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METHODS

‣ Flow solution: steady/unsteady/RANS/LES

‣ Geometry parameterization & mesh movement

‣ Gradients: adjoint method

‣ Optimization algorithms



FLOW SOLVER

• Structured multi-block grids

• High-order finite-difference method with summation-by-parts 
operators and simultaneous approximation terms

• Parallel Newton-Krylov-Schur solver

• Jacobian-free Newton-Krylov algorithm with approximate 
Schur parallel preconditioning

• Promising dissipation-based continuation method for 
globalization

➡  Hicken, J.E., and Zingg, D.W., A parallel Newton-Krylov solver for the Euler 
equations discretized using simultaneous approximation terms, AIAA Journal, Vol. 
46, No. 11, 2008

➡ Osusky, M., and Zingg, D.W., A parallel Newton-Krylov flow solver for the 
Reynolds-Averaged Navier-Stokes equations, AIAA ASM, Jan. 2012



Summation-by-Parts (SBP) Operators

•  Satisfy a discrete summation-by parts property that mimics the 
continuous operator

•  Used in combination with simultaneous approximation terms (SATs) 
at boundaries

•  Rigorous development of time-stable boundary schemes for higher-
order methods 

•   Superconvergent functional estimates if scheme is dual consistent

➡ For example, the fourth-order scheme produces sixth-order 
convergence in functionals

➡   Hicken, J.E., and Zingg, D.W., Superconvergent Functional 
Estimates from Summation-by-Parts Finite-Difference Discretizations, 
SIAM Journal on Scientific Computing, Vol. 33, 2011



Dual Consistency

•  A scheme is dual consistent if the associated discrete dual (or 
adjoint) problem is a consistent discretization of the continuous 
adjoint problem

➡ Dual consistency requires suitable boundary conditions and 
a particular numerical integration method for the functional 

➡ Can lead to superconvergence of functionals

➡ Can lead to much better error estimates based on adjoint-
weighted residuals (than dual inconsistent schemes)

➡   Hicken, J.E., and Zingg, D.W., The Role of Dual Consistency in 
Functional Accuracy: Error Estimation and Superconvergence, 
20th AIAA CFD Conference, June 2011.



Dual Consistency
Example: adjoint field shows oscillations in dual 
inconsistent case



Results for ONERA M6 wing



Turbulent Flow Solver
ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 15.1 million mesh nodes, 128 processors
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Parallel Scalability (RANS)

• 12 order residual reduction in 23 mins on 4096 
processors (40 million mesh nodes)
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Turbulent Flow Solver
Common Research Model: M=0.85, C_L=0.5
Re=5 million, 10.1 million mesh nodes
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Turbulent Flow Solver
ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 15.1 million mesh nodes
20, 44, 65, 80, 90, 95 percent span
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Comparison with OVERFLOW
CRM wing-body-tail: M=0.85, CL=0.5, Re=5 million
34 million mesh nodes
Diablo in blue, OVERFLOW in black



INTEGRATED GEOMETRY PARAMETERIZATION 
AND MESH MOVEMENT

• Must provide flexibility for large shape changes with a modest 
number of design variables
‣ B-spline patches represent surfaces
‣ B-spline control points are design variables

• Mesh movement must maintain quality through large shape 
changes
‣ through tensor products, B-spline volumes map a cube to an arbitrary volume 

with the appropriate topology
‣ can be arbitrarily discretized in the cube domain to create a mesh
‣ B-spline volume control points can be manipulated to move the mesh in 

response to changes in the surface control points
‣ efficiently generates a high quality mesh

➡  Hicken, J.E., and Zingg, D.W., Aerodynamic Optimization Algorithm with Integrated 
Geometry Parameterization and Mesh Movement, AIAA Journal, Vol. 48, No. 2, 2010



B-spline Volumes



Mesh Movement Example
flat plate to blended-wing body: ≈ 1 million nodes



DISCRETE-ADJOINT GRADIENT COMPUTATION

• Cost independent of the number of design variables

• Efficient if the number of design variables exceeds the number of 
constraints

• Hand linearization complemented by judicious use of the complex 
step method for difficult terms

