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We present computations of steady three-dimensional turbulent flows with a parallel

Newton-Krylov-Schur solution algorithm. The algorithm solves the Reynolds-Averaged

Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model,

with the optional use of quadratic constitutive relations. The governing equations are dis-

cretized on multi-block structured grids using summation-by-parts operators with simulta-

neous approximation terms to enforce boundary and block interface conditions. We present

a discussion on algorithm performance metrics, including speed, accuracy, and efficiency,

and suggest several metrics which can be used for algorithm comparisons, such as con-

vergence time, equivalent right-hand-side evaluations, computing time per grid node, and

time required to reach specific functional error levels as compared to grid-converged values.

The suggested metrics are applied to the current algorithm in the solution of subsonic and

transonic flows around the ONERA M6 and NASA Common Research Model geometries.

The results show effective algorithm convergence as grid resolution is increased, converg-

ing the residual by 12 orders of magnitude for all cases. A third geometry, based on the

1st AIAA High Lift Prediction Workshop delta wing configuration, provides difficulty in

obtaining full convergence, leveling the residual off at a reduction of 4 to 5 orders of mag-

nitude. However, the partially converged solutions show excellent agreement of lift and

drag coefficients with experimental data in the angle of attack range of 1◦ to 40◦.

I. Introduction

The widespread availability and ever-increasing use of massively parallel computational resources has
allowed various fields of computational science to tackle problems that would have been considered out of
reach a decade ago. Such is the case in the field of computational fluid dynamics (CFD), where access to
supercomputer clusters has paved the way for the solution of large-scale simulations of flows around entire
aircraft configurations. This ties into the results from the AIAA Drag Prediction Workshop series,1 which
indicate that grids with over O(108) grid nodes are required for grid-converged lift and drag values for flows
over a wing-body configuration. However, even with access to computational resources at an all-time high,
algorithms that scale well with thousands of processors are required to make efficient use of those resources.

Flow solvers used for the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations implement
a wide variety of techniques. For example. popular RANS solvers such as OVERFLOW,2 FUN3D,3 Flo3xx,4

and NSU3D,5 make use of structured and unstructured grids, finite-volume or finite-difference approxima-
tions, and a plethora of combinations of linear solvers and preconditioners. The choices made in designing
an algorithm can have an impact on the accuracy of the solutions, particularly the trend by which the algo-
rithm approaches a grid-converged solution. This has been demonstrated through previous efforts, such as
the various AIAA Drag Prediction Workshops.6, 7, 8, 9, 10

Due to the complexities of these algorithms and the significant programming skill required to develop
a fast flow solver, detailed comparisons of algorithm performance have often been neglected. Instead, only
blanket statements on algorithm performance are presented, such as the amount of time required to converge
a particular case. While providing a general picture of the power of an algorithm, such statements can often
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paint a misleading picture. In order to understand the performance of an algorithm, in particular when
comparing to other solvers, it is important to understand how algorithm performance can be measured, and
how each measure can impact the perceived performance.

First, one can consider the speed of an algorithm, or the CPU time to achieve a steady-state solution on a
given mesh. While seemingly straightforward, using this metric for comparisons is not at all easy. The natural
way to measure speed is in terms of iterations to convergence, but this does not allow for comparisons across
different algorithms. Hence one can measure speed in terms of CPU time, but this approach is hardware
dependent and also depends on programming effort and skill. One possibility to remove some algorithm
and hardware dependency is to consider equivalent residual (RHS) evaluations. This measure is useful, but
is strongly affected by the nature of the RHS (i.e. the spatial discretization). An expensive RHS (or an
inefficiently coded one) can actually make a code appear faster by this measure. Other aspects of speed
include scaling with mesh size and parallel scaling.

Next one can consider the robustness of the algorithm, that is how reliably does it converge over a wide
range of geometries and flows. This is difficult to measure, but suggests that algorithm comparisons should
include a suite of test cases of varying complexity. Robustness and speed are often competing objectives,
so this must also be taken into account in choosing algorithm parameters and assessing algorithms. In
particular, this can be the case when finely tuned parameters are required for each production run, adding
overhead to the algorithm run time that is not typically reported.

