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Two optimization algorithms are presented that are capable of finding a global optimum in a computationally

efficientmanner: a gradient-basedmultistart algorithmbased on Sobol sampling and a hybrid optimizer combining a

genetic algorithm with a gradient-based algorithm. The optimizers are used to investigate multimodality in

aerodynamic-shape-optimization problems. The performance of each algorithm is tested on an analytical test

function as well as several aerodynamic-shape-optimization problems in two and three dimensions. In each problem

the primary objectives are to classify the problem according to the degree of multimodality and to identify the

preferred optimization algorithm for the problem.The results show thatmultimodality should not always be assumed

in aerodynamic-shape-optimization problems. Typical two-dimensional airfoil-optimization problems are unimodal.

Three-dimensional shape-optimization problems may contain local optima. The number of local optima tends to

increasewith increasing geometric degrees of freedomand design space bounds. For problemswith amodest number

of local optima, which we term somewhat multimodal, the gradient-based multistart Sobol algorithm is the most

efficient method.

I. Introduction

T HE use of computer algorithms for aerodynamic shape
optimization (ASO) has the potential to uncover unconventional

aircraft configurations that can lead to dramatic reductions in drag.
This may result in significant improvements in aircraft fuel
efficiency, which is important because of rising fuel prices and
concerns over the environmental impact of aviation.
The two major components of ASO are efficient computational-

fluid-dynamics (CFD) solvers and optimization algorithms.
Although CFD has become a mature technology and has found
numerous industrial applications, the use of optimization for
CFD-based design is still undergoing rapid development.
The field of optimization is expansive, and the choice of a suitable

algorithm is highly problem dependent. Considerations must be
madewith regard to the types of designvariables (e.g., discrete and/or
continuous), the number of constraints, the properties of the design
space (e.g., number of local optima, discontinuities), etc. In this work
we assume that the design space is smooth, and the design variables
are continuous. The smoothness of the design space is a reasonable
assumption if the numerical error is small and tight convergence
criteria are specified. The authors’ experience suggests that, for a
wide range of problems, these assumptions are valid.
Even with these assumptions many choices of optimization

algorithms are available for ASO [1–3]. Traditionally, optimization
algorithms have been divided in two broad categories: gradient-free
and gradient-based (GB) methods. Both types have been used for
ASOwith compelling arguments presented in favour of eachmethod.
Moreover, various hybrid approaches incorporating elements from
both GB and gradient-free algorithms have been proposed and

successfully applied [3–9]. These hybrid algorithms attempt to
address the shortcomings of the traditional optimization methods.
Gradient-based algorithms require sensitivities of the objective

and the constraints in order to reach a local optimum. Quasi-Newton
methods, such as Broyden-Fletcher-Goldfarb-Shanno (BFGS),
construct a Hessian approximation at each iteration. The main
advantage of gradient-based algorithms is their rapid convergence.
The difficulties associated with GB optimizers arise in the need for
efficient gradient calculations and in their inherent tendency to
converge to local optima.
Gradient-free approaches usually mimic some real-life phenome-

non in an attempt to minimize the objective function. Because
gradient information is not required, these algorithms can be easily
incorporated into existing frameworks and have foundmanypractical
applications. Genetic algorithms (GAs) are among the most popular
gradient-freemethods in use today [2,10,11]. Aside from their ease of
implementation GAs are particularly suitable for problems with
discrete design variables, problems with discontinuous objectives,
and problems with multiple local optima (multimodality). The main
disadvantage of gradient-free optimizers is their slow convergence.
Zingg et al. [12] show that for two-dimensional (2-D) airfoil-
optimization problems a GA can require 200 times more function
evaluations than an efficient GB method.
The issue ofmultimodality in high-fidelityASObased on the Euler

and Navier–Stokes equations is largely unsettled. To the authors’
knowledge no definitive investigation of multimodality in high-
fidelity ASO problems has been published to date. Some existing
studies present results that appear multimodal as a result of
insufficient optimizer convergence. For example, Namgoong et al.
[13] conclude that because their gradient-based algorithm generates
different results depending on the initial condition, the problem is
multimodal. However, this can also occur if the optimizations are not
fully converged. Various additional publications also claim that
multimodality makes gradient-based algorithms a poor choice for
ASO but without providing evidence of multimodality [3]. The
existence of multiple local optima may be challenging to disprove.
However, it is possible to prove that a local optimum has been
reached, provided that gradient information is available‡.
Unfortunately, proof of optimization convergence is often omitted
in ASO literature.
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Nevertheless, multiple local optima certainly exist in aerody-
namic-shape-optimization problems. Buckley et al. [14] present a
practical multipoint airfoil optimization case and show that at least
two local optima exist for this problem. Leung and Zingg [15] show
that a three-dimensional (3-D) optimization of an ONERAM6 wing
produces at least two local optima, one for forward and one for
backward sweep. Hicken and Zingg [16] show that for spanwise
vertical shape optimization at least two local minima exist as well
(winglet-up and winglet-down).
In thisworkwe propose two novel optimization algorithms that are

designed to be computationally efficient and to avoid converging to
local optima. The algorithms employ features from a GA and a GB
algorithm as well as an efficient sampling process to thoroughly
explore the design space.We first examine the algorithms on a highly
multimodal test function and proceed to apply them to practical
optimization problems. In addition, we compare them with two
popular optimization methods that can be placed at the opposite ends
of the gradient-free/gradient-based spectrum. The objectives of this
paper are to investigate the multimodality of the ASO design spaces
and to introduce and assess two new algorithms for dealing with
multimodal design spaces.

