the SBP-SAT approach with a
parallel Newton-Krylov-Schur algorithm to the Reynolds-averaged Navier-Stokes equations coupled
with the Spalart-Allmaras one-equation turbulence model [25], resulting in a novel and powerful
solver for turbulent flows. Although the algorithm presented is second-order in space, with the ex-
ception of the convective terms in the turbulence model, it can be efficiently extended to higher-order
[26].

The paper is divided into the following sections. Section II presents a brief overview of the
governing equations, while Section III presents the spatial discretization used. Section IV provides
details of the Newton-Krylov-Schur method and its application to solving the large nonlinear system
resulting from the discretization of the governing equations. Section V presents results obtained
with the current algorithm for steady flow solutions, including transonic flow solutions around the
ONERA M6 and the NASA Common Research Model (CRM) geometry, explicitly tripped flow,
solutions on non-planar geometries, and parallel scaling performance characteristics of the current
algorithm. Conclusions are given in Section VI.

II. Governing Equations
A. The Navier-Stokes Equations

The three-dimensional Navier-Stokes equations, after the coordinate transformation (x, y, z) →
(ξ, η, ζ), are given by

∂tQ̂+ ∂ξÊ+ ∂ηF̂+ ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (1)

where

Q̂ = J−1Q,

Ê = J−1
(

ξxE+ ξyF+ ξzG
)

, Êv = J−1
(

ξxEv + ξyFv + ξzGv

)

,

F̂ = J−1
(

ηxE+ ηyF+ ηzG
)

, F̂v = J−1
(

ηxEv + ηyFv + ηzGv

)

,

Ĝ = J−1
(

ζxE+ ζyF+ ζzG
)

, Ĝv = J−1
(

ζxEv + ζyFv + ζzGv

)

,
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Re = ρ∞a∞l
µ∞

, ’a’ is the sound speed, and J is the metric Jacobian that results from the coordinate
transformation. The ‘∞’ subscript denotes a free-stream value for the given quantity. The notation
ξx, for example, is a shorthand form of ∂xξ = ∂ξ

∂x . The conservative variables and inviscid and
viscous fluxes are given by

Q =









ρ
ρu
ρv
ρw
e









, E =









ρu
ρu2 + p
ρuv
ρuw

u(e+ p)









, F =









ρv
ρuv

ρv2 + p
ρvw

v(e+ p)









, G =









ρv
ρuw
ρvw

ρw2 + p
w(e + p)









,

Ev =









0
τxx
τxy
τxz
Ev,5









, Fv =









0
τyx
τyy
τyz
Fv,5









, Gv =









0
τzx
τzy
τzz
Gv,5









.

The preceding variables have been made dimensionless by the use of the free-stream values of density
and sound speed, as well as chord length. Laminar viscosity is calculated using a dimensionless form
of Sutherland’s law [27]:

µ =
a3(1 + S∗/T∞)

a2 + S∗/T∞
, (2)

where T∞ is typically set to 460◦R.

B. Spalart-Allmaras One-Equation Turbulence Model

In order to solve turbulent flows, a turbulent, or eddy, viscosity, µt, can be added to the
viscosity, µ. The Spalart-Allmaras one-equation turbulence model [25] is used to compute the
turbulent viscosity. The model solves a transport equation for a turbulence variable, ν̃, that is
related to turbulent viscosity. The model itself is a sixth equation that is solved concurrently with
the five Navier-Stokes equations.

The standard version of the model is used in this work, given by

∂ν̃

∂t
+ ui

∂ν̃

∂xi
=

cb1
Re

[1− ft2]S̃ν̃ +
1 + cb2
σtRe

∇ · [(ν + ν̃)∇ν̃]−
cb2
σtRe

(ν + ν̃)∇2ν̃

−
1

Re

[

cw1fw −
cb1
κ2

ft2

]( ν̃

d

)2

+ Reft1∆U2,

(3)

where ν = µ
ρ . The spatial derivatives on the left side of the equation represent advection. The first

term on the right side represents production, while the second and third terms account for diffusion.
The fourth term represents destruction. The final term allows for the specification of an explicit
laminar-turbulent transition location, but it should be stressed that the model cannot predict this
location; it has to be specified either by the user or some other means, such as the eN method [28].
For fully turbulent flows, the value ft1 is set to zero, omitting the explicit trip terms. Refer to
[25] for the values of all the terms and constants that appear in Eq. (3). Importantly, precautions
are taken to ensure that neither the vorticity, S, nor the vorticity-like term, S̃, approaches zero or
becomes negative, which could lead to numerical problems.

As an alternative to trimming negative turbulence values, the presence of which would result in
numerical problems for the above model, Allmaras et al. present a “negative” variant of the model
in [29]. The model variant accepts negative values of ν̃ and modifies the diffusive, production, and
destruction terms for such instances. However, in the present work, it was not found to provide an
advantage in terms of robustness. One of the reasons for this is that the current discretization does
not result in negative turbulence quantities in the converged solution and trimming is adequate in
dealing with any negative values that occur during convergence to steady state.
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a) Typical discretization b) SBP-SAT discretization

Fig. 1 Node information required for spatial discretization at block interface

III. Spatial Discretization

The spatial discretization of the Navier-Stokes equations and the turbulence model is obtained
by the use of Summation-By-Parts (SBP) operators, while inter-block coupling and boundary condi-
tions are enforced weakly by the use of Simultaneous Approximation Terms (SATs). We decompose
our domains into multiple blocks, resulting in multi-block structured grids. This blocking is con-
ducive to localization of high grid density in certain areas without affecting the grid resolution
elsewhere, which can be especially effective when resolving turbulent boundary layers or shocks;
individual blocks with high node density can be placed where required.

One of the important advantages of SATs lies in the manner in which they allow the algorithm to
deal with both domain boundaries and block interfaces. This is illustrated in Fig. 1, which compares
how the governing equations would be handled at an interface with a typical discretization and
the current SBP-SAT discretization. The typical spatial discretization in Fig. 1a) requires spatial
derivatives to be formed across the interface. This is achieved by the use of halo, or ghost, nodes,
effectively completing a full internal discretization stencil with information from the adjoining block.
The SBP-SAT approach, illustrated in Fig. 1b), instead forms a local one-sided approximation to
the required derivatives. Additionally, the SAT itself is added, comprised of a difference between the
flow variables on the local node and the corresponding node on the adjoining block. When dealing
with viscous terms for the Navier-Stokes equations and the diffusive terms for the Spalart-Allmaras
turbulence model, differences in fluxes also have to be considered. Although this approach does
not result in a transparent interface treatment, the error introduced at the interfaces is small and
consistent with the order of accuracy of the method [22, 30].

The SBP-SAT approach requires less information from adjoining blocks in order to obtain a
discretization of the governing equations at block interfaces. This results in a reduced requirement
for information sharing between blocks, which is especially advantageous for parallel algorithms,
reducing the time spent in communication. Additionally, the fact that this discretization does
not need to form any derivatives across interfaces reduces the continuity requirements for mesh
generation at interfaces. In fact, only C0 continuity is necessary, allowing the algorithm to provide
accurate solutions even on grids with relatively high incidence angles for grid lines at interfaces,
an example of which can be seen in Fig. 2. Using a typical discretization approach on such a grid
would result in errors in any spatial derivatives taken across the interfaces. This feature substantially
reduces the burden placed on the grid generation process, especially for complex three-dimensional
geometries, such as the NASA Common Research Model (CRM) [31].

This section presents the SBP operators for first and second derivatives and their application
to the governing equations, as well as the various SATs required. The focus of this paper is to
present the implementation of the discretization for the viscous terms and turbulence model, with
the details of the Euler equation implementation presented previously by Hicken and Zingg [9].
Additional details, including the theory behind the development of the SBP-SAT approach, can be
found in references [9, 10, 20–22, 32], and [33]. It is important to note that while the algorithm
presented in this paper is second-order accurate, the SBP-SAT discretization provides a relatively
straightforward approach to extending to higher orders of accuracy [11, 26, 34].

