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OUTLINE
‣ Turbulent flow solver

- Summation-by-parts/simultaneous approximation 
terms

- parallel Newton-Krylov-Schur algorithm
‣ Integrated geometry parameterization and mesh 

movement
‣ Adjoint-based gradient computation
‣ Turbulent flow solver
‣ Global optimization algorithms



FLOW SOLVER

• Structured multi-block grids

• High-order finite-difference method with summation-by-parts 
operators and simultaneous approximation terms

• Parallel Newton-Krylov-Schur solver

• Jacobian-free Newton-Krylov algorithm with approximate 
Schur parallel preconditioning

• Promising dissipation-based continuation method for 
globalization

➡  Hicken, J.E., and Zingg, D.W., A parallel Newton-Krylov solver for the Euler 
equations discretized using simultaneous approximation terms, AIAA Journal, Vol. 
46, No. 11, 2008

➡ Osusky, M., and Zingg, D.W., A parallel Newton-Krylov flow solver for the 
Reynolds-Averaged Navier-Stokes equations, AIAA ASM, Jan. 2012



Turbulent Flow Solver
ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 15.1 million mesh nodes, 128 processors
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Parallel Scalability (RANS)

• 12 order residual reduction in 23 mins on 4096 
processors (40 million mesh nodes)
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Turbulent Flow Solver
ONERA M6 wing: M=0.8395, alpha=3.06 degrees
Re=11.72 million, 15.1 million mesh nodes
20, 44, 65, 80, 90, 95 percent span
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Turbulent Flow Solver
Common Research Model: M=0.85, C_L=0.5
Re=5 million, 10.1 million mesh nodes
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INTEGRATED GEOMETRY PARAMETERIZATION 
AND MESH MOVEMENT

• Must provide flexibility for large shape changes with a modest 
number of design variables
‣ B-spline patches represent surfaces
‣ B-spline control points are design variables

• Mesh movement must maintain quality through large shape 
changes
‣ through tensor products, B-spline volumes map a cube to an arbitrary volume 

with the appropriate topology
‣ can be arbitrarily discretized in the cube domain to create a mesh
‣ B-spline volume control points can be manipulated to move the mesh in 

response to changes in the surface control points
‣ efficiently generates a high quality mesh

➡  Hicken, J.E., and Zingg, D.W., Aerodynamic Optimization Algorithm with Integrated 
Geometry Parameterization and Mesh Movement, AIAA Journal, Vol. 48, No. 2, 2010



B-spline Volumes



Mesh Movement Example
flat plate to blended-wing body: ≈ 1 million nodes



DISCRETE-ADJOINT GRADIENT COMPUTATION

• Cost independent of the number of design variables

• Efficient if the number of design variables exceeds the number of 
constraints

• Hand linearization complemented by judicious use of the complex 
step method for difficult terms

•Adjoint equation solved by parallel Schur-preconditioned modified 
Krylov method GCROT(m,k)

➡  Hicken, J.E., and Zingg, D.W., A Simplified and Flexible Variant of GCROT for 
Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, Vol. 32, 
No. 3, March 2010



Discrete Adjoint Gradient
Define a Lagrangian function using objective, 
flow equations, and mesh movement equations

    and     are the flow and mesh adjoint variables

At local optima, all derivatives of      vanish:
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Example: 1.16 × 106 nodes
mesh movement + mesh 
adjoint: 3%
gradient: 31%

CPU Time Breakdown:
one iteration
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Application to Wing Design
Lift-constrained induced-drag minimization



Global Optimization Algorithms

• Gradient-based algorithm (GB) - converges to a local 
minimum
• Multi-start Sobol (GB-MS): initial guesses based on 
Sobol sequences cover the design space in a 
deterministic manner (sampling in linear feasible region)
• Hybrid method (HM): combination of genetic 
algorithm, Sobol sampling, and gradient-based 
algorithm (SNOPT is run on each chromosome)
• Genetic algorithm (GA)



Multimodality
Multistart procedure for 2D airfoil optimization 
(transonic lift-constrained drag minimization, 6 DVs)
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Multimodality
A unique global optimum in 2D - no local optima!
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Multimodality
• 3D: subsonic lift-constrained drag minimization, 129 DVs
• 7 local minima found - somewhat multimodal
• GB-MS most efficient
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Multimodality
• BWB optimization: 8 local minima from 34 initial geometries 
using GB-MS
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Figure 16. Local Optima for BWB Problem

8 distinct local optima are identified that satisfy both optimality and feasibility tolerances of 10−6. The

objective values for these local optima are summarized in 5. One can see that the objective value can vary

by almost 5% between the different local optima. It is also worth noting that the GB optimizer was able

to find the best geometry in terms of the value of the objective function. We can regard it as a random

occurence that the baseline geometry leads the optimizer to shape with the lowest drag coefficient. As we

have seen in the previous problem, this is not always true. We can also expect that GB-MS optimizer will

eventually find the same local optimum, if more initial samples are considered.

The planform shapes of the local optima are shown in Fig. 16. Clearly, all shapes are distinct, demon-

strating that the shape variation among the local optima can be significant. The convergence plot for local

optimum 4 is shown in Fig. 17(a), which shows that a local optimum has been reached. Fig. 15 compares the
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Future Work

improve speed and reliability of turbulent flow solver
address issues in optimization based on turbulent flow
address geometry, mesh, and optimization issues
extend transition prediction to 3D
incorporate into MDO framework


