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In recent decades, the environmental impacts of aviation have become a key challenge for the10

aeronautical community. Advanced and well-established technologies such as active flow con-11

trol systems, wing-tip devices, high bypass ratio engines, composite materials, among others,12

have demonstrated fuel-burn benefits by reducing drag and/or weight. Nevertheless, aviation13

remains under intense pressure to become more sustainable. For this reason, there is a strong14

drive to explore unconventional aircraft with the aim of reducing both environmental emissions15

and Direct Operating Cost. This paper presents the current state-of-the-art in the development16

of future aircraft for civil aviation. The literature review is conducted through an appropriate17

search protocol to ensure the selection of the most relevant sources. After a brief historical back-18

ground, progress in the design and development of several unconventional aircraft configurations19

is presented. Concepts such as Blended/Hybrid Wing Bodies, nonplanar wing designs, next-20

generation propulsion technologies that are tightly integrated with the airframe, among others,21

are reviewed. Special attention is given to design methodologies (level-of-fidelity), cruise alti-22

tude, aerodynamic performance, and fuel-burn benefits over conventional configurations. The23

primary contributions of this review are i) a detailed survey of the design characteristics of un-24

conventional aircraft for non-specialists, and ii) a comprehensive review of the literature detailing25

past and current design trends of such configurations for specialists.26
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6 Conclusions 3040

Nomenclature41

Abbreviations

ACARE Advisory Council for Aeronautics Research in Europe
BLI Boundary Layer Ingestion
BW Box-Wing
BWB Blended Wing Body
CAEP Committee on Aviation Environmental Protection
CFD Computational Fluid Dynamics
CTW Conventional Tube-and-Wing
DLR German Aerospace Centre
DOC Direct Operating Cost
EIS Entry into Service
ERA Environmentally Responsible Aviation Project
FE Finite Element
HLFC Hybrid Laminar Flow Control
HWB Hybrid Wing Body
IATA International Air Transport Association
ICAO International Civil Aviation Organization
LFC Lifting Fuselage Concept
MDO Multidisciplinary Design Optimization
NACRE New Aircraft Concepts Research
NASA National Aeronautics and Space Administration
NLF Natural Laminar Flow
NPV Net Present Value, MUSD
RANS Reynolds-Averaged Navier-Stokes
SBW Strut-Braced Wing
SFC Specific Fuel Consumption
SUGAR Subsonic Ultra Green Aircraft Research
TBW Truss-Braced Wing
TRL Technology Readiness Level

Symbols

A Aspect Ratio
CD0

Zero-lift drag coe�cient
e Span e�ciency factor
L_D Lift-to-Drag ratio
ML_D Aircraft Mach Lift-to-Drag ratio
q
ÿ

Dynamic pressure
U

ÿ

Freestream speed
W _S Wing loading
⇢
ÿ

Fluid density

42

1. Introduction43

According to the International Air Transport Association (IATA), air tra�c tends to double every 15 years with an average44

growth of 4.4% per annum [1, 2]. Despite the current setback caused by the COVID-19 crisis, it is expected that air tra�c will45

recover quickly and resume its normal growth rate [3]. In this context, the aeronautical sector faces a critical environmental challenge46

in terms of reducing the harmful e�ects of aircraft emissions on human health and climate change [4].47

Many countries have recognized the need to address global climate change and have adopted a set of ambitious targets to reduce48

emissions of carbon dioxide (CO
2

) and nitrogen oxides (NO
x

) [5]. For instance, the Advisory Council for Aeronautics Research in49

Europe (ACARE) and the National Aeronautics and Space Administration (NASA) are already targeting these issues in short-term50

and long-term goals, which are periodically reviewed and updated by Committee on Aviation Environmental Protection (CAEP).51

For more details refer to the standards reported in [6]. Airframe and engine noise also raise similar concerns, and discussions about52

novel solutions to aeroacoustic problems can be found in [7, 8, 9]. Most of these targets require a substantial commitment to research53
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and development of new technologies, i.e., potential future benefits can be achieved if we move away from traditional concepts and54

introduce new technologies in many fields such as aerodynamics, materials, structures, engines, and systems. No single technology55

provides the entire solution by itself, but many are complementary and can be combined [10]. This multidisciplinary approach56

has provided a framework for setting standards in the design of new aircraft configurations, while meeting tighter environmental57

constraints (emissions and noise) [11, 12, 13].58

Based on this context, progress in unconventional configurations has focused on the reduction of noise and emissions, in partic-59

ular CO
2

and NO
x

, while at the same time reducing Direct Operating Cost (DOC), which includes all costs associated with operating60

and maintaining an aircraft over its entire life cycle [14, 15, 16, 17]. The addition of important environmental objectives has changed61

the way the aeronautical community foresees aircraft development in the future and has stimulated the development of numerous62

innovative technologies. Several literature reviews summing up challenges, opportunities, and benefits of such technologies have63

been already published. If readers are interested in any of these technologies, we recommend searching in the following sources: for64

drag reduction (including viscous drag, wave drag and induced drag) [18, 19, 20, 21, 22, 23, 24, 25]; for weight savings (including65

advanced composites and alloys) [26, 27, 28, 29, 30, 31, 32, 33]; for sustainable fuels (including biofuels and liquid-hydrogen)66