Numerical dissipation is added using either the scalar dissipation model developed by Jameson
et al. [35] and later refined by Pulliam [36], or the matrix dissipation model of Swanson and Turkel
[37]. With the current second-order spatial discretization (with the exception of the convective
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Fig. 2 Blocks and grid-lines at leading edge of wing in an H-H topology grid with C0 continuity

terms in the turbulence model), the numerical dissipation consists of second- and fourth-difference
dissipation operators, whose magnitudes are controlled by the κ2 and κ4 coefficients, respectively,
typically set to 2.0 and 0.04 for transonic flows. For subsonic flows, κ2 is set to 0.

Grid metrics, which result from the coordinate transformation, are computed using the second-
order SBP operator for a first derivative,

A. Summation-by-parts operators

SBP operators allow for the construction of finite-difference approximations to derivatives.
When dealing with the governing equations considered in this work, approximations to both the
first and second derivatives are required.

The SBP operators for the first derivative were originally derived by Kreiss and Scherer [32],
subsequently extended by Strand [33], and applied by various authors (see [9, 22, 26, 38, 39]). SBP
operators are centered difference schemes that do not include boundary conditions; in our case these
are enforced using SATs. They are constructed so that the discrete energy-method can be used to
make time stability statements about a discretization and have been shown to be time-stable for the
linearized Navier-Stokes equations [38]. For curvilinear coordinates, however, time-stability can only
be guaranteed for SBP operators constructed with a diagonal norm. Hence, this type of operator is
considered for this work.

1. SBP operator for first derivative

In this section we briefly present the second-order SBP operator for the first derivative. A
globally second-order accurate operator for a first derivative is given by

D1 = H−1Θ, (4)

where

H = h










1
2

1
. . .

1
1
2










, Θ = 1
2










−1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 1










,

and h takes on the value of the spacing in the pertinent coordinate direction, either ∆ξ, ∆η, or
∆ζ. In the context of the uniform computational grid, h has a value of 1 for all three coordinate
directions. The second-order operator takes on the form of a centered difference approximation on
the interior of a block, with one-sided first-order treatment at block boundaries.
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Application to Navier-Stokes equations

The D1 operator is used to obtain a finite difference approximation of the inviscid fluxes for the
entire computational domain. For example, the inviscid flux in the ξ-direction can be taken as

∂ξÊ ≈ D1ξÊ. (5)

With the viscous component of the Navier-Stokes equations, the D1 operator is used in the
discretization of the cross-derivative terms, which have the form

∂ξ(β∂ηα), (6)

where β is a spatially varying coefficient, and α is a flow quantity such as the x-component of
velocity, u. Using Eq. (4), the cross-derivative can be approximated as

D1ξβD1ηα, (7)

resulting in the following interior discretization (at node (j, k,m)):

1

2
βj+1,k,m

(
αj+1,k+1,m − αj+1,k−1,m

2

)

−
1

2
βj−1,k,m

(
αj−1,k+1,m − αj−1,k−1,m

2

)

. (8)

An analogous approach is used for terms where cross-derivatives in any two directions are required.

Application to Spalart-Allmaras turbulence model

The advective terms that appear in the turbulence model consist of first derivatives of the
turbulence variable, ν̃, multiplied by velocities. An example of this is the term associated with the
spatial derivative in the ξ-direction, given by

U∂ξν̃, (9)

where U is defined as ξxu+ ξyv + ξzw.
The authors of the model suggest the use of an upwinding strategy when discretizing this term,

which is the approach taken here. However, in the context of SBP operators, we have made use of
the connection between upwinding and artificial dissipation, namely that an upwinded operator can
be expressed as a centered difference operator added to a dissipative operator. The derivative can
be taken as

U∂ξν̃ ≈ UD1ν̃ +
1

2
|U|H−1DT

d Ddν̃ (10)

where ν̃ represents a vector containing the turbulence quantity in the domain, and

U = diag (U1, U2, ..., UN) , |U| = diag (|U1|, |U2|, ..., |UN |) , Dd =










−1 1
−1 1

. . .
. . .

−1 1
0










,

where N is the number of nodes in the pertinent coordinate direction.
The above SBP discretization provides a clear approach to dealing with block boundaries. For

completeness, the following shows the resulting discretization in different parts of the domain:

low side: (U1 − |U1|) (ν̃2 − ν̃1) ,
interior: 1

2Uj (ν̃j+1 − ν̃j−1)−
1
2 |Uj| (ν̃j+1 − 2ν̃j + ν̃j−1) ,

high side: (UN + |UN |) (ν̃N − ν̃N−1) .

The first derivative operator of Eq. (4) is also used in the discretization of the vorticity term, S.
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2. SBP operator for second derivative with variable coefficients

The compressible Navier-Stokes equations require a discrete approximation to derivatives of the
form ∂ξ(β∂ξα). The simplest means of discretizing these terms is to apply the first derivative twice.
Alternatively, one can construct a discrete approximation that has the same stencil width as the
first derivative, called a compact-stencil operator. The application of the first derivative twice has
several disadvantages compared to compact-stencil operators: larger bandwidth, loss of one order
of accuracy, higher global error, and less dissipation of high wavenumber modes [40]. Given these
shortcomings, our approach is to use compact SBP operators for the second derivative with variable
coefficients.

The second-order operator, originally developed by Mattsson et al. [38], can be expressed as

D2(β) = H−1

{

− (D1)
T
HBD1 −

1

4h

(

D̃2

)T

C2BD̃2 + EBD
(2)
1

}

, (11)

where

D̃2 =














1 −2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1
1 −2 1














, C2 =










0
1

. . .

1
0










,

EBD
(2)
1 =

1

h










3β1

2 −2β1
β1

2
0 0 0

. . .
. . .

. . .

0 0 0
βN

2 −2βN
3βN

2










,

B is a diagonal matrix containing the spatially varying coefficients, and D1 is defined in Eq. (4).
Where necessary, the notation D(b) provides the order of the operator at block boundaries (b). The
tilde symbol signifies an undivided difference operator.

The double-derivative in the viscous terms of the Navier-Stokes equations and the diffusive
terms of the turbulence model can be approximated as

∂ξ (β∂ξα) ≈ D2(β)α. (12)

For an internal node, this will result in the narrow stencil used by Pulliam [36] (with k and m
subscripts suppressed):

1

2
(βj+1 + βj)(αj+1 − αj)−

1

2
(βj + βj−1)(αj − αj−1). (13)

At block boundaries, where one-sided differences are employed, the discretization takes on the form

low side: −β1 [2(α2 − α1)− (α3 − α2)] + β2(α2 − α1),
high side: βN [2(αN − αN−1)− (αN−1 − αN−2)]− βN−1(αN − αN−1).

(14)

B. Simultaneous Approximation Terms

The use of SBP operators ties in closely to the application of SAT penalties at block boundaries,
either interfaces or domain boundaries. SATs are used to preserve inter-block continuity, or enforce
specific boundary conditions. The purpose of this section is not to derive the forms of the various
SATs used, but rather to present the implementation used in the present algorithm. See references
[9, 20–22] for an analysis and derivation of the SAT terms applied to the Navier-Stokes equations.
All SAT terms that follow are shown in the form in which they would be added to the right-hand-side
of the governing equations.
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1. SATs for Navier-Stokes equations

The form of the inviscid, or Euler, portion of the SATs on the low side of a block is

SATinv = −H−1
b J−1A+

ξ (Q−Qtarget) , (15)

where Hb is the boundary node element of the diagonal norm matrix H ,

A+
ξ =

Aξ+|Aξ|
2 , Aξ = ∂Ê

∂Q̂
,

and Q are the flow variables on the boundary node in the current block. |Aξ| denotes X−1 |Λ|X ,
where X is the right eigenmatrix of Aξ, and Λ contains the eigenvalues along its diagonal. At a
high-side boundary A−

ξ is used to capture the incoming characteristics, and the sign of the penalty
is reversed. When dealing with boundaries normal to the other two coordinate directions, Aξ is
replaced by either Aη or Aζ . The variable Qtarget takes on the target values to which the local
values of Q are being forced. When dealing with a block interface, these are the flow variable values
on a coincident node in a neighbouring block, or, when dealing with a far-field boundary, they can be
the free-stream flow variable values. A number of different boundary conditions, such as a slip-wall
or symmetry plane, can be enforced using this approach for the Euler equations. In each case, the
SAT works on a principle very similar to characteristic boundary conditions.

The basis of the viscous SATs is presented by Nordström et al. [22] and is summarized below,
with special attention being paid to each type of block boundary.