Further difficulties are encountered when comparisons of algorithms of different spatial discretization
order are performed. Higher-order algorithms will be inherently more expensive per iteration, but provide
benefits elsewhere. With the more accurate discretizations, coarser meshes can be employed, reducing overall
computation time. For this reason, algorithm comparisons should not rely on cases where a single grid level
is utilized, which would negatively impact the higher-order algorithm comparison. The concept of efficiency
rather than speed, should then be considered, where the amount of time to achieve a certain error, or
level of accuracy, in the solution is monitored, rather than just the amount of time required to obtain a
converged solution. To categorize efficiency, extra effort in determining solution error is required; the use
of Richardson extrapolation11 on a set of consistently refined grids is one possibility, and does not require
extensive modifications to algorithms that do not have error prediction capabilities built in.

In an effort to identify the state-of-the-art in CFD algorithms and compile a list of potential best practices
the technical discussion group of solver technology was established. This paper is part of a special session
devoted to assessing the current trends in algorithm development for the solution of the Reynolds-Averaged
Navier-Stokes equations. It presents the application of a Newton-Krylov-Schur parallel solution algorithm for
the Reynolds-Averaged Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence
model to a suite of flow problems with a view to characterizing the algorithm’s performance. The algorithm
employs summation-by-parts operators on multi-block structured grids, while simultaneous approximation
terms are used to enforce boundary conditions and coupling at block interfaces.

The paper is divided into the following sections. Section II presents a brief overview of the governing
equations and the flow solution algorithm. Section III presents a description of the algorithm benchmarking
conducted, as well as notes about algorithm comparisons. Section IV contains results obtained with the
current algorithm for steady flow solutions, with a focus on three-dimensional flows. Conclusions are given
in Section V.

II. Flow Solution Algorithm

The flow solution algorithm considered in the current work is a parallel implicit finite-difference RANS
equation flow solver called DIABLO. The following sections present an overview of the algorithm, with
further details provided by Osusky and Zingg.12

A. Governing Equations

1. The Navier-Stokes Equations

The three-dimensional Navier-Stokes equations, after the coordinate transformation (x, y, z) → (ξ, η, ζ), are
given by

∂tQ̂+ ∂ξÊ+ ∂ηF̂+ ∂ζĜ =
1

Re

(

∂ξÊv + ∂ηF̂v + ∂ζĜv

)

, (1)
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with
Q̂ = J−1Q,

Ê = J−1
(

ξxE+ ξyF+ ξzG
)

, Êv = J−1
(

ξxEv + ξyFv + ξzGv

)

,

F̂ = J−1
(

ηxE+ ηyF+ ηzG
)

, F̂v = J−1
(

ηxEv + ηyFv + ηzGv

)

,

Ĝ = J−1
(

ζxE+ ζyF+ ζzG
)

, Ĝv = J−1
(

ζxEv + ζyFv + ζzGv

)

,

where Re = ρ∞a∞l
µ∞

, ρ is the density, a the sound speed, l the chord length, µ the viscosity, and J the metric
Jacobian that results from the coordinate transformation. The ‘∞’ subscript denotes a free-stream value
for the given quantity. The notation ξx, for example, is a shorthand form of ∂xξ = ∂ξ

∂x . The conservative
variables and inviscid and viscous fluxes are given by
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where e is the energy, p the pressure, u, v, and w the Cartesian velocity components, and τ the Newtonian
stress tensor. The preceding variables have been made dimensionless by the use of the free-stream values of
density and sound speed, as well as chord length. Laminar viscosity is calculated using a dimensionless form
of Sutherland’s law:13

µ =
a3(1 + S∗/T∞)

a2 + S∗/T∞

, (2)

where S∗ = 198.6◦R, and T∞ is typically set to 460◦R.

2. Spalart-Allmaras One-Equation Turbulence Model

In order to solve turbulent flows, a turbulent, or eddy, viscosity, µt, can be added to the viscosity, µ, based on
the Boussinesq approximation.14 The Spalart-Allmaras one-equation turbulence model15 is used to compute
the turbulent viscosity. The model solves a transport equation for a turbulence variable, ν̃, that is related to
turbulent viscosity. The model itself is a sixth equation that is solved concurrently with the five Navier-Stokes
equations in a fully-coupled implicit manner.