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]; for next-generation propulsion technologies such as open rotors [45, 46, 47, 48], dis-67

tributed propulsion [49, 50, 51, 52, 53, 54], Boundary Layer Ingestion (BLI) [55, 56, 57, 58], and electric/hybrid/turboelectric68

aircraft [59, 60, 61, 62, 63, 64, 65, 66].69

Although these technologies have the potential to increase the aircraft e�ciency, the challenges of their implementation require70

extensive research and development e�orts towards reducing aircraft emissions, as well as addressing trade-o�s between di�erent71

objectives. As a result, a great number of experiments and simulations are still being developed, in order to assess the overall72

benefits of various new technologies [67, 68]. Despite the e�orts to date, there remains considerable uncertainty in terms of the73

potential fuel-burn, emissions, and noise reductions associated with the various proposed technologies.74

Recognized aircraft design companies such as Airbus and Boeing, as well as research institutions and academia (NASA, DLR,75

ONERA, Bauhaus Luftfahrt, among others) are working on a variety of unconventional configurations. All these concepts aim76

to increase the ability to transport as much payload over the longest distance with the least amount of required energy or fuel as77

possible. Although these designs are only promising concepts, they o�er a glimpse into the future [69]. These configurations78

provide benefits on two sides: by themselves due to better aerodynamics and/or lighter structures, and partly because they serve as79

platforms to assess the overall benefits of various new technologies, thus increasing the overall advantages.80

This article aims to provide a survey of relevant research in next-generation aircraft that can replace current regional, single-81

aisle, and twin-aisle aircraft. The main objective is to provide a detailed overview of the estimated benefits of unconventional82

configurations over conventional aircraft. We also highlight the importance of the use of Multidisciplinary Design Optimization83

(MDO) methods to assess di�erent technologies along with conflicting requirements. The reports discussed in this work were iden-84

tified based on the following methodology. Reports describing performance comparisons (in terms of fuel-burn benefits) between85

unconventional configurations and conventional tube-and-wing (CTW) aircraft are included. Literature reviews of related topics86

are also included. Reports based on disciplines (i.e., without any reference to unconventional aircraft design) are excluded. Re-87

ports focused on the design of di�erent aircraft categories such as military, general and urban aviation, supersonic transports, and88

Unmanned Aerial Vehicles, are also excluded. The synthesis of the review process is provided in Appendix A.89

The rest of this paper is organised as follows: a historical background is provided in Section 2. A brief description of MDO90

frameworks that have been used to design unconventional configurations is provided in Section 3. Section 4 is devoted exclusively to91

the description and analysis of unconventional configurations, and provides some very rough ranges of estimates of the potential of92

each configuration. In Section 5, there is a discussion of cruise altitude in terms of the challenges it causes as well as its importance93

to climate change impact. Conclusions are given in Section 6.94

2. Historical Background95

The first flight of the Wright brothers in 1903 and the first flight of Santos-Dumont in 1906, were impressive proofs of concept but96

still far from suitable for practical use. Nevertheless, these heavier-than-air machines provided the foundation for the development97

of practical aerial navigation during the pre-war years. At the end of 1910, Glenn Curtis, whose biplane became the first to take-o�98

from the deck of a ship, began to test planes as a platform for weapons. This last achievement marked a design trend for the next 3599

years of aviation history, which was dominated by military applications [70]. Progress in aerodynamics between World Wars I and100

II centered on the introduction of thick airfoil sections, the development of better flight controls and e�ective high-lift devices [71].101

These advances resulted from essential theories such as viscous flow and boundary layer theory by Prandtl, ideal fluid flow by von102

Karman, flight dynamics by Melvill Jones and compressible fluids by Taylor [72].103

In 1935, Busemann [73] developed the wing sweep concept, which allowed aircraft to fly at higher speeds. The U.S engineers104

highly appreciated these benefits during World War II, incorporating this technology into new designs. The first two U.S. aircraft105

with 35

˝ of sweep were both subsonic, the Boeing B-47 bomber and the F-86 Sabre [74]. At that time, R.T. Jones [75, 76] gained106

a critical understanding of the benefits of sweep and promoted its use for high-speed aircraft. Important contributions include107

swept-wing theory and the supersonic area rule. Based on these developments, large-scale strategic bombing campaigns were108
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Figure 1: Progress in aircraft design of commercial airliners, from conventional designs to next-generation aircraft.

launched, fighter escorts introduced and the most versatile airplanes allowed precise attacks on small targets with dive bombers and109

fighter-bombers [77].110

By the time World War II came to a close, commercial aviation expanded rapidly using mainly ex-military aircraft to transport111

people and cargo. Companies increased the production of such an aircraft and more than 10000 Douglas DC-3’s were manufactured112

and converted for civilian missions [78]. From the introduction of the DC-3 in 1936 to that of the DC-7 in 1956, more than 16000113

aircraft were manufactured using mainly a scaling factor of the engine power, wingspan, and fuselage length, resulting in increased114

speed and payload capacity [79]. For this reason, the DC-3 is one of the most successful aircraft in history. Even today, there are115

small operators with updated DC-3’s in revenue service and as cargo aircraft across the world [80]. As the Boeing company had116

developed innovative and important bombers, revolutionary concepts such as the Boeing 707 and Boeing 727 enabled progress117

in jet engines and structural design. During the 60s, Boeing produced a number of short-haul jet-aircraft designs, and created a118

new aircraft to replace the 727 on short routes. Thus, the Boeing 737 made its first flight in 1968, and its design features have119

e�ectively become a blueprint for most jet airliners that have been manufactured since then [81, 82]. This achievement was boosted120

by extensive experimental and theoretical work on supercritical wings during the late 70s, such as the ones reported by Whitcomb121

et al. [83, 84]. The success of the Boeing 737 allowed it to stay in service for over half a century with several modifications applied122

to the fuselage, wings, empennage, and propulsion system (Boeing 737 family) [85, 86, 87]. Subsequently, other companies such as123