•Adjoint equation solved by parallel Schur-preconditioned modified 
Krylov method GCROT(m,k)

➡  Hicken, J.E., and Zingg, D.W., A Simplified and Flexible Variant of GCROT for 
Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, Vol. 32, 
No. 3, March 2010



Optimization Algorithms

• Gradient-based algorithm (SNOPT) - converges to a local 
minimum

• Multi-start Sobol: initial guesses based on Sobol sequences cover 
the design space in a deterministic manner (sampling in linear 
feasible region)

• Hybrid method: combination of genetic algorithm, Sobol sampling, 
and gradient-based algorithm (SNOPT is run on each chromosome)

• Genetic algorithm



Multimodality in 2D (RANS)
Multistart procedure for 2D airfoil optimization 
(transonic lift-constrained drag minimization, 6 DVs)



Multimodality?
A unique global optimum in 2D - no local optima!



Multimodality
• BWB optimization: 8 local minima from 34 initial geometries 
using GB-MS
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Figure 16. Local Optima for BWB Problem

8 distinct local optima are identified that satisfy both optimality and feasibility tolerances of 10−6. The

objective values for these local optima are summarized in 5. One can see that the objective value can vary

by almost 5% between the different local optima. It is also worth noting that the GB optimizer was able

to find the best geometry in terms of the value of the objective function. We can regard it as a random

occurence that the baseline geometry leads the optimizer to shape with the lowest drag coefficient. As we

have seen in the previous problem, this is not always true. We can also expect that GB-MS optimizer will

eventually find the same local optimum, if more initial samples are considered.

The planform shapes of the local optima are shown in Fig. 16. Clearly, all shapes are distinct, demon-

strating that the shape variation among the local optima can be significant. The convergence plot for local

optimum 4 is shown in Fig. 17(a), which shows that a local optimum has been reached. Fig. 15 compares the
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Convergence to the global minimum

• GB - gradient-based

• GB-MS - gradient-based multi-start

• HM - hybrid method

• GA - genetic algorithm



PROGRESS

‣ Higher-order methods in space and time

‣ Laminar-turbulent transition prediction

‣ Large eddy simulation (LES)

‣ Two-level free-form deformation

‣ RANS-based aerodynamic shape optimization

‣ Aerostructural analysis



Higher-order methods in space and time

• high-order implicit Runge-Kutta methods in time
• high-order SBP operators for first and second derivatives
• maximally-compact-stencil operators for second derivative 
with variable coefficients
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8th, M=6.1513



Laminar-turbulent transition prediction

• simple criterion
• sample comparison with experiment and XFOIL



Geometry Parameterization
• Two-level free-form deformation (FFD)
• FFD controls the B-spline control points
• Retains integrated geometry/mesh



Two-level free-form deformation
• B-spline volume based mesh movement



Large-eddy simulation results
• transitional flow around SD7003 airfoil at a Reynolds number of 60,000

• long laminar separation bubble exists that is difficult for a RANS solver



RANS-based aerodynamic shape optimization

• drag minimization of a wing at M=0.8, Re=6.5 million
• drag coefficient reduced by 15.7%
• 2%, 44%, and 65% span shown
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RANS-based aerodynamic shape optimization
• drag minimization based on planform variables, including dihedral
• 41% reduction in drag coefficient
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Aerostructural analysis
Introduction Analysis Results Future NACA CRM

CRM Wing Example
Results: Wing Deflections & Performance

Undeflected wing: CL = 0.481, CD = 0.0132
Deflected wing CL = 0.50, CD = 0.0139
A 5% deflection at the wingtip
A slight washout angle (negative twist)
Time for flow solution: 4889sec (processors not load balanced)
Time for structural solution: 0.67sec

Leung & Zingg 6-Dec-2011



Future Work

numerous research projects underway toward efficient high-fidelity 
aerostructural optimization including transition prediction

e.g. incorporating laminar-turbulent transition prediction into 3D 
optimization, monolithic aerostructural optimization, higher-order 
methods, global optimization algorithms

efficiency remains a major issue, especially given the need for global 
optimization

LES (unsteady) optimization?

problem formulation is a major topic: brute force is not feasible

http://goldfinger.utias.utoronto.ca/dwz/