The version of the model used in this work, labeled “SA” on the NASA Turbulence Modeling Resource
(TMR) website,16 is given by

∂ν̃

∂t
+ ui

∂ν̃

∂xi
=

cb1
Re

[1− ft2]S̃ν̃ +
1 + cb2
σtRe

∇ · [(ν + ν̃)∇ν̃]−
cb2

σtRe
(ν + ν̃)∇2ν̃

−
1

Re

[

cw1fw −
cb1
κ2

ft2
]

(

ν̃

d

)2

,

(3)

where ν = µ
ρ
.

The spatial derivatives on the left side of the equation represent advection. The first term on the
right side represents production, while the second and third terms account for diffusion. The fourth term
represents destruction. Reference 15 contains the values of all of the terms and constants that appear in
(3). Importantly, precautions are taken to ensure that neither the vorticity, S, nor the vorticity-like term,
S̃, approaches zero or becomes negative, which could lead to numerical problems. The off-wall distance at
each computational node is denoted by d.

An important consideration in the use of the Spalart-Allmaras turbulence model is the method by which
the off-wall distance, d, is calculated. Many implementations, in an effort to save computational time and
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reduce code complexity, make use of approximations in calculating the distance from each volume node to
the closest solid boundary. These range from following grid lines towards a surface, a method that itself
becomes very complex when dealing with multi-block grids, to calculating distances to individual grid nodes
on the surface. While these methods provide reasonably accurate representations of d, certain grid topologies
can result in values that have a substantial effect on the force coefficients. This effect is due to the sensitivity
of the Spalart-Allmaras turbulence model to the values used for d. It is therefore highly recommended that
a method which identifies the entire surface, including edges and surface segments between the nodes on
a solid boundary, be used in calculating d, as it will provide more accurate off-wall distance values on a
wide variety of grids, regardless of blocking or gridding anomalies. Such an approach is used in the current
algorithm.

A notable feature of the current algorithm is the use of quadratic consitutive relations (QCR). Spalart17

presented a modification to the Reynolds stress tensor that results from the Boussinesq approximation,
producing a nonlinear stress model:

τij = τ̄ij − cnl1 (Oik τ̄jk +Ojk τ̄ik) , (4)

where

Oik ≡
∂kui − ∂iuk√
∂num∂num

,

∂num∂num = (∂xu)
2 + (∂xv)

2 + (∂xw)
2

+ (∂yu)
2 + (∂yv)

2 + (∂yw)
2

+ (∂zu)
2 + (∂zv)

2 + (∂zw)
2,

ui are the velocity components (u, v, w), and cnl1 = 0.3. Additionally, τ̄ij is the Reynolds stress tensor
obtained from the Boussinesq approximation. The implementation of the above modification does not add
substantial development time and has negligible effect on the convergence characteristics of the algorithm,

The use of the above modification to the Reynolds stress tensor has seen limited adoption. However, some
results presented during the fourth and fifth DPW have incorporated QCR,9, 18, 10 with positive effects in the
solutions presented. In particular, the use of QCR has a substantial impact on the size of the recirculation
region at the wing-body junction once a critical angle of attack is reached. The current algorithm has
demonstrated the effective use of QCR in the solution of the cases for the fifth DPW.19

Where appropriate, the use of QCR in the results section will be labeled as “SA-QCR2000,” as prescribed
on the TMR website.

B. Solution Methodology

The following sections present a brief overview of the solution algorithm used for this work, DIABLO, includ-
ing the spatial discretization method used, the overall solution strategy, as well as some basic implementation
details. Further details of the algorithm can be found in references 20, 21, and 22, with a complete description
of the RANS solution methodology of the current algorithm presented in reference 12.

1. Spatial Discretization

The spatial discretization of the Navier-Stokes equations and the turbulence model is obtained with second-
order Summation-By-Parts (SBP) operators, while inter-block coupling and boundary conditions are enforced
weakly by the use of Simultaneous Approximation Terms (SATs). We decompose our domains into multiple
blocks, resulting in multi-block structured grids. Not only does this type of blocking strategy work well with
the SBP-SAT discretization, it also allows for relatively straightforward creation of meshes around complex
geometries.