Airbus, Embraer, Bombardier, etc. have adopted this conventional configuration to design and manufacture their own aircraft [88].124

To illustrate this point, Fig. 1 shows the design evolution of commercial aircraft measured in terms of their overall progress in125

terms of capabilities, initially defined in terms of range and fuel e�ciency, now increasingly defined by noise and emissions, with126

fuel e�ciency remaining critical. Three main lines define the conventions on this figure. The first line (dotted line) represents the127

progress up to 2020, which is a kind of stair-step progress focused on significant technological breakthroughs that occurred until the128

launch of the Boeing 787. These breakthroughs include fly-by-wire systems, the use of composite materials, laminar flow control129

technologies, high bypass ratio turbofans, among others, which in turn o�er improved fuel e�ciency, reducing operating costs and130

emissions. It is observed that the general layout of the CTW aircraft has remained predominantly the same, as this configuration131

represents a very e�cient compromise between aerodynamics and weight, without compromising the safety and comfort of the132

passengers at high altitudes, i.e., the CTW aircraft is very well understood thanks to years of design, manufacturing and operating133

experience. That is the reason why the entire fleet of Concorde aircraft was retired on October 2003, i.e., the Concorde deviated from134

the evolutionary path traced by successful airplanes that preceded it [82]. Although the Concorde was a great technical achievement,135

it was a commercial failure. Only 20 aircraft were manufactured, and fuel cost and ticket prices were always high [74]. Currently,136

there is a renewed interest in developing civil supersonic transports and supersonic business jets. Some literature reviews described137

the progress of these concepts, indicating that mitigation of sonic boom intensity is relevant if the vehicles intend to operate over138

land. There are also important design challenges such as airframe weight and propulsion-airframe integration, which need to be139

addressed to made these concepts more fuel-e�cient and cost-e�ective [89, 90, 91, 92]. Such developments are not considered140

further in this review.141
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Figure 2: Unconventional aircraft configurations that could be critical for achieving improved fuel efficiency and reduced
emissions. A conventional aircraft (centre) is surrounded by concepts for more efficient designs - clockwise from top left:
box-wing configuration, strut-braced-wing configuration, lifting-fuselage configuration, and hybrid-wing-body configuration.
Credits: Thomas Reist and David Zingg - University of Toronto Institute for Aerospace Studies.

The second line (dash line) represents a point today, which is the culmination of progress made over the course of approximately142

50 years of industrial, governmental, and academic e�orts in the commercial age. After half a century manufacturing the current143

CTW configuration, concerns about the impact of aviation on climate change require major technologies and investment to satisfy144

the needs of the vision for sustainable aviation [6]. These challenges have a direct impact on the e�ciency of air transportation,145

mainly on aerodynamic, structural and propulsion technologies. In this context, the aeronautical community is aware that current146

CTW aircraft may be unable to meet these challenges or may not be the optimal solution. Therefore, major innovations are urgently147

required (black-solid line), such as unconventional configurations, since they have the potential to provide step improvements in148

the medium term [93, 94], which justify the cost and risk associated with their development. There are many unconventional149

configurations that o�er step-change benefits, some relying on key emerging technologies and integration concepts, and some with150

key challenges to overcome. The state of research and development varies for each concept; however, several green aerospace151

projects (NACRE [95], ERA [96], SUGAR [97, 98, 99, 100, 101], Clean Sky [102, 103], NASA N+3, N+4 programs [104, 105],152

SE2A [106], among others) have identified the technological feasibility of the Blended Wing Body (BWB), Hybrid Wing-Body153

(HWB), hybrid-electric configurations, the Box-Wing (BW), the Strut-Braced Wing (SBW), the Truss-Braced Wing (TBW), and154

the Double-Bubble with aft-integrated BLI propulsion. These concepts, which are expected to play a major role in reducing global155

aviation carbon emissions for the longer-term future (2035 onwards), are further discussed in section 4. Figure 2 shows a rendering156

of some unconventional concepts that have been studied by the aeronautical community.157

3. Brief Review of MDO Frameworks158

The evaluation of unconventional aircraft and novel technologies is often done for a specific set of requirements, usually due to159

limitations in terms of experience and methods that would be needed for an extensive assessment. Therefore, MDO has emerged as160

a methodology to address the complex design trade-o�s in next-generation aircraft. Several MDO frameworks with di�erent levels161

of complexity and fidelity have been employed in the design synthesis of unconventional configurations, from theoretical/semi-162

empirical methods to more complex high-fidelity aerostructural design optimization tools. Some authors such as Sobieszczanski-163