The first type of viscous SAT deals with differences in viscous fluxes. In the ξ-direction, this
term has the form

SATvisc_flux =
H−1

b σV

Re

(

Êv − Êv,target

)

, (16)

where Êv is the local viscous flux, and Êv,target is the target value of the viscous flux. Additionally,
σV = 1 at a low-side boundary, and -1 at a high-side boundary. At a far-field boundary, which is
supposed to force the solution towards free-stream conditions, Êv,target = 0. Interface SATs also

make use of (16), where Êv,target is equal to Êv2, the viscous flux on the coincident node in the
adjoining block.

A no-slip adiabatic wall boundary condition is enforced with the use of a different type of term,
which is again added on top of the Euler SAT. The form of the viscous portion of the no-slip wall
SAT for a boundary at the low or high side of a block in the ξ-direction, is

SATvisc_wall,1 =
H−1

b σW

Re
I (Q−Qtarget) , (17)

where I is the identity matrix,

σW ≤ −
ξ2x + ξ2y + ξ2z

J

µ

2ρ
max

(
γ

Pr
,
5

3

)

, and Qtarget =

[

ρ1, 0, 0, 0,
ρ1T2

γ(γ − 1)

]T

,

where Pr is set to 0.72 and γ = 1.4 for air. σW is calculated based on local values, while Qtarget is
constructed in order to enforce an adiabatic no-slip wall boundary condition. The three momentum
components are forced toward zero, thus satisfying the no-slip condition, while no condition is
enforced on density, since the local value of density, ρ1, will cancel out in the penalty term. The
energy equation has a penalty term applied to it based on the value of the temperature of one
node above the boundary, T2. This approach will result in a zero temperature gradient at the solid
boundary, along with a no-slip velocity condition. The use of T2 to enforce the adiabatic condition
relies on the assumption that the grid is perpendicular to the surface of the wing, which may not
always be true. The form of the SAT presented in (17) can also be readily used to enforce an
isothermal boundary condition. This can be achieved by replacing the T2 term in Qtarget with the
desired wall temperature, Tw, as described in [21]. Unlike a more traditional method of applying the
adiabatic no-slip surface condition, the penalty approach presented here does not apply a boundary
condition on the equation for the conservation of mass. This is due to the fact that the Navier-Stokes
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equations are solved on all nodes, including the boundaries, so we do not need to provide an explicit
value for all variables at the surface (as required for some traditional methods).

An alternate approach to dealing with the adiabatic condition involves a combination of previ-
ously discussed penalty terms. The surface penalty in (17) can be modified to only enforce the no-slip
condition, while the viscous flux penalty in (16) can be modified to enforce the zero-temperature
gradient necessary for the adiabatic condition. The overall form of this SAT is

SATvisc_wall,2 =
H−1

b

Re

[

σW I (Q−Qtarget) + σV
(

Êv − Êv,target

)]

, (18)

where

Qtarget = [ρ1, 0, 0, 0, e1]
T
,

and Êv,target is identical to Êv, except that the temperature derivative terms normal to the wall
are set to zero. The local values of density and energy are given by ρ1 and e1, respectively, and the
coefficients σW and σV retain their previously defined values. In this way, the first part of the SAT
enforces only the no-slip condition, while the second part enforces the adiabatic condition. Since this
approach uses the gradients as they appear in the viscous stresses, it makes no assumptions about
the grid (whether or not it is perpendicular to the surface), and enforces a more general condition
of ∂T

∂n = 0.
Block interfaces are treated in a similar way, but with additional viscous SATs for penalizing

differences in conservative variable values. The form used is:

SATvisc_vars = −
H−1

b σV2

JRe
Bint,ξ (Q−Qtarget) , (19)

where

σV2 ≤ 0.5

for stability, and Qtarget is the vector of conservative flow variables on the coincident node in
the adjoining block. The Bint matrix is related to the viscous Jacobian, and is derived based on
Nordström et al. [22]. Refer to the Appendix for the complete form.

In order to reduce the size of the computational domain, symmetry boundaries can be imposed.
SATs are again used to impose this boundary condition by using (15) to impose a purely tangential
flow (Qtarget is constructed in such a way as to force the normal velocity component to zero). In
addition, (17) is used to enforce a zero normal gradient in all conservative variables.

The following is used to enforce the inviscid SAT on an outflow boundary in a viscous flow:

SATinv_outflow =
H−1

b σI

J
A−

ξ (Qjmax
−Qjmax−1) , (20)

in which the boundary is assumed to be on the high side of a block in the ξ-direction. The mod-
ification is appropriate in dealing with the viscous wake region. The advantage of this approach
is that it requires minimal modification to the existing Euler SAT term, which typically uses the
free-stream flow conditions instead of Qjmax−1. An alternate approach to dealing with the outflow
condition is presented by Svärd et al. [20].

2. SATs for turbulence model

The SAT for the advection portion of the turbulence model needs to account for the flow
direction in much the same way as the Euler equation SATs. This can be achieved using the
following form of the SAT:

SATadv = H−1
b σa (ν̃ − ν̃target) , (21)

where ν̃ is the local value of the turbulence variable and ν̃target is the target value of the turbulence
variable, which can either be specified by a boundary condition or, in the case of a block interface,
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the corresponding value on an adjoining block. The SAT parameter σa is constructed so that it
accounts for the direction of information propagation in the flow:

σa = −
1

2
[max (|U |, φ) + δaU ] , (22)

where δa is +1 on the low side of a block, and -1 on the high side of a block. On an interface all
flow related information in σa, such as the contravariant velocity U , is based on an average velocity
between the coincident interface nodes, while at a domain boundary, it is constructed based on local
information only. Finally, φ is a limiting factor introduced to prevent the SAT from completely
disappearing in regions where the value of U goes to zero, such as near a solid surface. Following
the work done on the Euler equation SATs, the value of φ was chosen to be

φ = Vl

(

|U |+ a
√

ξ2x + ξ2y + ξ2z

)

, (23)

where Vl = 0.025, and a is the speed of sound. The quantity appearing in the brackets above is the
spectral radius of the inviscid flux Jacobian.

As with the SATs used for the viscous portion of the Navier-Stokes equations, the SATs for the
diffusive portion of the turbulence model consist of two parts, one dealing with the difference in the
turbulent quantity, the other dealing with the difference in the turbulent quantity gradient.

The diffusive SAT dealing with the difference in gradients of the turbulence variable has the
general form

SATdiff_flux = H−1
b σdf (g − gtarget) , (24)

where σdf is +1 on the low side of a block and -1 on the high side of a block. Additionally, the
turbulence quantity gradients, denoted by g, have the form

g =
1

σtRe
(ν + ν̃)

(
ξ2x + ξ2y + ξ2z

)
δξν̃, (25)

where δξν̃ is a one-sided first derivative consistent with the definition of the second derivative SBP

operator at block boundaries, specified in the D
(2)
1 matrix of Eq. (11). The parameter σt is defined

as part of the turbulence model with a value of 2/3. This SAT is applied at the farfield boundary,
with the target gradient set to 0, or at block interfaces, with the target gradient calculated based
on values at the interface of the adjoining block.

The diffusive SAT that deals with the difference in flow variables has a form analogous to the
viscous SAT presented by Nordström et al. [22] for the Navier-Stokes equations,

SATdiff_vars = −H−1
b

1

4σtRe
σdv (ν̃ − ν̃target) , (26)

where

σdv = (ν + ν̃)
(
ξ2x + ξ2y + ξ2z

)
. (27)

As with the advective SAT, the value of σdv is based on a state average when dealing with an
interface, or simply the local state when at a domain boundary. Grid metrics are always taken from
the local block information. This SAT is applied at block interfaces, wall boundaries (where the
target value is 0), and symmetry planes (where the target value is taken from one node inside the
boundary).

While the production and destruction terms act as source terms, therefore not necessitating the
application of the SBP-SAT approach due to the absence of spatial derivatives, we have found it
necessary to add a source term for nodes located directly on the surface of the aerodynamic body.
Even though the distance value is zero at a solid boundary, the original reference for the turbulence
model [25] presents limiting values for both the production and destruction terms. The values are
based on a local surface shear stress, τw. The initialization of the flow conditions to a uniform state
results in the shear stress being negligible in the early iterations of the solution process, resulting
in insignificant limiting values for the production and destruction terms. The lack of source terms
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for the surface nodes leads to a significant difference in the residual value between the surface nodes
and the nodes directly above the surface. This difference can result in large, destabilizing updates
to the turbulence variable, often causing the flow solution to diverge.