The SBP-SAT approach requires minimal information from adjoining blocks in order to obtain a dis-
cretization of the governing equations at block interfaces. This results in a reduced requirement for infor-
mation sharing between blocks, which is especially advantageous for parallel algorithms, reducing the time
spent in communication. Additionally, the fact that this discretization does not need to form any derivatives
across interfaces reduces the continuity requirements for meshes at interfaces. In fact, only C0 continuity is
necessary, allowing the algorithm to provide accurate solutions even on grids with relatively high incidence
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angles for grid lines at interfaces. This feature substantially reduces the burden placed on the grid generation
process, especially for complex three-dimensional geometries, such as the NASA Common Research Model
(CRM).23

Numerical dissipation is added using either the scalar dissipation model developed by Jameson et al.24

and later refined by Pulliam,25 or the matrix dissipation model of Swanson and Turkel.26

It should be emphasized that while the current spatial discretization is second-order accurate, the SBP-
SAT approach allows for straightforward extension to higher orders.

2. Iteration to Steady State

Applying the SBP-SAT discretization to the governing equations results in a large system of nonlinear
equations:

R(Q) = 0, (5)

where Q represents the complete solution vector. When time-marched with the implicit Euler time-marching
method and a local time linearization, this results in a large set of linear equations of the form:27

(

I
∆t

+A(n)

)

∆Q(n) = −R(n), (6)

where n is the outer (nonlinear) iteration index, ∆t is the time step, I is the identity matrix, R(n) = R(Q(n)),
∆Q(n) = Q(n+1) −Q(n), and

A(n) =
∂R(n)

∂Q(n)

is the Jacobian.
In the infinite time step limit, the above describes Newton’s method and will converge quadratically if a

suitable initial iterate, Q(0), is known. This initial iterate must be sufficiently close to the solution of (5).
Since it is unlikely that any initial guess made for a steady-state solution will satisfy this requirement, the
present algorithm makes use of a start-up phase whose purpose is to find a suitable initial iterate.

To solve the large set of discrete equations, we use a parallel Newton-Krylov algorithm using the flexible
GMRES Krylov subspace iterative method with the approximate-Schur preconditioner.28 Pseudo-transient
continuation is used to march the solution from an initial guess to steady state, employing a spatially varying
time step.

The general framework of the algorithm has also been leveraged to create an efficient time-accurate
solution strategy.29

C. Implementation Details

Implementation details can have a substantial impact on the performance of an algorithm. Hence, this
section presents some basic information on the algorithm presented in this paper, providing a way to clearly
identify inherent differences that may affect comparisons to other codes.

At the most basic level, the vast majority of the code is written in Fortran90, with a few legacy subroutines
written in Fortran77. All parallel communication is performed using the Message-Passing Interface (MPI).
Recent structural analysis modules are written in C++ and coupled to the remainder of the algorithm using
Python. However, none of these subroutines were used for the cases presented here.

The results presented in this paper were run on the Scinet GPC cluster, which consists of 3864 8-core
nodes. Each node contains two Intel Xeon E5540 processors running at 2.53GHz, with 16GB RAM per node
(roughly 2GB per core, less the memory required for the operating system). The majority of the nodes are
connected with 5:1 blocked QDR InfiniBand, while approximately a quarter of the cluster is interconnected
with non-blocking DDR InfiniBand. The code was compiled on the Linux operating system with the Intel
Fortran compiler using IntelMPI.

In order to make efficient use of the parallel computational systems, the meshes used for this algorithm
are load balanced a priori. This is achieved either during the mesh creation process, when blocks of equal
sizes are created, or with a load balancing tool that can subdivide existing meshes. The latter approach, as
detailed by Apponsah and Zingg,30 can be used to reduce the computational time required substantially on
meshes with poor load balancing.
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Finally, it should be noted that DIABLO is primarily an academic development code, and has therefore
not been subjected to the extensive computer software optimization that full-blown production codes are.
Additional performance improvements could likely be extracted through a rigorous coding overhaul, including
the use of OpenMP, but this is not an objective of the present work.

III. Algorithm Benchmarking and Comparison Notes

A. Note on Algorithm Comparisons

One of the most convenient ways of measuring algorithm performance involves comparing the CPU time
that is required to converge to a steady state, more commonly referred to as the speed of an algorithm.
This approach, however, has many pitfalls. First, CPU time is hardware dependent, and will often vary
widely based on programmer skill and hardware set-up, particularly for large distributed systems. Cache
size and the type of parallel interconnect architecture could slow down an otherwise fast algorithm. In other
words, an algorithm that is fast on one supercomputing cluster might not behave as well when installed on
a different system. Additionally, various flow solution algorithms use different residual convergence criteria
for identifying converged solutions. Hence, comparisons have to be made with solutions that are converged
to the same tolerance.