Sobieski and Haftka [107], Vos et al. [108], Martínez-Val and Pérez [109], La Rocca [110], Martins et al. [111, 112], Papageorgiou164

et al. [113], Kenway et al. [114] and Mcdonald et al. [115] have presented complete reviews of old and recent advancements in165

MDO for aeronautic applications.166

Based on the above literature reviews, a summary of the level of fidelity, disciplines, computational cost, and accuracy is given167

in Fig. 3. The following observations can be made:168

• The oldest MDO tools, which have the lowest computational cost, are based on semi-empirical and linear methods, which169

continue to be used due to their ability to generate quick aerodynamic and mass estimations. However, mission output170

calculations must be re-evaluated at the later stages of the design process, especially for the transonic conditions. Since171

most low-fidelity methods use discrete variables such as the number of engines, wing position, tail location, etc., gradient-172

free optimizers are best suited to explore wide design spaces. Particle Swarm Optimization and Genetic Algorithms are the173

most well-known methods that are widely used since they are potentially capable of finding the global optimum for complex174

functions. Some examples of MDO frameworks like these are: Initiator [116], a preliminary sizing tool for conventional and175

unconventional aircraft configurations developed by Delft University of technology; PyInit [117], a physics-based design176
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tool developed by Technische Universitat Braunschweig; AEROSTATE tool [118], a conceptual design tool based on a177

constrained aerodynamic optimization procedure developed at University of Pisa; JPAD code [119], a conceptual design178

framework for advanced turboprop aircraft developed by University of Naples Federico II; The tool FRIDA (FRamework for179

Innovative Design in Aeronautics) [120], a multidisciplinary conceptual robust design optimization framework developed180

by Roma Tre University; and RDS aircraft design software [121] developed by Conceptual Research Corporation.181

• Medium-fidelity methods are more complex than low-fidelity tools. The main di�erence is the use of non-linear potential182

or Euler solvers which allow the solution of rotational, non-isentropic flows. Thus, they are fairly reliable for predicting183

wave drag due to their ability to capture the correct position of shock waves. Furthermore, mass estimation methods include184

elementary physics-based analysis for primary structures, and semi-empirical and statistical methods for secondary struc-185

tures, thus providing better accuracy when aerodynamic loads and structural analyzes come up with a coupled design. Some186

solvers also include 1D approaches for characterizing the propulsion system. In short, these methods provide consistent187

results to full working precision at very reasonable computational cost. Some examples of MDO and multi-fidelity modeling188

tools like these are: PrADO [122], a preliminary aircraft design tool for unconventional aircraft configurations developed by189

Technische Universitat Braunschweig; SUAVE [123, 124], an open-source environment for future aircraft design developed190

by Stanford University; TASOPT [125], a computational tool developed by Massachusetts Institute of Technology which191

involves noise and emissions constraints into its main MDO environment; EDS [126], a physics-based software developed192

by Georgia Tech capable to estimate fuel-burn, source noise, exhaust emissions, performance, and economic parameters for193

potential future aircraft designs; FLOPS code [127] developed by NASA to design new aircraft configurations and evaluate194

the impacts of advanced technologies; GENUS framework [128], a modern computer-based design method which uses a195

multivariate design optimization environment developed by Cranfield University; and Faber [129], a low-to-medium fidelity196

tool developed at the University of Toronto.197

• Due to advances in high-performance computing, Reynolds-Averaged Navier–Stokes (RANS) simulations and Finite Ele-198

ment (FE) analysis have been successfully applied in aircraft conceptual design studies, particularly in aerodynamic shape199

optimization and aerostructural design optimization problems [130]. These high-fidelity frameworks are able to evaluate200

large numbers of design variables, design points, and constraints, enabling improvement of current designs and reducing the201

risk associated with the development of unconventional configurations. The choice of the optimization algorithm plays a key202

role when solving this kind of problems, and gradient-based algorithms combined with the adjoint method have demonstrated203

rapid convergence when controlling a wide range of design variables. The main disadvantage of gradient-based algorithms204

is that they find a local rather than a global optimum. However, this problem can be mitigated through the use of a gradient-205

based multi-start algorithm [131, 132]. Some examples of high-fidelity tools that have been used to design unconventional206

aircraft are: Jetstream [133, 134, 135], a multi-fidelity MDO framework with high-fidelity aerodynamic shape optimization207

developed at the University of Toronto; SU2 [136], an open-source tool written by Stanford University in cooperation with208

the Boeing company to solve multiphysics and optimization problems on the basis of unstructured meshes; OpenMDAO209

[137], an open code written by NASA in cooperation with University of Michigan to facilitate gradient-based optimization210

and computation of derivatives. The University of Michigan has also developed MACH-Aero, an open-source high-fidelity211

framework which uses pyOpt [138] to handle large-scale optimization problems, and DAFoam [139] and ADflow [140] for212

flow simulation and adjoint computation. Further examples include the ONERA elsA CFD software [141], a multi-purpose213

tool for applied CFD and multi-physics; KADMOS [142], an MDO framework developed by Delft University and supported214

by the AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) innovation215

project [143, 144]; ADEMAO [145], a multi-fidelity design, analysis, and optimization environment for future transport air-216

craft developed by Technische Universitat Braunschweig; and various software tools developed by NASA and Boeing [146].217