II. Overview of the Integrated Aerodynamic-
Shape-Optimization Methods

The key components of the aerodynamic-shape-optimization
algorithms used are thoroughly described byNemec andZingg [1,17]
for 2-D problems and Hicken and Zingg [18,19] for 3-D problems.
Some of themain features of these algorithms are briefly summarized
next.
The geometry parameterization is accomplished using B-spline

curves in 2-D andB-spline surfaces in 3-D. The designvariables in 2-
D are vertical coordinates of the B-spline control points. In 3-D the
design variables are the x, y, and z coordinates of the B-spline surface
control points. Depending on the problem definition each control
point is assigned from zero to three design variables.
In the 2-D algorithm the algebraic mesh movement algorithm of

Nemec andZingg [1] is used. In the 3-D algorithm the linear elasticity
method of Truong et al. [20] is employed but applied to a B-spline
volume control-point mesh as described by Hicken and Zingg [19].
The governing equations in 2-D are the compressible Navier-

Stokes equations with the Spalart-Allmaras turbulencemodel used to
compute the eddy viscosity. The discretized equations are solved
using a Newton-Krylov approach [1].
In 3-D the governing equations are the Euler equations. Although

the work to incorporate viscous terms and turbulence modelling
is underway [21], the current study considers only inviscid
3-D problems. The spatial discretization is accomplished using
summation-by-parts operators, and the interface conditions between
blocks are enforced using simultaneous approximation terms [18].
The discretized equations are solved using a Newton-Krylov-Schur
approach [18].
In both cases derivatives of objectives and constraints with respect

to the design variables are computed using a discrete adjoint method.
The adjoint method is the most efficient method when the number of
design variables exceeds the number of nonlinear constraints, which
is the case for most aerodynamic-shape-optimization problems. The
chief advantage of the adjoint method is that the gradient calculation
is nearly independent of the number of design variables.

III. Optimization Components

In general terms an optimization problem can be stated as follows:

minimize J o�X�;
w:r:t: X;

s:t: a ≤ J mj �X� ≤ b; j � 1; : : : ; nm;

c ≤ J lk�X� ≤ d; k � 1; : : : ; nl (1)

In the preceding formulation J o is the aerodynamic objective
function to be minimized, often Cd or Cd∕Cl,X is a vector of design
variables, such as the coordinates of the B-spline control points and/
or the angle of attack α, and J mj and J lk are nonlinear and linear
constraints, respectively. Examples of these are a wing-volume
constraint, a lift constraint, and upper/lower bounds on the design
variables (box constraints).
Nonlinear constraints can be incorporated into the objective

function using a quadratic penalty method (QPM):

J �X; ρ� � J o�X� � ρ
Xnm
i�1
fmax�0; a − J mi�X��g2

� ρ
Xnm
j�1
fmax�0;J mj �X� − b�g2 (2)

This method can be applied to linear constraints as well, but these
can be satisfied exactly. The choice of the appropriate penalty
parameter ρ is not a trivial task especially for practical design
problems [14]. The QPM is often used in gradient-free optimizers.
However, for gradient-based optimization algorithms the preferred
way to satisfy constraints is through the solution of theKarush-Kuhn-
Tucker equations using the sequential-quadratic-programming
(SQP) methodology [22]. In this work, both QPM and SQP
techniques are employed.

A. Sobol Sampling

Effective sampling is important for design-space exploration.
Although random sampling can be employed, more efficient
strategies have been devised. Some of the most popular sampling
techniques include Latin hypercube sampling and Sobol sequences.
In this work we chose the Sobol sequence due to its deterministic
behaviour and the ability to perform incremental sampling. It was
originally introduced with the goal of approximating an integral of a
d-dimensional function on a unit hypercube with the fastest possible
convergence.We use an extension of algorithm 659, which usesGray
code implementation for generating Sobol sequences [23]. To
generate the dth dimension of the nth sample point xd;n we use a
recursive relation:

xd;1 � 0 and xd;n � xd;n−1
M

vd;cn−1 (3)

where
L

is a bitwise exclusive-or operator, cn is the index of the first
0 digit from the right of the binary representation of n, and vd;n is the
directional number defined as:

vd;n �
md;n
2d

(4)

A proper Sobol sequence requires a set of carefully generated
directional numbers. The list of numbers md;n used in this work is
provided by Joe and Kuo [23] and can be used for dimensions up to
d � 21; 201.

B. Gradient-Based SNOPT Optimization Algorithm

The gradient-based optimizer used is the optimization package
SNOPT. Developed byGill et al. [24] SNOPTuses an SQP algorithm
to find the solution to nonlinear optimization problems with general
constraints. The Hessian of the Lagrangian function is approximated
using the quasi-Newton BFGS method.
In this paper we use SNOPT terms “merit function,” “optimality

tolerance,” and “feasibility tolerance.” These are described in detail
by Gill et al. [24]. The merit function is an augmented Lagrangian
merit function, which is equal to the objective function when all
constraints are satisfied. The optimality tolerance specifies how small
the gradient of the Lagrangian function must be, normalized by the
Lagrange multipliers. The feasibility tolerance specifies how small
the violation of the nonlinear constraints must be, normalized by the
values of the design variables.
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C. Gradient-Based Multistart Algorithm Based on Sobol Sampling