In addition, an important topic to be aware of is the importance of algorithm speed versus algorithm
robustness. For representative results, the parameters used in obtaining a converged solution, such as time
step parameters, should belong to a default set. This would prevent a misrepresentation of algorithm speed,
such as when cases that converge with aggressive parameter values are shown to converge rapidly, even if
those parameters would lead to divergence of most other cases considered. At the same time, it would be
unwise and wasteful to use parameters that allow all cases to converge, as that would lead to unnecessarily
conservative choices. A compromise must be reached where a clear default set of parameters is selected,
and only minimal tuning is required to converge the more problematic cases. This approach is especially
important for flow solution algorithms that are part of an optimization framework; they need to be robust
due to the number of potential geometries they will encounter during an optimization, but also fast, since
they will be called many times during the course of an optimization. The specific choices are left to each
operator, but they should be stated clearly. Ideally, algorithm comparisons should include a suite of test
cases of varying complexity, giving a clearer picture of algorithm capability and performance.

Whenever algorithm speed is being considered, it is also important to consider the notion of efficiency,
defined as the time required to reach a prescribed error level in the solution. This becomes especially
important when comparing algorithms of different spatial discretization accuracy levels. For example, to
achieve the same error in a converged solution, a higher order algorithm, which is more expensive on a
per-grid-node basis, would require a coarser mesh than a lower order algorithm. However, on a single mesh,
the higher-order algorithm would require more time to obtain a converged solution, potentially leading to
the conclusion that the algorithm is slower. This clearly demonstrates the need to not only report the time
required in obtaining a solution, but also the error in the obtained solution. Hence, a means of consistently
quantifying solution error is needed, such as a grid convergence study using Richardson extrapolation.

Understanding code performance relies heavily on detailed information about the code and the hardware
it is run on. While hardware characteristics are easily communicated, the subtleties of code development are
more difficult to describe, or perhaps even proprietary. However, at least a basic effort should be made. In
addition, pre- and post-processing steps that are often ignored when discussing code performance should be
included, with a common start and end point used for quantifying computations. Hence, instead of simply
reporting how long the iterations to converge the flow solution took, the overall time could span the instant
the code begins execution (once it is provided with a grid and input parameter file), to the instant the
complete solution file is written. This would provide a clearer picture of any initialization costs, such as for
MPI or any computations that are done before the iterative process, such as an off-wall distance calculation.
This would also provide some sense of IO costs. This type of discussion will not only help show key differences
between algorithms, but also serve in identifying best practices in parallel algorithm development that can
then be adopted by more codes.

The above is not meant to dissuade the use of any of the stated metrics in determining algorithm perfor-
mance. The purpose here is to encourage transparency in algorithm testing, both in terms of implementation
and the hardware used, as this will make it easier and more straightforward to compare different algorithms
on different systems. By understanding the limitations of each metric, a thorough algorithm comparison
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would present several of the metrics along with hardware and software specifications, providing a clearer
picture of the true performance of the algorithm.

B. Benchmarking Methodology

The current algorithm has been thoroughly verified and validated with a range of two- and three-dimensional
test cases. These included the solution of turbulence model verification and validation cases provided on the
TMR website, as well as the solution of three-dimensional flows around wings and wing-body configurations.
The results of these tests can be found in references 12, 19, 21, 22, 31, and 32. The references also provide
results of parallel scaling tests that demonstrate the parallel scaling performance of the algorithm with up
to 6656 processors.

For the purposes of this paper, several metrics are presented to provide more straightforward comparisons
to other solution algorithms. For all cases run, CPU-time-based metrics will serve as the basis of most
comparisons, spanning the following values:

Total time Time required for the complete execution of the algorithm. This includes initialization of the
code, pre-iteration calculations (such as off-wall distance calculation), and solution output/cleanup.

Iteration (solution) time Time required to converge the solution (12 orders of magnitude residual reduc-
tion), starting at the first iteration.

Equivalent right-hand-side evaluation time Iteration time divided by the time required to form the
residual vector. Used for facilitating comparison of current implicit algorithm to explicit algorithms.

CPU time/grid nodes A measure designed to provide computational cost per grid node, allowing com-
parison of cases using different grid sizes and numbers of processors. This metrics is calculated as
(total time)*(number of processors)/(total number of grid nodes).