To mitigate this, a destruction source term is added to all nodes with a zero off-wall distance
in order to stabilize the solution in the early stages of convergence. It is calculated using a value
of d = dmin/2, where dmin is the smallest non-zero off-wall distance in the entire computational
domain. The use of this extra source penalty for the surface nodes does not have a significant
impact on the converged solution, as it forces the surface ν̃ towards 0.

The farfield condition used with the turbulence model for fully turbulent flows sets the target
farfield value of ν̃ to 3.0, as suggested by Spalart and Rumsey [41], while flows with an explicit trip
location specified use a target farfield value of 0.1. It should be noted that the value for tripped
flows is at the high end of the recommended range, but has resulted in more robust algorithm
performance. The target surface value of ν̃ is set to 0.0.

IV. Solution Methodology

Applying the SBP-SAT discretization described in the previous section to the steady Navier-
Stokes equations and the Spalart-Allmaras one-equation turbulence model results in a large system
of nonlinear equations, defined as

R(Q) = 0. (28)

When time-marched with the implicit Euler time-marching method and a local time linearization,
this results in a large system of linear equations of the form [42]

(
I

∆t
+A(n)

)

∆Q(n) = −R(n), (29)

where n is the outer (nonlinear) iteration index, R(n) = R(Q(n)), ∆Q(n) = Q(n+1) −Q(n), and

A(n) =
∂R(n)

∂Q(n)
.

In the infinite time step limit, the above describes Newton’s method and will converge quadrat-
ically if a suitable initial iterate, Q(0), is known. This initial iterate must be sufficiently close to
the solution of (28). Since it is unlikely that any initial guess made for a steady-state solution will
satisfy this requirement, the present algorithm makes use of a start-up phase whose purpose it is
to find a suitable initial iterate. The following sections describe each of the phases as they apply
to the solution of the Navier-Stokes equations. Both phases result in a large set of linear equations
at each outer iteration, which are solved to a specified tolerance using the flexible variant of the
preconditioned Krylov iterative solver GMRES. To avoid the modification of the residual vector,
right preconditioning is used.

A. Approximate-Newton phase

The approximate-Newton method makes use of implicit Euler time-stepping to find a suitable
initial iterate for Newton’s method. Since we are not interested in a time-accurate solution, some
useful modifications can be made. These include a first-order Jacobian matrix and a spatially
varying time step.

A first-order approximation to the Jacobian matrix, A1, has been shown to be an effective
replacement for the true Jacobian, A, during the start-up phase [6, 43, 44]. A number of approxi-
mations are made when creating the first-order approximation to the Jacobian. When dealing with
the inviscid terms, the fourth-difference dissipation coefficient, κ4, is combined with the second-
difference dissipation coefficient, κ2, to form a modified second-difference dissipation coefficient, κ̃2,
such that

κ̃2 = κ2 + σκ4,
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A value of σ = 8 is used with scalar dissipation, while solutions with matrix dissipation use σ = 12.
The modified fourth-difference dissipation coefficient, κ̃4, is set to zero. Applying this lumping
approach reduces the number of matrix entries for the inviscid terms, reducing the memory require-
ments for the code.

The viscous terms, however, still possess a relatively large stencil. To mitigate this, the cross-
derivative terms that appear in the viscous stresses are dropped when constructing the first-order
Jacobian. This approach reduces the stencil of all interior nodes to nearest neighbors only, matching
the stencil size of the inviscid terms, which is substantially smaller than that of the full flow Jacobian.
The linearization of the viscous flux SATs for the Navier-Stokes equations is also modified to ignore
the tangential derivatives, which are analogous to the cross-derivatives. Additionally, the viscosity
value appearing in the viscous fluxes is treated as a constant when forming the approximate Jacobian.

No approximations are made to the discretization of the turbulence model when constructing
the Jacobian entries that arise due to the solution of this extra equation, since all cross-derivatives
were dropped during the coordinate transformation and the turbulence model already possesses the
minimum stencil size.

The implicit Euler method requires a time step whose inverse is added to the diagonal elements
of A1. A spatially varying time step has been shown to improve the convergence rates of Newton-
Krylov algorithms, leading to the use of the following value:

∆t
(n)
j,k,m =

Jj,k,m∆t
(n)
ref

1 + 3

√
Jj,k,m

, (30)

where (j, k,m) denote the indices of the node to which this time step is being applied. Since the

solver uses the unscaled flow variables Q, instead of the transformed variables Q̂, the J term that
results from the coordinate transformation is lumped into the numerator of (30). The reference time
step is

∆t
(n)
ref = a(b)n,

where typical values used for turbulent flow solutions are a = 0.001 and b = 1.3. The approach
provides a steady geometric increase to ∆tref , allowing the algorithm to take progressively larger
time steps without destabilizing the solution. This is especially important in the initial iterations,
where large fluctuations in flow quantities could lead to divergence.

Effective preconditioning is critical to an efficient parallel linear solver. The first-order Jacobian
is factored using block incomplete lower-upper factorization (BILU) with fill level p in order to
construct the preconditioner, with a typical fill level of 2. This is a computationally expensive task,
especially in the approximate-Newton phase, which requires many outer iterations. Previous work
[9, 45] has shown that lagging the update of the preconditioner (freezing it for a number of iterations)
during the start-up phase can improve the efficiency of the flow solver. Experience with turbulent
flow solutions is mixed, with lagging often resulting in divergence of the nonlinear problem.

Two approaches to parallel preconditioning, namely additive-Schwarz [46] and approximate-
Schur [47], have been previously investigated in the context of a parallel Newton-Krylov flow solver
for the Euler [9, 24] and Navier-Stokes [24] equations, with a thorough description of their ap-
plication to the current linear system provided in the references. The approximate-Schur parallel
preconditioner is used in the current work, and is described in Section IVC.

An important part of using a start-up phase is knowing when a suitable iterate has been found
to initiate the inexact-Newton phase. For this purpose, the relative drop in the residual is used:

R
(n)
d ≡

||R(n)||2
||R(0)||2

. (31)

For turbulent flows, once this value reaches 1 × 10−4, i.e. the residual has dropped by 4 orders of
magnitude in the approximate-Newton phase, the algorithm switches to the inexact-Newton method.
This initial drop is larger than is required for inviscid or laminar solutions for two reasons. First, the
turbulence quantity fluctuates substantially more than the mean-flow quantities during the start-up
phase, necessitating a longer start-up than flow solutions dealing with inviscid or laminar flows.
Second, due to the use of grids with much finer spacing near the surface of the aerodynamic shape,
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the initial residual, R(0), starts at a much larger value, but drops by one to two orders of magnitude
very quickly before settling into a convergence pattern similar to that observed with inviscid or
laminar solves. Hence, the relative residual drop threshold, Rd, is adjusted to compensate for these
differences. This parameter may need to be adjusted slightly depending on the complexity of the
flow being solved.

B. Inexact-Newton phase

The inexact-Newton phase uses a different scheme for the reference time step, designed to ramp
the time step toward infinity more rapidly than in the approximate-Newton phase. This eventually
eliminates the inverse time term from the left-hand-side of the discretized Navier-Stokes equations.
The present work involves the use of a scheme developed by Mulder and van Leer [48], by which a
new reference time step is calculated and used in (30):

∆t
(n)
ref = max

[

α
(

R
(n)
d

)−β

,∆t
(n−1)
ref

]

,

where β ∈ [1.5, 2.0] and α is calculated as

α = a(b)nNewt

(

R
(nNewt)
d

)β

,

and nNewt is the first iteration of the inexact-Newton phase.
In contrast with the approximate-Newton phase, the inexact-Newton phase uses the full second-

order accurate Jacobian. However, since we use a Krylov subspace method, we do not need to form
the full Jacobian matrix, A, explicitly. Instead, only Jacobian-vector products are required, which
can be approximated using a first-order forward difference:

A(n)v ≈
R(Q(n) + ǫv)−R(Q(n))

ǫ
.