Because a gradient-based optimization algorithm, such as SNOPT,
uses one initial guess and converges to a local optimum only, it is
logical to consider an algorithm that uses multiple starting points to
initiate gradient-based optimization. The advantage of incremental
sampling is particularly important here. If a Sobol sequence is
employed the user can optimize the first n initial points in this
sequence using a GB algorithm. Once these points are optimized the
user can then increment the sampling and optimize the next n initial
points. This process can be repeated until a user-defined termination
criterion has beenmet (e.g., time constraints, limits on computational
resources, or the user is convinced that the design space has been
thoroughly explored). The parallel implementation is done using the
Message Passing Interface library. We use GB-MS to denote this
algorithm.
To avoid infeasible geometries we created a system of geometric

linear constraints for each problem. This system limits the geometric
deformation by controlling a limited number of input parameters.
One example of these constraints is shown next. The detailed
description of the entire system of linear constraints is presented by
Chernukhin [25].
Consider a chordwise cross section of a wing that is parameterized

with B-spline surfaces. We define the following: 1) U is the control
point on the upper surface, 2) L is the corresponding control point at
the leading edge, 3)T is the corresponding control point at the trailing
edge, 4) Uz is the vertical coordinate of U (define Lz, Tz similarly),
5)Ux is the streamwise coordinate ofU (defineLx,Tx similarly), 6) γ
is the streamwise fraction of position of U along the chord line:

γ � Ux − Tx
Lx − Tx

(5)

7) h0 is the initial height of U above the chord line:

h0 � Uz − γLz − �1 − γ�Tz (6)

8) β is the input parameter (see next equation).
With the help of the input parameter βwe can constrain the bounds

of the vertical coordinate Uz to the fraction of its initial height h0
above the chord as follows:

�1 − β�h0 ≤ Uz − γLz − �1 − γ�Tz ≤ �1� β�h0 (7)

For example setting β � 0.6 allows Uz to vary between 0.4h0 to
1.6h0.
A similar process can be followed to define appropriate constraints

for the remaining design variables. In the end every linear geometric
constraint is expressed in the following form:

l ≤ a1x1 � a2x2 � : : : � anxn ≤ u (8)

where xi are design variables, and l, u, ai are constants.
The advantage of linear constraints is that their gradients are

readily known,which allows the optimizer to satisfy these constraints
exactly. Using this method we can start with a generic geometry,
shown in Fig. 1a, and set the linear constraints based on this
geometry. We can then create an arbitrary sample, shown in Fig. 1b,
and shape it into a wing by enforcing the linear constraints (Fig. 1c).
This process takes place in less than a second.
This method is an alternative to the approach of Leung and Zingg

[15], where problem-specific design variables such as sweep are
created. If custom design variables are introduced the section of the
solver source code needs modifications to calculate sensitivities. In
the current approach the constraints are problem specific, but the
design variables are always of the same type (coordinates of the
control points).
One disadvantage of creating arbitrary samples (Fig. 1b), is that

after the linear constraints are enforced the sample is biased towards
the boundaries of the linear-feasible regionRL. Figure 2 provides an
illustration of this process. In Fig. 2a a 2-D sample is shown with the
linear-feasible region in dashed lines. In Fig. 2b is the same sample
with linear constraints enforced by SNOPT. Clearly, the majority of
points are on the boundaries ofRL, and the interior of the region is not
thoroughly sampled.
To address this issue we have designed a procedure for sampling

onlywithinRL. Themain idea is to provide the proper order inwhich
the linear constraints are implemented. Then, it is straightforward to
establish the upper and lower bounds on each design variable.
Figure 2c shows a sample that results from using this procedure to
sample only within RL. Clearly, the linear-feasible region is now
covered in a uniform, unbiased manner, an obvious improvement
over the sample in Fig. 2b.

Fig. 1 Wing parameterization.

a) Sobol sample and RL b) Linear constraints enforced 
by SNOPT

c) Sampling only in RL

Fig. 2 Sampling method.
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D. Genetic Algorithm

Genetic Algorithms (GA) have been used extensively in the
aerospace field [2,11,12]. GAs attempt to minimize the objective
function by mimicking the process of evolution. In the GA context
the design points are called chromosomes, the objective function is
the fitness, and genes refer to either the design variables or substrings
of bit-encoded design-variable strings.
With numerous variations the basic operators of any GA are

selection, crossover, and mutation. Once each chromosome is
assigned a fitness value the selection process decides which
chromosomes are considered in the creation of a new generation.
The crossover operator combines various genes from the two
chromosomes (parents) to create a new one (child). The mutation
operator assigns random values to some of the genes in a
chromosome. Through the process of selection, crossover, and
mutation, the subsequent generations are created. With the aid of the
CFD solver the fitness values are assigned to the chromosomes in the
new generation, and the process continues.
The GA used in this project was developed at the NASA Ames

Research Center by Holst and Pulliam [26]. It uses real number
encoding, which is more practical when all design variables are
continuous. In order to create the next generation this GA uses
four basic operators: passthrough, crossover, pure mutation, and
perturbation mutation. The input parameter p-vector states what
percentage of the chromosomeswithin the newgeneration are created
using a particular operator. For example, p � �0.1; 0.2; 0.3; 0.4�
states that 10% of the chromosomes are created using passthrough,
20% using crossover, 30% using pure mutation, and 40% using
perturbation mutation.
The passthrough operator takes the fittest chromosomes from the

previous generation and passes them on to the next generation. This
ensures that information from the fittest chromosomes is never lost.
The crossover operator combines two chromosomes in the following
way:

Xnew � 1∕2�X1 � X 2� (9)

The pure-mutation operator takes one chromosome from the previous
generation and replaces some of its genes with random values:

xnew � RAND�xmax − xmin� � xmin (10)

where RAND is a random number between 0 and 1. The perturbation
mutation takes one chromosome from the previous generation and
perturbs some of its genes:

xnew � xold � β�xmax − xmin��RAND − 0.5� (11)

where β is a user-specified parameter. Checks are in place to ensure
that xnew does not exceed its box constraints. For the GA optimizer
the p-vector used in this work is:

p �
�
1

n
;
1

2
−
1

n
;
1

4
;
1

4

�
(12)

where n is the population size. Nonlinear constraints are enforced
using the QPM with a penalty term weight ρ � 10. The linear
constraints are satisfied exactly using SNOPT, as described in the
preceding section.

E. Hybrid Optimization Algorithm

Numerous ideas for hybrid optimization algorithms (HM) can be
found in the literature [3,4,6–9,27,28]. Although many algorithms
involve use of surrogate modeling to interpolate the objective
function, this approach is not taken in this paper because surrogate
models can introduce difficulties when the number of design
variables is large.
We propose a hybrid optimizer that takes advantage of the GA’s

ability to perform a global search and SNOPT’s ability to efficiently
find the nearest local optimum and enforce constraints. Whenever a

new generation is created by the GA the resulting chromosomes are
passed to SNOPT for gradient-based refinement. We limit the
number of SNOPT major iterations to equalize the amount of time
SNOPT spends on each chromosome, which improves load
balancing. However, care must be taken not to limit gradient-based
iterations excessively within a single generation. SNOPT typically
requires a problem-dependent minimum number of iterations that
must be performed continuously (i.e., within a single generation) to
reach optimality.
The improved chromosomes are then passed back to the GA to

create a new generation. The block diagram of the hybrid optimizer is
shown in Fig. 3.
The perturbation-mutation operator is designed to improve theGA

refinement capability. Becausewe use a gradient-based optimizer for
refinement, the perturbation mutation is avoided in the hybrid
optimizer. For the HM optimizer the p-vector is:

p �
�
1

n
;
1

2
−
1

n
;
1

2
; 0

�
(13)

IV. Optimization Problems

The difficulty with assessing the performance of any optimization
algorithm is that one algorithm may be more suited than other,
depending on the optimization problem. Our main motivation in the
development of the optimization algorithms is the ability to handle
design spaces with multiple local optima. We classify optimization
problems according to the number of local optima as shown in
Table 1.
Unless otherwise stated each optimization problem is solved using

the four optimization methods described in the preceding section:
1) Gradient-based method, single (baseline) initial guess (GB);
2) Gradient-based method, multiple initial guesses determined by
Sobol sequence (GB-MS); 3) Hybrid optimization method (HM);
and 4) GA with linear constraints handled by SNOPT (GA). Every
problem will be classified according to the criteria in Table 1, and the
most suitable optimization method for this problem will be selected.
We assess the efficiency of these methods based on how many

Fig. 3 Hybrid-optimizer block diagram.

Table 1 Classification of optimization

problems by multimodality

Number of local optima l Classification

l � 1 Unimodal
1 < l ≤ 10 Somewhat multimodal
10 < l ≤ 100 Moderately multimodal
l > 100 Highly multimodal
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function evaluations they take to reach the best optimal point.§ For
methods that use gradient information (GB, GB-MS, and HM), we
count a gradient computation as one function evaluation because the
computational expense of one adjoint solution approximately equals
that of one flow solution. Thus, one objective evaluation and one
gradient evaluation count as two function evaluations.

A. Optimization of a Highly Multimodal Analytical Test Function

Before ASO problems are considered the performance of the
algorithms is assessed on an analytical test function. The Griewank
function is particularly suitable for testing of the global optimiza-
tion algorithms because it is smooth, differentiable, and highly
multimodal. Its definition in two dimensions is given next:

f�x1; x2� �
x21 � x22
4000

− cos

�
x2���
2
p

�
cos x1 � 1 (14)

This function has a global optimum f�0; 0� � 0. Itsmain features can
be understood by examining Fig. 4 where the Griewank function is
plotted over different domains. Although the function looks convex
when plotted over an expansive domain, its highlymultimodal nature
becomes clear when a smaller region of the domain is examined.
For the highly multimodal test case the box constraints are:

−1234 ≤ x1 ≤ 1321; −934 ≤ x2 ≤ 778

These constraints are arbitrary the only requirement being that the
domainmust not be centered on the origin (globalminimum) because
the second point in the Sobol sequence is placed at the exact center of
the domain. Clearly, this function contains numerous local optima
and the single-initial-guess GB optimizer cannot be used for this

problem. Due to the stochastic nature of the GA and HM optimizers
10 optimization runs are performed using these algorithms, and the
geometric mean of these 10 runs is calculated and plotted. Holst and
Pulliam [26] perform a rigorous investigation of the number of GA
runs required to obtain a true average of the convergence process. The
results show that a reasonable average (well within 5% of the
asymptote) is obtained after 10 runs for the convergence tolerance of
10−5. Although increasing multimodality and a smaller convergence
tolerance may increase the variation in the GA runs, we chose 10 as a
reasonable number to assess the performance of the GA. Because the
multistart (GB-MS) procedure is fully deterministic (a property of the
Sobol sequence), only one run is required. The population size is 16
for both the GA and the HM. Our preliminary results confirmed the
conclusion of Holst and Pulliam [26] that the effect of population size
on convergence efficiency is small.
We consider the total number of function evaluations it takes to