For the purpose of defining efficiency, all cases are accompanied by a grid convergence study. A grid
convergence study can be used to analyze the behaviour of a functional, F , which can represent quantities
such as coefficients of lift, drag, and moment, (CL, CD, and CM , respectively). Solving each case on at least
three consistently refined grid levels allows for the calculation of a grid-converged functional, F ∗, as well as
convergence order, p, obtained from

FF − FM

FM − FC
=

rp − 1

r2p − rp
(7)

F ∗ = FF +
FF − FM

rp − 1
(8)

where r is the grid refinement factor and (FC , FM , FF ) are the functionals computed on the coarse, medium,
and fine meshes, respectively. The error is calculated as

error =

∣

∣

∣

∣

Fa − F ∗

F ∗

∣

∣

∣

∣

(9)

where a = (C,M,F ). Error is plotted versus solution time for each case to provide a measure of efficiency
for the algorithm. When more than three grid levels are available, the value of F ∗ is determined from the
finest set of consecutive grid levels that produce a monotonic sequence of functional values.

IV. Results

In order to demonstrate the performance of the current algorithm, DIABLO, this section presents a
variety of cases, including subsonic and transonic flow solutions over wings and wing-body configurations.
All cases contain grid convergence studies that help characterize the efficiency of the algorithm, along with
the convergence characteristics of the algorithm.

Finally, we present a flow solution that has proven to be problematic for the current algorithm, and
discuss the potential causes for the lack of deep convergence.
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Table 1. Flow solution cases

Case Ma Re Angle of attack

ONERA M6 - t 0.8395 11× 106 3.06◦

ONERA M6 - s 0.40 3× 106 2.00◦

CRM - t1 0.85 5× 106 2.28◦

CRM - t2 0.85 5× 106 2.229◦

CRM - s1 0.60 5× 106 3.50◦

CRM - s2 0.60 5× 106 5.00◦

Table 2. Grid information

Grid level Blocks Nodes, N Average off-wall spacing

ONERA M6 - Coarse 128 628,824 4.35× 10−6

ONERA M6 - Medium 128 4,599,936 1.92× 10−6

ONERA M6 - Fine 128 35,152,000 9.01× 10−7

CRM - Tiny 6656 1,164,800 1.03× 10−5

CRM - Coarse 6656 3,261,440 6.84× 10−6

CRM - Medium 6656 7,008,768 5.13× 10−6

CRM - Fine 6656 21,372,416 3.42× 10−6

CRM - X-fine 6656 48,089,600 2.56× 10−6

A. Flow solution case details

Two three-dimensional geometries are considered for the studies presented in Section IV.B, namely the
ONERA M6 wing and the NASA Common Research Model (CRM) wing-body geometry.23 Both subsonic
and transonic flow solutions were performed for both geometries, as outlined in Table 1. In particular, the
transonic cases for the CRM geometry reproduce the flow solutions from the 5th AIAA Drag Prediction
Workshop (DPW5), using the target angles of attack for the medium and extra-fine grid levels attaining the
required lift coefficient of CL = 0.5. For the current study, the angle is held constant for all grid levels. The
ONERA M6 solutions were computed with the standard turbulence model, labeled “SA”, while the CRM
solutions were computed using the “SA-QCR2000” model variant based on experiences from DPW5.

Three grid levels were used for all ONERA M6 studies, while five grid levels were used with the CRM.
While the CRM grids, taken from DPW533 and subdivided into equally-sized blocks, make use of 1.5-times
refinement in each direction, the ONERA M6 grids use the more typical 2-times refinement. This has to
be taken into account when calculating the Richardson extrapolation order and grid-converged functional
values. The grid details are outlined in Table 2.

For the purpose of the current study, the number of processors for obtaining solutions on each geometry
were held constant. For the ONERA M6 cases, 128 processors were used, while the CRM solutions used 832
processors, all with perfect load balancing. The residual was converged by 12 orders of magnitude.

B. Functional convergence and algorithm efficiency

The residual convergence histories for the flow solutions presented in this section are shown in Figure 1. The
plots present the convergence versus the total number of linear iterations, rather than CPU time, allowing a
more direct comparison of the algorithm on the various grid levels. The symbols in the plots represent the
outer (Newton) iterations of the solution algorithm. As can be seen from the plots, the current algorithm
maintains very good convergence characteristics for the majority of grids considered, for both subsonic and
transonic cases. The convergence slows down once very fine grids are used, due to the increase in linear
iterations required to converge the linear system in late stages of convergence. It should be noted, though,
that the solution algorithm parameters were held constant for all solution sets, with the algorithm exhibiting
good convergence behavior on grids differing in size by more than two orders of magnitude.