The parameter ǫ is determined from

ǫ =

√

Nuδ

vTv
,

where Nu is the number of unknowns, and δ = 10−12. The approximate Jacobian, A1, is still used
for preconditioning the system.

Finally, neither the approximate-Newton nor the inexact-Newton phase solves its respective
linear system exactly. Instead, the following inequality is used to govern how far the system is
solved:

||R(n) +A(n)∆Q(n)||2 ≤ ηn||R
(n)||2,

where the forcing parameter ηn is specified. If it is too small, the linear system will be over-solved
and will take too much time, but if it is too large, non-linear convergence will suffer. For the present
work, a value of 0.05 is used for the approximate-Newton phase, while 0.01 is used for the inexact-
Newton phase. An important aspect to consider when using GMRES is the amount of memory
available on the computational hardware. Since GMRES stores the vectors from the individual
search directions, it is important to limit the maximum number that are stored (to prevent the
algorithm from crashing). This is especially critical in the inexact-Newton phase, where the linear
solver may have difficulty attaining the above-mentioned relative tolerance before the maximum
number of search directions is reached, especially for complex flows. For the flow solutions presented
in this work, limiting the number of search directions to 70 provides sufficient linear convergence
without reaching memory limitations of the computational systems. It should be stressed that this
limit is typically triggered towards the end of the flow solution process.

14



C. Approximate-Schur Parallel Preconditioner

The preconditioning step requires the solution of the generic global system

Ax = b, (32)

where A ∈ R
n×n and x,b ∈ R

n.
In the context of a distributed parallel implementation, it is necessary to define a representation

of the individual subsystems located on various processes. To achieve this, the rectangular matrix
Pi is used to project the global vector onto a local vector corresponding to the unknowns stored on
process i. Applying Pi to the linear system Eq. (32), and considering local solutions of the form
x = PT

i xi, we obtain the block diagonal system

Aixi = bi, (33)

where bi ≡ Pib and Ai ≡ PiAP
T
i . The local matrix Ai is factored into LiUi using BILU(p) [49].

The local unknowns, xi, are separated into two groupings, consisting of unknowns dependent
on local information only, ui, and unknowns that are coupled to information on processor j 6= i,
defined as yi. The coupling is a result of the application of SATs at block interfaces. By placing
the unknowns yi last, this ordering partitions PiAx = Pib into the following block structure:

(
Bi Fi

Hi Ci

)(
ui

yi

)

+

(
0

∑

j Eijyj

)

=

(
fi
gi

)

. (34)

The variables ui are not coupled across processors and can be eliminated using

ui = B
−1
i (fi − Fiyi). (35)

Substituting ui into Eq. (34) we find the following system for the variables coupling the domains:








S1 E12 . . . E1P

E21 S2 . . . E2P

...
. . .

...
EP1 EP2 . . . SP








︸ ︷︷ ︸

S








y1

y2

...
yP








=








g′
1

g′
2
...
g′
P








, (36)

where Si ≡ Ci−HiB
−1
i Fi, and g′

i ≡ gi−HiB
−1
i fi. The coefficient matrix S is the Schur complement

corresponding to the variables coupled between processors. Suppose we solve Eq. (36) using block
Jacobi. This approach would parallelize well, but it requires Si — more precisely, its inverse — which
can be expensive to form explicitly. Saad and Sosonkina [47] recognized that an ILU factorization
of Si can easily be extracted from an ILU(p) factorization of Ai. Their Schur-based preconditioner
consists of a GMRES-accelerated approximate solution of Eq. (36), with Si replaced by its ILU
factorization. Once approximate solutions to the yi are obtained, they are substituted into Eq.
(35), with Bi replaced with its ILU(p) factorization, to obtain ui.

D. Special Considerations for Turbulence Model
1. Equation scaling

The addition of the turbulence model to the linear system Eq. (29) presents some unique
challenges, as the scaling of the linear system can be adversely affected, resulting in unpredictable
behavior of the linear solver. The improper scaling arises from several factors. First, the turbulence
model does not contain the inherent geometric scaling present in the mean flow equations (division
by J). Second, the turbulence quantity can be as large as 1000 or higher in the converged solution,
while the nondimensionalized mean flow quantities rarely exceed 2. Finally, the terms that result
from the linearization of the turbulence model with respect to the mean flow variables add large off-
diagonal values to the Jacobian. Hence, a more sophisticated scaling approach has been implemented
to account for these discrepancies, based on Chisholm and Zingg [7], in order to obtain an efficient
and accurate solution of the linear system. The row, or equation, scaling of the mean flow equations
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is achieved by multiplying the equations by a factor that includes the metric Jacobian, removing
the inherent geometric scaling, while the turbulence model is scaled by ν̃−1

max. This value accounts
for the maximum turbulence value that is likely to be encountered in the flow solve, effectively
normalizing the turbulence equation by that quantity. For the current work, ν̃max = 103. In order
to normalize the flow variable values, the turbulence variable quantity is also multiplied by ν̃−1

max.
Hence, instead of solving the system presented in Eq. (29), the linear solution algorithm tackles a
scaled system of the form

SaSr

(
I

∆t
+A(n)

)

ScS
−1
c ∆Q

(n) = −SaSrR
(n), (37)

where Sr and Sc are the row and column scaling matrices, respectively. Sa is an auto-scaling matrix
used to bring the values of the individual equation components within an order of magnitude, further
improving the scaling of the linear system. In the current implementation, these matrices are defined
as

Sr = diag (Sr1, ..., SrN) , Sc = diag (Sc1, ..., ScN) ,

where

Sri =













J
2/3
i

J
2/3
i

J
2/3
i

J
2/3
i

J
2/3
i

ν̃−1
maxJ

−1/3
i













, Sci =











1
1

1
1

1
ν̃max











,

and Ji is the value of the metric Jacobian at the ith node in the computational domain. The powers
used for the metric Jacobian are selected to reduce the dependency on the mesh spacing in the
residual. The values in the auto-scaling matrix are calculated based on the equation-wise residual
L2-norms of the partially scaled system SrR

(n). Instead of scaling each node by a unique value,
they scale the component equations by different amounts. Any residual values required for tracking
convergence and the time step calculation make use of the partially scaled residual SrR

(n), which
balances the contributions from the component equations, particularly the turbulence model.

2. Negative turbulence quantities

During convergence to steady state, it is not atypical to encounter negative values of ν̃ in
the flowfield. These values are nonphysical, and merely a result of the occurrence of large tran-
sients in the solution, especially during the early stages of convergence or after the switch from the
approximate-Newton phase to the inexact-Newton phase. However, it is important to address these
negative values, since they could destabilize the solution process. The approach taken is to trim any
negative ν̃ values to a very small positive quantity. In particular, any negative turbulence quantities
that are encountered on a solid surface are trimmed to 10−14ν, while all other locations are trimmed
to 10−3ν. The local ν value is introduced such that advective and diffusive fluxes do not vanish
completely from regions where several adjacent nodes are trimmed during the same iteration, which
can occur if all values are trimmed to a constant.

Additional trimming is used when dealing with the value of vorticity, S. In order to avoid
numerical problems, this value is not allowed to fall below 8.5 × 10−10. Finally, the vorticity-like
term, S̃, cannot be allowed to become nonpositive, which would have a destabilizing effect on the
values of the production and destruction terms. We have found that the following trimming approach
works well:

S̃ =

{

S̃ : S̃ > 0.3S
0.3S : otherwise.

(38)
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3. Off-wall distance calculation

An important consideration in the use of the Spalart-Allmaras turbulence model is the method
by which the off-wall distance, d, is calculated. Many implementations, in an effort to save computa-
tional time and reduce code complexity, make use of approximations in calculating the distance from
each volume node to the closest solid boundary. These range from following grid lines towards a sur-
face, a method that itself becomes very complex when dealing with multi-block grids, to calculating
distances to individual grid nodes on the surface. While these methods provide reasonably accurate
representations of d, certain grid topologies can result in values that have a substantial effect on the
force coefficients. This effect is due to the sensitivity of the Spalart-Allmaras turbulence model to
the values used for d. It is therefore highly recommended that a method which identifies the entire
surface, including edges and surface segments between the nodes on a solid boundary, be used in
calculating d, as it will provide more accurate off-wall distance values on a wide variety of grids,
regardless of blocking or gridding anomalies. Such an approach is used in the current algorithm.