Specific details of each software are beyond the scope of this review.218

It is worth emphasizing that the estimates of the benefits of new configurations can vary quite a bit depending on the assumptions219

made and tools used. For example, the SBW concept proposed by Chau and Zingg [129] assumes current technology levels other220

than the configuration, involving conceptual-level MDO and high-fidelity aerodynamic shape optimization to study shock formation221

and boundary-layer separation within the wing-strut junction; while others, such as the Double-Bubble D8 by Drela [147], involves222

various future technologies such BLI, natural laminar flow and a lifting fuselage, although the conceptual design is based on low-223

to-medium fidelity approaches. In the former case, the benefit of the configuration is calculated in comparison to a CTW using224

current technology. In the latter case, the benefits come from future technologies, relative to today’s aircraft. Furthermore, there is225

a clear trade-o� between the e�ciency of the design and the certainty that all requirements will be met when the design is subjected226

to better analysis methods, i.e., the benefits of the configurations from early conceptual studies to more recent high-fidelity studies227

have become clearer as the level of fidelity has increased.228

4. Unconventional Configurations229

This section looks at important unconventional aircraft design research that has been done by industry, government entities, and230

academia. In industry, new aircraft and engines are designed to generate income for the manufacturer, which means they have to231
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Figure 3: Hierarchy of MDO solvers with corresponding complexity and computational cost (created based on [111, 113,
114]).

provide a financial return for the operator. Therefore, new aircraft typically minimize a combination of DOC and Net Present Value232

(NPV), subject to meeting regulations. In this case, fuel consumption comes in through DOC, noise comes in through regulations,233

and emission reductions come via fuel-burn reductions and some regulatory pressure (ICAO’s new CO
2

standard). Conversely,234

in academia and research institutes, more flexibility is given in the objective functions and design space, since these studies often235

have a longer-term focus such that higher fuel prices, carbon pricing, and additional regulatory pressure is anticipated. In any case,236

whether or not a technology is adopted by industry will ultimately be determined by its financial viability.237

There are several entities worldwide actively involved in next-generation aircraft research, with a number of ideas put forward238

as potential successors for the current CTW aircraft [115]. Concepts like the SBW and TBW feature a very high aspect ratio239

wing and aim to reduce induced drag during cruise, while trying to keep the weight as low as possible. The coupling between240

aerodynamics and structures makes it challenging to design optimal concepts. However, they are based on current fuselage designs,241

representing a lower cost and risk than other concepts such as the BWB or the Flying-V concept. In particular, the latter concepts242

increase aerodynamic e�ciency through exploiting many multidisciplinary e�ects which ultimately increase the wetted aspect ratio243

and reduce the weight while enabling an increased wingspan, and thus produce benefits in terms of both induced and viscous244

drag. However, a challenge with these concepts is the limited design experience and a larger uncertainty in, for example, structural245

mass estimation and stability behavior. Consequently, the predicted benefit and the confidence in that prediction must be higher246

for these concepts in order to justify the risk and investment needed from industry. Similarly, concepts like propulsive fuselage,247

distributed propulsion, hybrid-electric propulsion, among others, exhibit stronger interactions between the airframe aerodynamics248

and propulsion system, relative to CTW designs with podded engines, owing to the propulsor-airframe integration. Therefore, it249

is necessary to consider the challenges in manufacture, certifying the design, but also certifying the design process to reduce risks250

and integrate these new aircraft with current airport infrastructure to allow a straightforward operation [148].251

Despite these limitations, which also represent an opportunity for future studies, there are potential technologies capable of252

competing with the current CTW configuration. IATA [149] reported the estimated fuel e�ciency benefits of such technologies,253

including the technology readiness level (TRL) classification and the Entry into Service (EIS) [150, 151] (Table 1). Note that some254

unconventional configurations have the potential to improve fuel e�ciency on the order of 30%, but fully-electric or hybrid-electric255

aircraft are likely to cover a large part of e�ciency gains. Therefore, there is a strong desire to improve the e�ciency of future256

aircraft by introducing new technologies and new design concepts.257

This chapter highlights the primary characteristics and performance estimates of unconventional configurations that have the258
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Table 1
List of new technologies (2020-2050). The numbers mentioned below are based on the IATA - Aircraft Technology
Roadmap to 2050 for Environmental Improvement1 [149].

Group Concept EIS TRL Fuel efficiency benefits

Aerodynamics

Natural Laminar Flow After 2020 8 5 to 10%
Hybrid Laminar Flow Control After 2020 7 10 to 15%
Variable camber / control surfaces After 2020 5 5 to 10%
Spiroid wingtip After 2020 7 2 to 6%

Propulsion

GE9X 2020 8 10% (GE90-115B)
Advanced turbofan 2020 8 20% (Trent 700)
Counter Rotating Fan After 2020 3 15 to 20%
Ultrafan 2025 7 25% (Trent 700)
Ultra-High Bypass Ratio engine 2025 5 5 to 10%
Boundary layer ingestion2 2035 3 10 to 15%
Hybrid-electric aircraft3 2030-40 3 40 to 80%
Fully-electric aircraft4,5 2035-40 2 up to 100%

Systems Fuel cells 2020 8 1 to 5%
Electric taxiing system 2021 8 3%

Unconventional configurations

Strut- / Truss-Braced Wings6 2030-35 3 30%
Box-wings6 2035-40 3 30%
Morphing airframe 2040 3 5 to 10%
Double-bubble aircraft2,6 2045 3 30%
BWB / HWB7 2045 3 27 to 50%