reach the global minimum to within 10−8. The convergence plots are
shown in Fig. 5a. For the GA and the HM the chromosome with the
best fitness value is plotted at the end of each generation. For the GB-
MSprocedurewe continuously sample using a Sobol sequence.After
each sample point is driven to optimality we plot the best objective
value found.
Of the three algorithms considered the GA consistently requires

the largest number of function evaluations to converge. The GB-MS
method required 27,643 function evaluations and 1907 Sobol sample
points to find the globalminimum.The hybrid optimizer significantly
outperforms the other algorithms for this highlymultimodal problem.

B. Optimization of a Moderately Multimodal Analytical

Test Function

As in the previous problemwe consider the Griewank test function
14. For the moderately multimodal problem the box constraints are:

−12.34 ≤ x1 ≤ 3.76; −11.41 ≤ x2 ≤ 8.45

a) −600  < xi < 600– – b) −30  < xi < 30– – c) −5  < xi < 5– –
Fig. 4 Griewank test function.

a) Highly multimodal problem 
convergence history

(b) Moderately multimodal problem 
convergence history
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Fig. 5 Convergence plots for analytical test-function-optimization problems.

§We use the term best optimal point instead of global optimum because it is
not possible to definitively demonstrate that a point is a global optimum.
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As in the previous problem, these constraints are arbitrary with care
taken not to position the global minimum at the exact center of the
domain. There are 18 local optima in this case. One can expect
the advantage of the hybrid algorithm over the GB-MS method to be
diminished because far fewer sample points are required to find the
global minimum. As in the previous problem, we perform 10
optimization runs for each of theGA andHMalgorithms, and one run
for the GB-MS procedure.
The results support the hypothesis: the GB-MS and HM

algorithms require a comparable number of function evaluations to
reach the global optimum. This is evident from the convergence plots

in Fig. 5b. The GA again shows the slowest convergence of the three
algorithms tested.
Based on the results from these two test problems we can draw

some intermediate conclusions. If the design space for a practical
aerodynamic optimization problem is highly multimodal the HM
algorithm may be the preferred choice. However, if the design space
contains only a few local optima, the GB-MS optimizer may be most
efficient in reaching a global optimum. With these thoughts we
proceed to more practical optimization cases.

C. Airfoil-Optimization Problem

The 2-D ASO problem is solved using the Newton-Krylov
algorithm described in Sec. II. The mesh is a 289 × 65 point C-mesh
shown in Fig. 6. Length units are nondimensionalized, with chord
length being equal to one. The geometry is parameterized using 23B-
spline control points. Two coincident control points at the trailing
edge and one at the leading edge are kept constant. The remaining 20
control points are allowed to move in the vertical direction, subject to
linear constraints as discussed in preceding sections. There are 10
control points on the upper surface and 10 on the lower surface. Their
distribution is approximately uniform as determined by the fitting
algorithm.
The optimization is performed at the following conditions:

Ma � 0.729; Re � 7.0 × 106 α � 2.31 deg

whereMa is the Mach number, Re is the Reynolds number, and α is
the angle of attack. We consider lift-constrained drag minimization
withCl � 0.690. The required lift coefficient is met by adjusting α as
described by Billing [29]. A minimum area constraint of 0.07772 is
also imposed.
For the GB optimizer the control points are located such that the

initial geometry conforms to the standard RAE2822 airfoil. The
initial CFD solution of this geometry is illustrated in Fig. 7awhere the

Fig. 6 C-grid for airfoil-optimization problem.

a) RAE2822 Mach contours b) Optimized mach contours

c) Cp Plots

Mach number Mach number

Fig. 7 Comparison of the initial and optimized geometries in airfoil-optimization problem.
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Mach number contours are shown. The surface pressure coefficient
distribution is displayed in Fig. 7c. The convergence plot for the GB
optimizer, shown in Fig. 8a, demonstrates that a local optimum has
been reached because the optimality criterion is reduced to 10−6. The
optimized airfoil is shown in Fig. 8b. The Mach number contours of
the optimized airfoil are shown in Fig. 7b, and theCp plot is provided
in Fig. 7c. The drag coefficient is reduced from 1.518 × 10−2 to
Cd � 1.337 × 10−2, a 12% improvement.
For GB-MS procedure we consider 480 initial guesses generated

by the Sobol sequence. The first 10 initial guesses are shown in
Fig. 8c. We use 100 generations for the HM optimizer and 1000
generations for the GA.
None of the three global optimization algorithms were successful

in finding additional local optima. The convergence plots are shown
in Fig. 8d. Note that GB-MS andHM reach the same optimal point as
theGB algorithm.However, theGAconverges very slowly and is still
not near the optimal point after 64,000 function evaluations. For the
GA the first point on the plot is added at the end of the first generation,
when 64 flow solutions have already been computed (population size
is 64). The same is true for the HM except that at the end of the first
generation 775 flow solves have been performed. This explains the
gaps before the first points for GA and HMon the convergence plots.
ForGB-MS the first Sobol point converges to the global optimum; the
convergence plot does not reflect the total number of samples
considered.
The results indicate that the design space is unimodal, and the local

optimum found using the RAE2822 as a starting point is the global
optimum. We have performed similar studies varying the following
parameters: 1) different numbers of design variables, 2) different
Mach numbers (Ma � 0.50 and Ma � 0.85), and 3) a different
objective function (Cd∕Cl).
Only one local minimum was found in each case. Therefore, our

conclusion is that this is a unimodal problem, and the most effective
algorithm for this type of optimization problem is GB. However,

usingGB-MS is still useful to gain confidence that no additional local
optima exist.