4. Time step for turbulence model

In their work on a two-dimensional Newton-Krylov flow solution algorithm, Chisholm and Zingg
[7] discuss the need to introduce limits on the time step used for the turbulence model. In their
experience, the limits were required to achieve robust performance of the algorithm, which could
destabilize if large updates to the turbulence variable were made in the early stages of convergence.

For a strong boundary condition treatment, the large fluctuations in the turbulence quantities
are usually observed near solid boundaries and are the result of a large difference between the
initial values of the turbulence quantities of the surface and the surface-adjacent nodes. Through
the use of a strong boundary condition, the surface values are forced to remain at a constant
value throughout the solution process, regardless of what is happening elsewhere in the flowfield.
This can result in large flux values, eventually leading to large, destabilizing solution updates. By
limiting the time step used for the turbulence model, the large updates to the turbulence variable
are significantly reduced, resulting in more robust performance over a range of flow conditions. The
SBP-SAT discretization, on the other hand, does not initially differentiate between surface and
surface-adjacent nodes; all nodes are initialized to the same flow variable values. Instead, the SATs
act to weakly enforce the boundary conditions, slowly changing the values of the surface variables
as the solution evolves. In this way, the SBP-SAT discretization rarely sees large updates to the
turbulence quantity, and therefore does not necessitate the use of special time step values for the
turbulence model when solving fully turbulent flows. Similar convergence improvements have been
demonstrated by Nordström et al. [50], who have shown that weakly enforced boundary conditions
provide faster convergence to steady state for the Navier-Stokes equations.

In fact, the only special time step limitations required for the turbulence model used in this
algorithm are related to explicitly tripped turbulent flow solutions. As expected, the substantial
nonlinearities present in such a flow pose a difficult problem for the solution algorithm, necessitating
the use of a reduced time step. This was also true of the work done in [7], and the current approach
is based on the results presented therein.

The use of the explicit trip terms in the turbulence model, when simulating flows with laminar to
turbulent transition, can introduce substantial instabilities into the solution process, often resulting
in divergence. An effective strategy is to limit the time step used for the turbulence model, while
the mean-flow equation time step remains unchanged. In particular, the following has been found
to work well for cases when explicit trip terms are active:

∆tSA_trip =
1

100
∆t, (39)

where ∆t is is defined in Eq. (30). This modification is not necessary for fully turbulent flow
simulations.

V. Results

This section presents a number of cases that were run to showcase the capabilities of the flow
solver on a wide range of challenging steady flow computations. Included are solutions of flow
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Fig. 3 Residual convergence for transonic flow over the ONERA M6 wing with 128 processors

around wing and wing-body configurations, wings with explicitly specified laminar-to-turbulent
transition locations, and non-planar configurations. Finally, the parallel scaling of the algorithm is
demonstrated on very large grids, using up to 6656 processors.

In order to verify the implementation and accuracy of the current algorithm, several verification
and validation cases were completed. Making use of the extensive data available on the NASA Tur-
bulence Modeling Resource (TMR) website (http://turbmodels.larc.nasa.gov), we have been
able to verify the current algorithm, named DIABLO, against well-established solvers FUN3D and
CFL3D for the flat plate and bump-in-channel flows. Additionally, validation studies were per-
formed with flow around a NACA0012 airfoil, where comparison to experimental results could also
be made. These results can be found in the Appendix.

Computations were performed on the GPC supercomputer at the SciNet HPC Consortium
and the Guillimin supercomputer of the CLUMEQ consortium, both part of Compute Canada. The
systems use Intel Nehalem processors interconnected with non-blocking 4x- and 8x-DDR InfiniBand.

A. ONERA M6 Wing

The first case considered is the well known transonic flow over the ONERA M6 wing, for which
the experimental data of Schmitt and Charpin are available [51]. The flow conditions are

M = 0.8395, Re = 11.72× 106, α = 3.06◦.

The Reynolds number is based on the mean aerodynamic chord (MAC) of the geometry. The grid
used in this study consists of 128 blocks, with a total of 15.1 million nodes and an off-wall spacing of
2.3×10−7 root chord units, resulting in an average y+ value of 0.4. The flow solution was computed
using the scalar dissipation model. With 128 processors, the residual was reduced by 12 orders of
magnitude in 86 minutes. Figure 3 presents the residual convergence plot for this case, both in terms
of time and linear iterations, clearly highlighting the two phases of the solver. The residual includes
all six equations. Convergence is also plotted versus “equivalent residual evaluations,” normalizing
the solution time by the time required to calculate the residual for the size of grid being used in
the flow solution. Since implicit algorithms spend substantial time in forming and factoring the
preconditioner, as well as solving the linear system at each nonlinear iteration, this time measure
provides a clearer comparison to explicit solution algorithms, for which residual evaluations dominate
the cost of nonlinear iterations. The switch from the approximate-Newton phase to the inexact-
Newton phase occurs at approximately 35 minutes. This plot represents a typical convergence
history for DIABLO, with the symbols along the line showing individual nonlinear iterations. The
simulation results in values of CL and CD of 0.268 and 0.0171, respectively.

Figure 4 presents the Cp distributions at several span-wise sections of the wing, comparing
to experimental data. The comparison highlights the good correspondence of the computational
and experimental results throughout the span of the wing. This case demonstrates the capability
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Fig. 4 Experimental and numerical Cp distributions for ONERA M6 wing flow

of the current algorithm to accurately and efficiently capture the complex transonic flow around
the ONERA M6 wing. In order to determine the cause of the small discrepancies between the
numerical and experimental results, the solution was computed on a finer, 128 million node grid,
with an average y+ value of 0.18. The values of CL and CD changed slightly to 0.269 and 0.0168,
respectively, but the Cp distributions remain virtually identical to those produced on the 15.1 million
node grid. The observed Cp distribution differences may be caused by differences in the problem
set-up between the numerical and experimental cases, such as the use of free transition in the
experimental measurements, as opposed to the assumption of fully turbulent flow in the present
computations.

B. NASA Common Research Model Wing-Body Configuration

This case is a transonic flow around the CRM wing-body geometry. The O-O topology struc-
tured multi-block grids, obtained from the organizers of the 5th Drag Prediction Workshop (DPW5),
contain between 750 thousand and 154 million nodes, with an off-wall spacing range of 2.4× 10−6

to 1.9 × 10−7 MAC units, corresponding to y+ values of 2.0 to 0.33. The original grid family was
constructed using a 2-to-3-to-4 node refinement strategy, detailed by Vassberg [52]. The six grid
levels effectively comprise two nested grid families, with the odd and even grid levels following the
typical 1-to-2 node refinement strategy. The grids contain between 88 and 906 blocks, depending
on the size of the grid, but were not load balanced perfectly due to the original grid construction.
The flows were computed at flow conditions of

M = 0.85, Re = 5× 106, CL = 0.500± 0.001.

The Reynolds number is based on the MAC. Each grid level requires a different angle of attack to
attain the specified value of CL. Both scalar and matrix dissipation are examined.

Solutions were obtained on six grid levels, converging the residual by 10 orders of magnitude
on each grid. Figure 5 presents the convergence history for the 19 million node fine (“F") grid level
with matrix dissipation. This particular solution was computed on 704 processors, which were able
to converge the solution in 70 minutes. A load balancing approach, as detailed by Apponsah and

19



Time (s)

Equivalent residual evaluations

R
es

id
ua

l

0 1000 2000 3000 4000 5000

0 5000 10000 15000

10-6

10-4

10-2

100

102

104

End of startup phase

a) Vs. time

Linear Iterations

R
es

id
ua

l

0 1000 2000 3000

10-6

10-4

10-2

100

102

104

End of startup phase

b) Vs. linear iterations

Fig. 5 Convergence history for CRM flow on 19 million node grid (with 704 processors)
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Fig. 6 Surface coefficients for CRM flow

Zingg [53], can be used to reduce the time required substantially. As with the previously presented
ONERA M6 test case, both stages of the solution algorithm are clearly visible. However, due to the
complexity of the flow, more iterations are required in the inexact-Newton stage. Figure 6 shows
the contours of Cp and Cf on the top surface of the geometry. The pressure contours highlight the
presence of a shock on the top surface of the wing, with a complex interplay of two shocks near the
wingtip.