Materials/Structures

Lightweight cabin interior Retrofit 1 to 5%
Structural health monitoring Retrofit 1 to 4%
Advanced materials Production Upgrade 1 to 3%
Active load alleviation Production Upgrade 1 to 5%
Composite primary structures Production Upgrade 1 to 3%
Composite secondary structures Production Upgrade < 1%

1 TRL and EIS are subject to substantial changes due to technological progress and COVID-19 crisis [3].
2 Coupled with distortion tolerant fans.
3 Depending on battery use.
4 Primary energy from renewable source.
5 Only for short range.
6 With advanced turbofan engines.
7 With hybrid propulsion.

potential to meet the most demanding requirements in terms of fuel reduction by enhancing the aerodynamic performance through259

the implementation of di�erent technologies. However, according to the last independent expert integrated review panel, uncon-260

ventional configurations are unlikely to be operational before 2037 [148].261

4.1. Blended/Hybrid Wing Bodies262

The BWB concept is one of the most promising unconventional configurations, providing several di�erent benefits over CTW263

aircraft. In this design, the shape of the aircraft fuselage is modified so that it can contribute to the generation of lift, i.e., the fuselage264

and wings are blended together, and the empennage is mostly eliminated, creating a single lifting body, which o�ers major reductions265

in terms of interference drag and wetted area, increasing the aerodynamic e�ciency and making available additional space in the266

cabin to increase passenger and cargo capacity. The BWB also enables better alignment of the lift and load distributions, thereby267

reducing bending moments. This enables a longer wingspan, which provides an induced drag benefit.268

The earliest publications about BWB configurations are those by Robert Liebeck [152, 153] and Rodrigo Martínez-Val [154,269

155]. Liebeck is recognized as one of the pioneers of the BWB configuration. His main contribution was the conceptual design270

of a double deck BWB that has been extensively studied by using high-fidelity CFD and wind tunnel tests. It is an 800-passenger271

BWB designed for flying 7000-n mile, which presented a 15% reduction in take-o� weight and 27% reduction in fuel-burn per seat272

mile over a CTW aircraft of equivalent engine and structural (composite) technology for a 2010 entry into service. On the other273

hand, Martínez-Val reported some of the first conceptual design studies of a BWB configuration for 300 passengers, highlighting274

its prospects and challenges in subjects such as airport capacity, community noise, air space capacity, and emissions. Besides275
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Figure 4: X-48B Blended Wing Body (source from [162]. Credits: NASA / Carla Thomas).

these significant contributions, Bolsunovsky et al. [156], Okonkwo and Smith [157] and Zhenli et al. [158] developed complete276

literature reviews about the progress of the BWB configuration, from historical conceptions and challenges, to future developments277

and applications. Likewise, Liou et al. [159] summarized the contributions of NASA considering high-fidelity capabilities for278

designing advanced HWB configurations, specifically on HWBs with embedded engines.279

In the past, the BWB design was mainly conceived for military purposes such as the Northrop B-2 bomber. However, in civil280

aviation, the BWB configuration has always been seen as a typical example of a futuristic aircraft which could enter service over the281

next few decades. Scientists from NASA, Boeing, Airbus, DLR, among others, have been working on their next generation airliner,282

testing BWB concepts for future commercial purposes. To explore its aerodynamic capabilities as well as stability and control283

and handling properties, some experimental unmanned subscale concepts, such as the X-48 (shown in Fig. 4), and the MAVERIC284

concept have been manufactured and tested with a blended-wing design. In case of the X-48, flight tests showed that the aircraft was285

quieter than expected, and had a better fuel e�ciency when flying with a greater payload weight [160]. Likewise, the MAVERIC286

flew for the first time in June 2019, showing the potential to reduce fuel consumption by up-to 20% compared to current single-aisle287

aircraft [161].288

So far, the BWB configuration has been studied in many universities, companies, and government labs, mainly developing289

conceptual designs for di�erent mission profiles. The major di�erent BWB versions are summarised in Tables 2, 3, and 4 and are290

discussed next. The configurations are arranged by the level of fidelity of the design and analysis tools used, highlighting the main291

performance characteristics, as well as fuel-burn benefits over their CTW counterparts. The following observations can be made:292

• According to the mission profile, level of fidelity and top-level requirements proposed for each mission, BWB concepts293

have demonstrated higher ML_D values than existing CTW aircraft, which are mostly in the range of 15, assuming current294

technology levels [205]. This variable represents the most important metric for assessing aerodynamic performance, so the295

high values obtained by each BWB concept can imply a reduction in cruise fuel-burn, which can be translated into DOC296

savings relative to CTW concepts. In particular, the high aerodynamic performance comes from large mean aerodynamic297

chord and high wetted aspect ratio, although more improvement can be expected by adopting advanced technologies, as in298

References [165, 173, 191, 195, 203], whose fuel-burn benefits are remarkable in comparison with CTW aircraft.299

• Key technical aspects identified in early studies demonstrated that BWB concepts can reduce noise by shielding the propul-300

sion system, providing an adequate space for installing distributed propulsion or BLI engines [153, 177]. As a result, multiple301