D. Transonic Wing-Section Optimization

The 3-D ASO problems are solved using the inviscid Newton-
Krylov-Schur solver (see Sec. II). In all wing optimization cases the
mesh is a 12-block structured H-H topology grid with a total of
1,158,300 nodes, as shown in Fig. 9. The length units are
nondimensionalized with the initial chord length being equal to 2/3.

a) GB Convergence plots b) Optimized airfoil

c) 10 Initial geometries for GB-MS d) Comparison of convergence plots
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Fig. 9 H-H grid for wing-optimization problems.
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The wing is parameterized using a 2-patch B-spline surface.
The baseline initial guess has NACA0012 cross-sections and a
rectangular planform with a semispan of two. Projected area of the
half-wing is used as a reference and is constrained to 4/3 using a
nonlinear constraint.
We perform an optimization of thewing sectionswithNACA0012

cross-sections as the baseline. The objective is to minimize CD at
Ma � 0.80. The lift coefficient is constrained to CL � 0.2625. The
volume is constrained to be at least 6.57 × 10−2, which is the volume
of the original wing.
Each patch contains five control points in the streamwise direction

and six in the spanwise direction. The control point at the root trailing
edge is fixed. The control points at the root are not allowed tomove in
the spanwise direction. Accounting for the duplicate control points
on the stitches there are 125 geometric designvariables (control-point
coordinates). The angle of attack is also a design variable. For this
problem we are only optimizing cross sections thus allowing the

interior control points to move only in the vertical direction. This is
accomplished using linear constraints as described in Sec. III.
The solution of the baseline geometry is plotted in Fig. 10a where

the Mach number contours are shown. There is a relatively strong
shock on the upper surface and CD � 3.158 × 10−2.
The GB optimization took 57 major iterations (60 function

evaluations) to converge to within 10−8 optimality tolerance, which
demonstrates that a local optimum has been reached. CD at the
optimal point is 3.582 × 10−3. In Fig. 10b we can see that the final
geometry is shock free. Figure 11 shows that the spanwise lift
distribution is nearly elliptical, except near the tip, where the wing
deformation is not allowed by the linear constraints, and side edge
separation can be present. Therefore, the optimizer has successfully
eliminated the shock and minimized induced drag within the
constraints. The convergence plot for the GB optimizer is shown in
Fig. 12a.
For GB-MS method 128 initial geometries, determined by the

Sobol sequence, were optimized. No additional local optima were
found for this problem and all optimizers converge to the same point.
For the HM optimization the population size is 64, and the algorithm
was run for 10 generations. The local optimum was reached on the
second generation. Subsequent generations failed to find any
additional local optima.
The convergence plots for all optimizers are provided in Fig. 12b.

Because only one local optimum was found in this problem, we
conclude that the design space is unimodal, and the GBmethod is the
most effective for this type of ASO problem.

E. Subsonic Wing Optimization

In this problem we consider subsonic flow and allow greater
geometric flexibility than in the previous problem. This is achieved
by changing the linear constraints while the number and location of
the design variables remain identical to the transonic wing-section

a) Baseline geometry b) Optimized geometry
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Fig. 10 Mach contours for transonic wing-section-optimization problem.

Fig. 11 Optimized lift distribution.
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Fig. 12 Convergence plots for transonic wing-section-optimization problem.
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optimization. The objective is to minimize the drag coefficient CD.
The Mach number is 0.50. The lift coefficient CL is constrained to
0.2625. The projected area is constrained to 4/3. The angle of attack is
a design variable and can vary between−3 and�6 deg. The volume
is constrained to 6.57 × 10−2, which is the volume of the baseline
geometry. The control point at the trailing edge can have a maximum
spanwise extent of 2.4, maximum sweep back to 1.00 (from the
original value of 0.33), and vertical bounds are −0.3 and 0.3. Each
section is allowed to twist and change its shape. Both leading and
trailing edges can be curved. The first 32 initial geometries generated
by the Sobol sequence are illustrated in Fig. 13.
Because the flow is subsonic and inviscid, only induced drag is

present. The baseline initial guess hasCD � 4.094 × 10−3. Gradient-
based optimization took 257 major iterations. After the optimization
process CD was reduced to 1.744 × 10−3. The convergence plot is
provided in Fig. 14a, and the optimized wing geometry is shown in
Fig. 15a. It is worth noting that the geometries shown in Fig. 15 are
not representative of practical wing shapes. The primary objective
here is to investigate the existence of multiple local optima. In the
absence of structural constraints one must define further geometric
constraints to producemore practical wing shapes (e.g., make trailing
edge straight, etc.). Our experience suggests that defining such
constraints further reduces multimodality [15,16].
For GB-MS method 192 initial guesses, determined by the Sobol

sequence, were optimized. The optimization process found seven
distinct local optima all of which converged to the optimality
tolerance of 10−8. These optimal geometries are shown in Fig. 15.CD
values for all local optima found are compared in Table 2. The results
show that the baseline geometry does not lead to the global optimum,
and that a further 0.54% drag improvement can be obtained by
considering alternative initial geometries. It is also important to note
the significant difference in performance at the local optima. The
local optima differ by more than 5% in the objective value.