Table 3 summarizes the functional values obtained on all grid levels, along with the convergence order, p,
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Figure 1. Residual convergence (12 orders of magnitude reduction)
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Table 3. Functional values

Case Grid level CL F ∗ p CD F ∗ p

1-C 0.25581 0.020159

ONERA M6 - t 2-M 0.26532 0.017898

3-F 0.26986 0.27401 1.07 0.017086 0.016630 1.48

1-C 0.12905 0.015179

ONERA M6 - s 2-M 0.12925 0.011237

3-F 0.12998 NM NM 0.010525 0.010368 2.47

1-T 0.49254 0.027521

2-C 0.50225 0.025891

CRM - t1 3-M 0.50619 0.50726 2.22 0.025575 0.025555 4.04

4-F 0.51110 NM NM 0.025599 NM NM

5-X 0.51397 0.51588 1.32 0.025685 NM NM

1-T 0.48538 0.027104

2-C 0.49482 0.025484

CRM - t2 3-M 0.49865 0.49969 2.22 0.025169 0.025149 4.04

4-F 0.50341 NM NM 0.025189 NM NM

5-X 0.50619 0.50805 1.32 0.025270 NM NM

1-T 0.50863 0.027499

2-C 0.51934 0.025828

CRM - s1 3-M 0.52359 0.52469 2.28 0.025362 0.025303 3.15

4-F 0.52678 0.53185 0.71 0.025265 0.025257 3.86

5-X 0.52781 0.52799 2.78 0.025281 NM NM

1-T 0.61471 0.036027

2-C 0.64208 0.033583

CRM - s2 3-M 0.65372 0.65723 2.11 0.328380 0.032725 2.92

4-F 0.66155 0.66963 0.98 0.032625 0.032597 3.10

5-X 0.66379 0.66408 3.09 0.032614 0.032614 7.21

and grid-converged functional value, F ∗. When more than three grid levels are present, the p and F ∗ values
are calculated based on three consecutive grid levels. Hence, more than one set of values will be present
for each case. Additionally, “NM” stands for non-monotonic, which signifies that the functionals do not
follow consistent trends of either increasing or decreasing in proportion to changing grid size, which prevents
the use of Richardson extrapolation. In many cases, the second-order algorithm attains its design order, or
better, especially for the drag coefficient. For error calculations, which are presented later, the F ∗ value used
is taken from the finest available set of three grids that produce a monotonic sequence of functional values.

Figure 2 provides a graphical representation of solution time (both total and iteration), showing that we
do not incur a set-up time penalty as the grid size is increased. This signifies that any overhead costs, such
as off-wall distance calculation or reading and writing of files, scales as well as the solution algorithm itself.

Figures 3 and 4 show the equivalent RHS evaluations for each grid level and the total CPU time divided
by number of nodes in a grid, respectively. Both of these measures can be used to compare the current
solution algorithm to other codes, as they provide a metric that is independent of algorithm type (explicit
or implicit). The second metric, which effectively provides an estimate of computational expense per grid
node, highlights the effectiveness of the current algorithm as grid size is increased, signified by the relatively
level plot line. This metric can further be made more general by dividing the value by the number of orders
the residual was decreased, in this case 12, allowing for easier comparison of algorithms that attain various
levels of convergence.

Figures 5 and 6 demonstrate the behaviour of error in the lift and drag coefficients, respectively. The
errors are calculated relative to the grid-converged value obtained using Richardson extrapolation, using (9).
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Figure 2. Convergence times
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Figure 3. Equivalent RHS evaluations
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Figure 4. Total CPU time/Grid size
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Figure 5. Error in lift coefficient

The errors are plotted against grid size and iteration time, characterizing the behaviour of the algorithm
as grid density is increased. Of note, if non-monotonic functional behaviour was observed on the finer grid
levels, the error values for those grids are not included in the plots. Plots such as these can be used to make
decisions on grid resolution requirements, especially when a functional estimate within a certain error range
is acceptable. For example, one can see both the mesh density and CPU requirements to reduce both CL

and CD errors below 1%. For case “CRM - s1,” using 832 processors, the algorithm attains CL and CD

errors of 0.83% and 0.41%, respectively, in approximately 30 minutes on the 6656-block grid with 7 million
nodes.