MDO formulations, mostly medium-fidelity frameworks, were used to investigate the implications of next-generation propul-302

sion technologies on BWB concepts, as shown in Table 3. In general, the primary benefit of BWBs with BLI is an overall303

improved system e�ciency over podded engines, including reductions in ram and viscous drag, and propulsion integration304

weight. In order for the overall system e�ciency benefit to be realised, challenges to be addressed include the need for careful305

inlet design to minimize distortion and pressure losses [206] and distortion-tolerant fans [207]. Even with such challenges,306

particular concepts such as SAX-40 [176], and N3-X [178] demonstrated that up to a 15% reduction in fuel-burn can be307

achieved.308

• The early studies focused on large capacity (400 to 800 passengers) and long range (up to 6000 nm) BWBs, showing a clear309

benefit in terms of payload range e�ciency and fuel e�ciency per seat when compared to conventional reference aircraft.310

Scaling studies, such as those reported by Nickol et al [190, 191], confirmed those findings, demonstrating that typical BWB311

configurations do not provide enough fuel-burn savings for smaller transport aircraft, because the magnitude of the potential312
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Figure 5: Dzyne Technologies’ regional-sized BWB design concept (source from [209]. Credits: NASA/DZYNE Technolo-
gies/Brendan Kennelly).

fuel-burn benefit is a function of payload and design range. For example, a 98 passenger configuration burned more fuel313

(+4%) than a comparable CTW aircraft. Conversely, a 300 passenger configuration burned less fuel (*6%) than its CTW314

counterpart. A simple geometric analysis shows that the ratio of wetted area to floor area increases as the size of the BWB315

aircraft decreases, and hence the wetted aspect ratio is reduced for smaller BWBs [208]. Therefore, high-fidelity aerodynamic316

shape optimization has been applied to new regional-class HWBs, as a potential method to obtain suitable drag reductions317

[196, 201] (see Table 4). These studies all come to the same result: HWB concepts for regional-class aircraft appear more318

like a narrow body with a distinct wing, o�ering a greater level of performance than a blended wing concept. Finally, a more319

recent e�ort showed that through design space expansion within a framework encompassing high-fidelity flow physics, the320

HWB was shown to be more e�cient despite being required to satisfy low-speed trim and static margin constraints [204].321

Based on the above tables and discussion, we can infer that many organizations are seriously considering the BWB/HWB322

technology as a potential commercial venture. These concepts clearly provide a set of environmental and financial benefits that323

are appealing for next-generation civil aviation, such as increased cargo capacity at lower fuel-burn, which is critical for airline324

businesses because any fuel savings will benefit DOC. Nevertheless, several potential issues still require extensive research and325

development e�orts. For example, large cabins imply new operational procedures to satisfy cabin safety requirements, such as new326

evacuation plans and load paths. Furthermore, passenger comfort problems in a roll maneuver may occur if they are sitting far away327

from the centerline. Another issue is related to incompatibilities with the existing airport infrastructure, such as gates height and328

ground facilities. Finally, as the cabin hull is not cylindrical, structural problems may occur due to internal pressurization loads.329

Although many of these challenges have been addressed on the DZYNE’s Ascent1000 concept (Fig. 5), it involves major330

technological innovations unproven in any operating aircraft, such as the pivot-piston main-gear required for takeo� rotation, the331

structural advantages of PRSEUS panel construction, and the T-plug family-oriented manufacturing concept [199, 200]. The in-332

teractions among these novel technologies, introduced simultaneously, also increase the risk. However, DZYNE’s Ascent1000333

design is the aircraft with the greatest accomplished TRL among others in the same category, providing significant noise reduction,334

increased safety, increased comfort, and faster and safer turnarounds with gate systems.335

4.2. Box-Wings336

The BW configuration features a close non-planar wing that has been extensively studied since Prandtl invented the "best wing337

system" in 1924 [210]. According to Prandtl, the best wing system is a box-wing that could reach much lower values of induced338

drag than equivalent monoplanes that have the same wingspan and lift. Such a theoretical foundation introduced the concept,339

and led to several e�orts that have been focused on studying the induced drag problem in non-planar wings and their optimal lift340

distribution. For example, Kroo [211] implemented a low-fidelity approach for assessing the aerodynamic properties of non-planar341

wings, demonstrating that box-wings decrease induced drag by allowing for span e�ciencies greater than unity. Later, Frediani342

and Montanari [212] studied the box-wing system assuming that the lift is equally distributed on the fore and aft wings, forming343

a butterfly-shaped distribution on the vertical tip fins. However, Demasi et al. [213] later showed that the distribution of optimal344

aerodynamic load/circulation over box-wings does not follow an elliptical law. Indeed, the actual solution has a shape that changes345

from quasi-elliptical for zero gap between the wings, to a constant distribution when the wings are extremely distant from each346

other [214, 215]. Modern computational aerodynamics has provided an additional perspective, demonstrating a strong correlation347

between numerical results and Prandtl’s prediction [216, 217].348

P. D. Bravo-Mosquera, et al.: Preprint submitted to Elsevier Page 13 of 43



Figure 6: Lockheed Martin’s box-wing concept for the N+2 study (source from [223]. Credits: NASA/Lockheed Martin).