For the hybrid optimizer the population size is 64. Each population
member has a SNOPTmajor iteration limit of 50. The HM optimizer
was run for 10 generations. As one can see in Fig. 14b HM is able to
find the same best optimal point as the GB-MS, but it takes more
function evaluations to reach that point. The GA was run for 100
generations. As shown in Fig. 14b, the GA converges much more
slowly than the other algorithms.
Because seven local optima were found in this problem, we

conclude that the design space is somewhat multimodal. Increasing
the Mach number to 0.80 results in three local optima, which falls
under the same multimodality classification. In both subsonic and
transonic cases the GB-MS optimizer is the most efficient algorithm.

F. Comments on Grid Refinement

Because induced drag is particularly sensitive to grid size, it is
important to understand how the results are affected as the grid is
refined. We address two questions:
1) Do the optimized geometries change with the refined mesh?
2) Do the CD values change with the refined mesh?
To answer the first question we increased the number of nodes in

the original mesh by a factor of two in all directions. The resulting
grid has 12 blocks and 8,955,180 nodes. The optimization process
was started from the local optima found using the original grid size of
1,158,300. The optimizer is able to converge these geometries to an
optimality tolerance of 10−6, so local minima are again found. The
optimized geometries on the fine grid are very similar to the
geometries on the coarser grids. Therefore, it appears that the optimal
shapes are grid independent.
To answer the second question we increased the number of nodes

in the original mesh by a factor of four in all directions. Each block
was split into 64 blocks. The resulting grid has 70,416,972nodeswith
768 blocks. Flow solutions were computed for three of the optimized
geometries on this grid. Thevalues ofCL,CD, and the span efficiency

Fig. 13 Thirty-two initial guesses for subsonic-wing-optimization problem.
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Fig. 14 Convergence plots for subsonic-wing-optimization problem.
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factor e are compared in Table 3. The values of CD change
significantly as the grid is refined. Because the values of CL change
slightly, the relative performance of these wing geometries is best
assessed in terms of the span efficiency factor e. The relative
performance at the local optima remains consistent (i.e., optimized
geometries are superior to the baseline geometry, local optimum 2 is
better than local optimum 7, etc.).

G. Blended-Wing-Body-Configuration Optimization

ABlended-wing-body (BWB) is an unconventional configuration
that has the potential to reduce fuel burn by asmuch as 30%compared
to a conventional wing-tube configuration [30]. In this problem we
apply the optimization algorithms to a BWB configuration.

The geometry is parameterized with four B-spline patches. Each
patch has seven control points in the streamwise direction and six in
the spanwise direction. The total number of designvariables is 368. A
system of linear constraints was created to control the geometric

a) Optimized geometry 1 b)  Optimized geometry 2 c) Optimized geometry 3

d) Optimized geometry 4 e)  Optimized geometry 5 f) Optimized geometry 6

g) Optimized geometry 7
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Fig. 15 Local optima for subsonic-wing-optimization problem.

Table 2 CD values for optimal geometries in

subsonic-wing-optimization problem

Geometry CD Relative difference from
local optimum 1

Baseline 4.094 × 10−3 157.73%
Local optimum 1 1.588 × 10−3 0.00%
Local optimum 2 1.580 × 10−3 −0.54%
Local optimum 3 1.634 × 10−3 2.84%
Local optimum 4 1.621 × 10−3 2.04%
Local optimum 5 1.652 × 10−3 4.00%
Local optimum 6 1.644 × 10−3 3.41%
Local optimum 7 1.669 × 10−3 5.06%

Table 3 Grid-refinement results

Quantity CL CD e

Mesh Size 1,158,300 70,416,972 1,158,300 70,416,972 1,158,300 70,416,972
Baseline Geometry 0.2625 0.2659 4.094 × 10−3 3.821 × 10−3 0.893 0.981
Local optimum 1 0.2625 0.2639 1.588 × 10−3 2.354 × 10−3 1.598 1.089
Local optimum 2 0.2625 0.2623 1.580 × 10−3 2.318 × 10−3 1.607 1.094
Local optimum 7 0.2625 0.2611 1.669 × 10−3 2.331 × 10−3 1.521 1.077

Z

X

Y

Fig. 16 H-H grid for BWB-optimization problem.
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deformation. The mesh, shown in Fig. 16, is an H-H topology grid
with 627,000 nodes. The drag-coefficient value for the baseline
geometry is CD � 1.849 × 10−2. The top planform view with the
Mach-number contours is displayed in Fig. 17a showing a strong
shock on the upper surface.

The objective is to minimize CD with CL constrained to 0.3522.
The projected area is constrained to 0.24133, and theMach number is
0.80.We allow variation in the sweep, dihedral, and linear twist of the
wing as well as section changes on both wing and body. Leading and
trailing edges are straight. The span is constrained to remain at its
initial value.
Even with these constraints the design space allows for very large

variations in geometry. Not all of these geometries can be handled by
the flow solver especially at transonic speed. For the GB optimizer a
geometry withCD value of 1.230 × 10−2 is produced. This geometry
satisfies all of the constraints, but the optimality criterion is not
reduced to within the set tolerance of 10−6. Table 4 shows the
performance of the baseline geometry and this optimized geometry,
which is identified as local optimum 1; its planform is displayed in
Fig. 18. The drag coefficient of the baseline geometry is over 50%
higher than that of local optimum 1.
Although 224 initial geometries were considered for GB-MS

optimizer, only 33 initial geometries converged on the first iteration

Fig. 17 Mach-contour plots for BWB problem.