This case also allows us to observe the grid convergence of the algorithm. Figure 7 presents the
grid convergence trends of both drag and moment coefficients, with the matrix dissipation model
producing a flatter curve for drag convergence. This signifies that, as expected, the model is more
accurate on coarser grids. Additionally, a second-order algorithm will tend toward a straight line
between three consecutive grid levels when plotted versus N−2/3. This behavior can be observed
for the finer grid levels. Using Richardson extrapolation [54] on the three finest grid levels, the
order of convergence for CD is calculated to be 1.60 and 3.32 for the scalar and matrix artificial
dissipation models, respectively, exhibiting the expected, or better, grid convergence characteristics.
These convergence rates are achieved despite the first-order treatment of the convective terms in the
turbulence model, indicating that these terms do not dominate the discretization error and appear

20



N-2/3

C
D

0 5E-05 0.0001

0.025

0.0255

0.026

0.0265

0.027

0.0275

0.028

0.0285
Scalar diss
Matrix diss

a) Drag coefficient

N-2/3

C
M

0 5E-05 0.0001
-0.118

-0.116

-0.114

-0.112

-0.11

-0.108

-0.106

-0.104

-0.102

-0.1

b) Pitching moment coefficient

Fig. 7 Grid convergence of drag and pitching moment coefficient for CRM flow

X

Y

Z

Upper surface tripline
Lower surface tripline

a) Wing planform and trip line definition

Time (s)

Equivalent residual evaluations

R
es

id
ua

l

0 5000 10000

0 5000 10000

10-4

10-2

100

102

104

End of startup phase

b) Convergence history

Fig. 8 Explicitly tripped flow with ONERA M6 wing

to play a small role. Both dissipation models tend towards the same result as the grid is refined.

C. Explicitly tripped flow solutions

Further extending the capability of the algorithm, we have implemented the explicit trip location
terms of the Spalart-Allmaras turbulence model. These terms require the user to specify an explicit
location for laminar to turbulent transition to occur. Eventually, the ability to specify the transition
location will be coupled with transition prediction, such that the flow solver will be incorporated
into an optimization algorithm that can take advantage of natural laminar flow in improving the
drag characteristics of an aerodynamic shape.

The case considered involves the ONERA M6 wing. The flow conditions for this case are

M = 0.30, Re = 1× 106, α = 1.00◦.

The grid used is identical to that in Section VA. The transition line is specified individually on the
upper and lower surfaces of the wing, as shown in Fig. 8a). Only the scalar dissipation model was
used for this case.

The addition of the explicit trip terms increases the initial magnitude of the residual, so it is
necessary to remain in the start-up phase for one additional order of magnitude until the residual
drops by a factor of 1× 10−5. It is for this case that the time step modification discussed in Section
IVD4 is critical; without it, the solution would diverge due to large changes in the turbulence
quantity. Additionally, the complexity of the flow causes noticeable jumps in the residual, which
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Fig. 9 Cf values at selected span-wise sections for tripped flow

results in longer convergence times than for fully turbulent solutions. This is likely due to the
locations of the trip lines themselves, forcing the flow to remain laminar over large portions of the
wing, especially on the lower surface. Other than these jumps, the convergence history in Fig. 8b)
shows the typical convergence characteristics of the Newton-Krylov algorithm.

Additionally, the Cf plots at selected span-wise sections, shown in Fig. 9, demonstrate the
effect of imposing specific trip locations. The Cf values along both surfaces show the characteristic
increase at the specified location of laminar to turbulent transition.

D. Non-planar geometry

With computational analysis and optimization becoming more integrated in the design process
of modern aircraft, flow solution algorithms have to be capable of handling more complex and
unconventional geometries. For example, non-planar geometries are becoming commonplace and
require computational analysis to fully understand their trade-offs relative to conventional wings.
We have found these cases to possess unique flow features which may introduce numerical instabilities
and hamper a solver’s convergence to steady state. The test case considered here involves an unswept
rectangular wing with a vertical winglet, as shown in Fig. 10a). Both the wing and winglet possess
the NACA 0012 airfoil cross-section. The NACA0012 airfoil geometry is extruded (in ICEM CFD)
along a line that defines the leading edge of the wing, with tapering applied to close the vertical tip.
The flow conditions are

M = 0.40, Re = 7.48× 106, α = 2.00◦.

The finest computational grid consists of 960 blocks, with a total of 113 million nodes and an off-
wall distance of 4.0 × 10−7 chord units, giving an average y+ of 0.18. Two additional grid levels
were created by successively removing every second node in each computational direction. On the
finest grid, the solution was obtained using 960 processors, converging the residual by 12 orders of
magnitude in 125 minutes, as shown in Fig. 11. The results for this case illustrate the convergence
capabilities of the current algorithm when dealing with non-planar geometries. Only the scalar
dissipation model was used for this case. Figure 10b) shows the Cp contours on the surface of the
geometry, as well as some streamlines emanating from the winglet area.

The nested grid family allows us to use Richardson extrapolation to compute the order of
convergence of lift and drag. Table 1 presets the force coefficients on all grid levels, in addition
to the calculated orders of convergence, p, and grid-converged force values, F ∗. The orders of
convergence for CL and CD are 1.80 and 2.32, respectively, exhibiting the expected grid convergence
characteristics for the second-order spatial discretization. The planar area of 3.041 is used as the
reference area.

Non-planar geometries provide challenges in terms of grid generation compared to conventional
wings, especially in the area of the winglet. The use of a multi-block gridding strategy allows us to
place blocks and refine the grid around the geometry in a manner that resolves the boundary layer of
both the wing and winglet without introducing excessive grid stretching. Additionally, the SBP-SAT
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Fig. 10 Non-planar geometry and flow
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Fig. 11 Non-planar wing convergence history on 133 million node grid (with 960 processors)

discretization used in the current algorithm provides excellent flexibility in terms of the blocking
strategy used, further extending the ease with which complex geometries can be accommodated.

E. Parallel scaling of algorithm

In order to evaluate the parallel performance of the algorithm, a parallel scaling study was
conducted for the solution of a transonic flow around the CRM wing-body geometry. The flow
conditions are identical to those in Section VB.

The CRM wing-body case was run on two grids, with each grid consisting of a 6656-block O-O
topology mesh obtained from the “X” and “S” grid levels used in DPW5. The original 5-block grids
are sequentially subdivided until all blocks contain the same number of nodes, resulting in the final
6656-block grids. The “X” grid contains 48 million nodes and an off-wall spacing of 1.83×10−6 MAC
units, while the “S” grid contains 154 million nodes and an off-wall spacing of 1.29 × 10−6 MAC
units. The matrix dissipation model is used, and the residual is converged 10 orders of magnitude.

The results for both cases, presented in Fig. 12, show that the code exhibits excellent parallel
scaling characteristics up to 6656 processors. All processor levels used the same grid and the same
number of blocks, with the results providing a measure of the strong scaling characteristics of the
algorithm. The performance of the code is measured by relative efficiency, which is based on
the lowest possible number of processors that each case can be computed with. Due to memory
requirements, the cases require a minimum of 208 and 832 processors, respectively. The nearly con-
stant number of linear iterations required to converge the solutions at different processor numbers
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Table 1 Grid convergence for CL and CD

Grid level Grid nodes CL CD

coarse 2,109,120 0.1773 0.01676

medium 15,000,000 0.1820 0.01187

fine 112,943,040 0.1834 0.01087

order, p - 1.80 2.32

F ∗ - 0.1840 0.01064
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Fig. 12 Parallel scaling performance of DIABLO

highlights the effectiveness of the approximate-Schur preconditioner even when large numbers of
processors (>6000) are used. In the range of processors considered, the relative efficiency does not
drop below 80%. In fact, many processor counts exhibit super-linear scaling, possibly due to the
changing form of the preconditioner, with different numbers of interface nodes contributing to the
global Schur complement. The size of the grid, and the corresponding memory requirements, places
limitations on the number of processors available on each compute node (with a maximum of eight
processors per node); this impacts the parallel performance of the algorithm. For example, the base-
line cases require the use of one processor per compute node, resulting in all parallel communication
occurring between nodes (inter-node), whereas the larger processor counts can make use of several
processors per node, allowing for intra-node communication. Due to the inherent characteristics of
the system design, inter-node communication is slower than intra-node communication, resulting in
the lower processor count cases possessing a higher effective communication overhead. No effort was
made to optimize the communication overhead for any of the cases through assigning processors to
specific compute nodes to minimize inter-node communication.