C. High-Lift Configuration

The final case presented is the solution of flow around the delta wing geometry, which was the subject of
the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1).34 The geometry consists of a main wing,
along with a deployed slat and flap, referred to in the workshop as “Config 1,” and is subject to the following
flow conditions:

Ma = 0.20, Re = 4.3× 106, α = [1◦,13◦,19◦,28◦,33◦,35◦,40◦].
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Figure 6. Error in drag coefficient

The choice of α values is based on the range of flow conditions available in experimental data.a The grid
used in this study was obtained from the HiLiftPW-1 website, based on the JAXA-supplied coarse grid.
The original grid was subdivided into 1395 blocks, with a total of 13.3 million nodes and an average off-wall
spacing of 4.8× 10−6.

The algorithm experiences a stall in residual convergence once the inexact-Newton stage of the solution
process is reached. This type of behaviour is typically seen when the solution produced in the approximate-
Newton stage is not a suitable initial iterate for the final phase. However, for the solutions around the delta
wing geometry, changing the residual reduction at which the switch between phases occurs has no impact on
the final phase convergence. Figure 7 presents a comparison of the residual convergence at several angles of
attack, demonstrating the stall. The deepest convergence is observed for the flow solution at α = 33◦, but
with substantial convergence slowdown. Of note, the linear solver (GMRES) convergence during the final
iterations is on par with that achieved for the fully converged ONERA M6 and CRM solutions presented
in the previous section; hence, the convergence stall does not appear to be related to insufficient numerical
convergence of the linear system. This solver behaviour was observed with both variants of the turbulence
model (SA and SA-QCR2000).

aExperimental data accessed from http://hiliftpw.larc.nasa.gov/Workshop1/experiment.html on November 14, 2013.
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Figure 7. Residual convergence for delta wing flow solutions

Figure 8. Vortical structures present at leading edge wing-tip for flow at α = 28◦

It is unclear what is causing the stall in residual. From a careful examination of the flow field, and
the values of the residual, it was observed that the largest residual values are located near the region of the
leading edge wing-tip. Large vortical structures are present, as shown in Figure 8, which may be contributing
to the residual stall. In addition, it is possible that the cases are experiencing at least partially unsteady
flow, which could account for the poor nonlinear residual convergence.
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Figure 9. Force coefficients for high lift delta wing geometry

However, even with the stalled residual convergence, the coefficients of lift and drag at the various
angles of attack follow the expected trends, as shown in Figure 9. The numerical results are plotted with
experimental data for the geometry. In fact, the discrepancy from the experimental values of lift coefficient
is likely due to the lower grid resolution of the current grid, rather than the incomplete convergence, and
the data show remarkable agreement for the drag coefficient. To provide some correlation between force
coefficients and residual convergence, by 4 levels of residual reduction, the lift and drag coefficients are only
changing in the 4th significant figure for the α = 33◦ solution.

V. Conclusions

This paper presented the performance characteristics of a Newton-Krylov-Schur algorithm for the solution
of the RANS equations and the Spalart-Allmaras one-equation turbulence model, with an optional imple-
mentation of quadratic constitutive relations. In an effort to facilitate flow solver algorithm comparisons,
several performance metrics were presented that can provide a basis for a more straightforward compari-
son of different algorithms, including explicit and implicit codes, taking into account differing convergence
tolerances.

The algorithm performs well when solving the flow around three-dimensional configurations. Both sub-
sonic and transonic solutions were performed around the ONERA M6 wing and the CRM wing-body config-
uration. Grid convergence studies provided the solution error behavior of the code, along with an estimate
of the weak scaling characteristics of the algorithm. All solutions were converged by reducing the residual
12 orders of magnitude.

A third geometry was studied, providing difficulty in full residual convergence. The high-lift delta wing
geometry resulted in stalled convergence at angles of attack between 1◦ and 40◦, with the residual typically
leveling off at a reduction of 4 to 5 orders of magnitude. However, the stalled solutions still exhibit the
correct trends in the lift and drag coefficient data, as compared to experimental data, signifying that the
incomplete convergence of the solutions is not hampering the functional value accuracy.
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