Table 4 Results summary for geometries in BWB problem

Geometry CD % Difference from Local optimum 1

Baseline 1.849 × 10−2 50.3%
Local optimum 1 1.230 × 10−2 0.00%
Local optimum 2 1.289 × 10−2 4.81%
Local optimum 3 1.244 × 10−2 1.09%
Local optimum 4 1.241 × 10−2 0.87%
Local optimum 5 1.249 × 10−2 1.54%
Local optimum 6 1.242 × 10−2 0.85%
Local optimum 7 1.244 × 10−2 1.12%
Local optimum 8 1.258 × 10−2 2.25%

Fig. 18 Local optima for BWB problem.
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allowing the optimization process to continue. From these 33 initial
geometries eight distinct local optima are identified that satisfy both
optimality and feasibility tolerances of 10−6. The objective values for
these local optima are summarized in Table 4. One can see that the
objective value can vary by almost 5% between the different local
optima. It is also worth noting that the GB optimizer was able to find
the best geometry in terms of the value of the objective function. We
can regard it as a random occurrence that the baseline geometry leads
the optimizer to the shape with the lowest drag coefficient. As we
have seen in the previous problem this is not always true.We can also
expect that the GB-MS optimizer will eventually find the same local
optimum if more initial samples are considered.
The planform shapes of the local optima are shown in Fig. 18.

Clearly, all shapes are distinct, demonstrating that the shape variation
among the local optima can be significant. The convergence plot for
local optimum 4 is shown in Fig. 19a, which shows that a local
optimum has been reached. Figure 17 compares the Mach-number-
contour plots on the upper surfaces of the baseline geometry and
geometry corresponding to local optimum 4. The optimizer is able to
eliminate the shock on the upper surface.
For completeness we show convergence plots for all four

optimization methods in Fig. 19b. As in the previous problems one
can see that the GA optimizer converges more slowly than the other
optimizers. Due to time constraints the HM optimizer was allowed to
run for five generations only, and it can be observed that its
convergence rate is comparable to the GB-MS method. As with the
GB-MS method, it is expected that the HM will eventually converge
to the geometry found by the GB optimizer.
This study is only preliminary and further investigation is required

to assess the performance of the BWB configuration. We
acknowledge that the coarse mesh used for this problem can
introduce significant numerical error. The main purpose here is to
underscore the importance of considering a global optimization
method. It appears that this problem is at least somewhat multimodal
and possibly moderately multimodal. The results indicate that
GB-MS is an efficient method for finding the global optimum of
high-fidelity ASO problems that contain a substantial number of
local optima, but as the number of local optima increases, the HM
eventually becomes the preferred method.

V. Conclusions

The results show the shortcomings of using either pure gradient-
based or gradient-free optimization algorithms for high-fidelity
aerodynamic shape optimization. A purely gradient-based optimizer
may converge to a local optimum with an objective value signifi-
cantly worse than that of the global optimum. On the other hand,
the computational expense of using a gradient-free optimization
algorithm is unacceptable for many problems especially if the
number of design variables is large.
Two new optimization algorithms are presented to address these

shortcomings. The algorithms are efficient for global optimization of
smooth differentiable objective functions with multiple local optima.

The linear constraints allow the size of the problem to be reduced and
ensure only feasible geometries are considered. The sampling
method uses a Sobol sequence to cover the design space in a uniform
and unbiased manner.
The optimization results show that multimodality is not a

predominant feature of the design spaces for many aerodynamic
shape optimization problems. None of the problems considered are
highly multimodal (i.e. contain more than 100 local optima).
However, multiple local optima do exist, and a global optimization
method is essential to find the most efficient aerodynamic
configuration.
Airfoil optimization and wing section optimization problems are

unimodal, and a gradient-basedmethod is preferred for optimization,
although the use of the gradient-based multistart procedure is
informative to ensure that no other local optima exist. Wing-
optimization problems that involve considerable geometric defor-
mations are somewhat multimodal, and the gradient-based multistart
method is most efficient. The blended-wing-body optimization
problem also appears to be somewhat to moderately multimodal,
although further investigation is required to establish the degree of
multimodality of this case. The number of local optima tends to
increasewith increasing geometric flexibility. As the number of local
optima increases the hybrid optimization algorithm method
eventually becomes more efficient than the gradient-based multistart
method. The results presented suggest that a local optimization
algorithm such as a gradient-based algorithm will often be sufficient
for high-fidelity aerodynamic shape optimization in detailed design,
where geometric flexibility is limited. In contrast, a global
optimization algorithm, such as those presented in this paper, is
needed for exploratory high-fidelity aerodynamic shape optimiza-
tion, where large shape changes are permitted.
Futureworkwill include testing themultimodality of aerodynamic

shape optimization problems in viscous and turbulent flows and
further studies of unconventional aerodynamic configurations.
Adding structural requirements for high-fidelity aerostructural
optimization will also be considered in terms of the impact on
multimodality.
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