The scaling characteristics of the code, coupled with the ease with which the SBP-SAT approach
can handle arbitrary numbers of blocks and their orientations, make this algorithm an attractive
option for applications where fast turnaround times are required. Not only is the underlying parallel
Newton-Krylov-Schur algorithm robust and efficient in obtaining converged steady-state solutions,
it can easily make use of larger numbers of processors, when available, to further reduce wall-time
required for computations without a significant loss of computational resource efficiency.

VI. Conclusions

A parallel Newton-Krylov-Schur flow solution algorithm with a second-order SBP-SAT finite-
difference spatial discretization was presented and shown to efficiently provide accurate numerical
solutions to the three-dimensional Reynolds-averaged Navier-Stokes equations with the one-equation
Spalart-Allmaras turbulence model. Modifications to the scaling of the linear system, as well as the
time step used for the turbulence model when solving explicitly tripped flows, allow the solver to
converge well a wide range of flows. These include subsonic and transonic flows over planar and
non-planar aerodynamic geometries, with attached and separated boundary layers.

The algorithm was verified with a selection of two-dimensional test problems, comparing well
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against established flow solution algorithms, while the solution of transonic flow over the ONERA
M6 wing compares well to experimental data. The grid convergence characteristics of the algorithm
were demonstrated with the solution of a transonic flow over the Common Research Model (CRM)
wing-body geometry on grids with up to 150 million nodes. Additional solutions of explicitly tripped
flows and flows over non-planar geometries further highlight the versatility of the current flow solver,
demonstrating its suitability for use as the core of an aerodynamic shape optimization capability or
a high-fidelity multidisciplinary optimization capability. Good parallel efficiency of the algorithm
was demonstrated through the solution of transonic flow over the CRM wing-body geometry with
up to 6656 processors.

Future work will extend the spatial discretization of the governing equations to higher-order,
with the goal of further improving the efficiency of the algorithm.

Appendix
A. Bint,ς matrix formulation

The following are the complete forms of the conservative formulation of the Bint,ς matrices,
where ς = ξ, η, or ζ.

Bint,ς =










0 0 0 0 0

−a1u− a2v − a3w a1 a2 a3 0

−a2u− a4v − a5w a2 a4 a5 0

−a3u− a5v − a6w a3 a5 a6 0

b51 b52 b53 b54 a7










,

where

a1 = t1
(
4/3ς2x + ς2y + ς2z

)
, a2 = t1 (1/3ςxςy) ,

a3 = t1 (1/3ςxςz) , a4 = t1
(
ς2x + 4/3ς2y + ς2z

)
,

a5 = t1 (1/3ςyςz) , a6 = t1
(
ς2x + ς2y + 4/3ς2z

)
,

a7 = t2γ
(
ς2x + ς2y + ς2z

)
,

b52 = −a7u+ a1u+ a2v + a3w, b53 = −a7u+ a2u+ a4v + a5w,

b54 = −a7u+ a3u+ a5v + a6w,

t1 = ρ−1 (µ+ µt) , t2 = ρ−1 (µ/Pr + µt/Pr t) ,

and

b51 = a7
(
−e/ρ+ (u2 + v2 + w2)

)
− a1u

2 − a4v
2 − a6w

2 − 2(a2uv + a3uw + a5vw).

B. Verification and validation of flow solver
2D zero-pressure-gradient flat plate

The first verification case considered was the two-dimensional flow over a flat plate. The flow
conditions for this case are

M = 0.20, Re = 5× 106, Tref = 540◦R.

Three grid levels are considered, with node numbers ranging from 137 × 97 to 545 × 385.
Successively finer off-wall spacing values are used, the finest of which is 5.0 × 10−7 chord units
(the flat plat has a length of 2.0 chord units). The coarser meshes were created by successively
removing every second node in each coordinate direction from their respective finer counterpart.
The grids provide average approximate y+ values between 0.1 and 0.4, depending on the grid level.
The data provided on the TMR website allows for a detailed comparison of the results obtained
with the current algorithm with those obtained with CFL3D and FUN3D. Both scalar and matrix
dissipation models were tested with this case.

Figure 13 shows the behavior of drag as the grid is refined, where N denotes the number of
nodes in the grid. As a result of plotting versus N−1/2, second-order behaviour should tend toward
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Fig. 13 Grid convergence of drag for flow over a flat plate
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Fig. 14 Flow solution comparisons for flow over flat plate

a straight line. Both dissipation models tend toward the same value of Cd as the grids are refined.
However, the scalar dissipation model approaches this value in a non-monotonic manner from above,
while the matrix dissipation model closely follows the trend of FUN3D, approaching from below.
Both models are tending towards a grid-converged value of drag that lies between the trends of
CFL3D and FUN3D.

Comparisons of the coefficient of skin friction, Cf , maximum turbulent viscosity in the boundary
layer, and the turbulent viscosity profile at a vertical section of the finest grid are presented in Fig.
14. Since the scalar and matrix dissipation results on this grid level are nearly indistinguishable,
only the matrix dissipation result is shown. Some data points are omitted for clarity. Each of
the comparisons shows excellent correspondence between DIABLO and the other algorithms, with
nearly identical distributions of all pertinent quantities.

2D bump-in-channel

In order to verify the algorithm in a more complex flow regime where pressure gradients are
present, the second case considered was the two-dimensional bump-in-channel flow. Three grid
levels are considered, with node numbers ranging from 353 × 161 to 1409× 641, with successively
finer off-wall spacing values, the finest of which is 5.0 × 10−7 chord units (the bump has a length
of 1.5 chord units). As with the previous case, the coarser grid levels were created by removing
every second node in each coordinate direction from the finer grid level. The grids provide average
approximate y+ values between 0.06 and 0.23, depending on the grid level. The flow conditions for
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Fig. 15 Force coefficients for bump-in-channel flow
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Fig. 16 Surface coefficients for bump-in-channel flow

this case are

M = 0.20, Re = 3× 106, Tref = 540◦R.

Figure 15 provides an overview of the grid convergence behaviour of lift and drag for the scalar
and matrix dissipation models. For both quantities, the results obtained with DIABLO lie very
close to those of the other solvers, with slightly better correspondence to the results of FUN3D. The
grid convergence trends of DIABLO are in line with those of CFL3D and FUN3D.

Additionally, Figs. 16 and 17 highlight the excellent correspondence between the current algo-
rithm and the established solvers. This is evident not only for the coefficients of pressure, Cp, and
friction along the surface of the bump, but also for the value of µt in the boundary layer. This case
verifies the implementation of DIABLO in a more complicated flow regime, with pressure gradients
present in the flow due to the bump.

NACA0012 Airfoil

The final two-dimensional case considered is the flow over the NACA0012 airfoil. This case
provides an opportunity not only to compare the current algorithm to CFL3D on a case of practical
interest, but also to compare to the experimental data of Gregory and O’Reilly [55] (albeit at a
lower Reynolds number of 3× 106). The flow conditions are

M = 0.15, Re = 6× 106, Tref=540◦R, α = 0◦, 10◦, and 15◦.
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Fig. 17 µt distribution comparisons for bump-in-channel flow

The grid consists of 1793 × 513 nodes, with an off-wall spacing of 4 × 10−7 chord units. This
grid represents the finest grid level available for this test case on the TMR website, and provides an
average y+ of approximately 0.1. The focus of the results for this study is the distributions of Cp

and Cf on the surface of the airfoil. Experimental data are provided for Cp, and the CFL3D Cf

data provided is limited to the upper surface of the airfoil.
Figure 18 presents the comparisons for all three angles of attack for the scalar dissipation model,

as the two models produced nearly indistinguishable results for this grid. Due to the size of the
grid, data points are omitted from the CFL3D data for increased clarity. As can be seen from the
figure, the results of DIABLO provide excellent correspondence to those of CFL3D, and line up well
with the experimental results. This case provides verification through comparison with CFL3D for
a range of flow conditions and a validation of the solver against experimental results, including high
angles of attack where boundary-layer separation is present.
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