Later conceptual design studies, at di�erent levels of fidelity, have concluded that box-wings o�er superior performance than349

conventional wings, without exceeding airport span constraints or deviating dramatically from the CTW concept. Furthermore,350

recent studies have shown that the structural features of a closed wing system might contribute to a reduction in wing weight351

[218, 219], increasing reliability on the basis of a deep risk analysis for future development.352

Comprehensive reviews about non-planar wing configurations are given by Cavallaro and Demasi [220], Wolkovitch [221]353

and Buttazzo and Frediani [222]. These publications discuss the design challenges and innovations of a variety of non-planar354

wing configurations, covering di�erent engineering areas such as aerodynamics, structures, aeroelasticity, and stability and control.355

Therefore, some current projects have focused on examining the multidisciplinary interaction of those disciplines, in order to improve356

vehicle and system-level e�ciency.357

In this context, the first in-depth conceptual investigation was reported by Lange et al. [224], under a NASA contract in co-358

operation with the Lockheed Martin company. This project intended to improve the aerodynamic performance and enhance the359

payload capacity of a 400 passenger aircraft. Several configurations were explored and studies concerned both aerodynamic and360

structural aspects. Parametric studies revealed the optimum sweep combination for minimum drag is 45o forward-wing sweep and361

*30

o aft-wing sweep. This arrangement provided a 30% lower induced drag than its CTW counterpart while retaining longitudinal362

stability constraints. The rest of the project was devoted to meet flutter criteria, which revealed that symmetric and antisymmetric363

modes occur below the required flutter speed. A more recent update of this project is the box-wing concept for the NASA ERA N+2364

studies (Fig. 6). In this particular case, the aircraft features Hybrid Laminar Flow Control (HLFC), an advanced turbofan engine,365

and a fully composite structure [223]. Even with proven technology, this configuration requires further optimization, in order to366

find the best compromise among the entire characteristics of the aircraft.367

Following this e�ort, a large number of research projects are still being explored, demonstrating that the deployment of the368

BW concept as a next-generation aircraft can provide a long-term solution to the growing demand of air passengers in the future369

decades. In particular, the University of Pisa is developing the research project called PARSIFAL (Prandtlplane architecture for the370

sustainable improvement of future airplanes), which is funded by the European Union under the Horizon 2020 program and intends371

to enter service in the 2030s (Fig. 7). Frediani et al. [225] presented the PrandtlPlane configuration in a review paper, summarizing372

motivations, possible applications, and experience gained in more than a decade of studies on the topic. The experience gained373

in PARSIFAL contributed to the conceptual development of BW aircraft of various categories, such as business jets and hybrid374

electric regional aircraft. Some of the main challenges along with general possible solutions can be found in [226]. A large e�ort375

was the development of the IDINTOS project. This configuration is an ultralight amphibious PrandtlPlane, which was designed and376

manufactured as a technology demonstrator in order to study the advantages of a box-wing design over conventional configurations.377

The main technical data can be found in [227, 228]. In this study, two main advantages have been observed. First, the fore wing stalls378

first so that the aft wing introduces a significant negative pitching moment that keeps the aircraft away from the stall conditions.379

Furthermore, since the two wings are placed at a considerable distance from the center of gravity, the pitch damping moment is380

higher than in a conventional aircraft; thus, the longitudinal stability is improved. Such features along with various ongoing research381

activities have enabled other design perspectives, such as future urban air mobility configurations [229, 230].382

Major design studies by academia, research centers, and industry are listed in Tables 5 and 6. Di�erent levels of fidelity, as well383

as payload and range capabilities are highlighted, and some of the main conclusions are as follows:384

• Overall, low-fidelity BW designs (Table 5) show a lower induced drag and a lower fuselage weight due to distributed bending385

loads than their CTW counterparts. Some minor di�erences were seen, depending on the aircraft category. For example, for386

single-aisle - medium-range missions, the authors found fuel-burn benefits of about 7% considering a maximum payload.387

However, more significant gains are obtained by long-range mission aircraft, where the low induced drag can produce a 10%388

saving on fuel-burn. Some studies demonstrate that high-payload BW aircraft can handle existing airport constraints such as389

take-o� and landing lengths, as well as wingspan limitations imposed by gate restrictions. Despite these exciting findings,390
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Figure 7: PrandtlPlane from PARSIFAL project (source from Salem et al. [118]. Credits: Pisa University).

some of these studies lack an e�ective optimization method and thus need more comprehensive research to achieve more391

reliable estimates of the potential benefits of this configuration.392

• More recently, multidisciplinary studies of BW configurations allowed a deeper understanding of the trends leading to a393

reduction in fuel consumption for transport aircraft (Table 6). The main results demonstrated that the BW aircraft achieves394

a higher lift-to-drag ratio (L_D) at cruise, indicating superior performance in terms of cruise fuel burn over CTW aircraft.395

However, estimating the wing mass has been a significant challenge, and di�erent methods have been used to obtain an396

acceptable level of accuracy, ranging from semi-empirical relations based on statistical data [234], beam finite element397

models [218], and structural surrogate models [247]. Although the BW can have a lower span than a CTW aircraft designed398

for the same mission, it can require a larger planform area if the fuel is stored in the wings, increasing the skin-friction399

drag, and wing weight [218]. This gives the CTW aircraft an advantage over BW designs in terms of operational empty400

weight and maximum takeo� weight, reducing fuel consumption in take-o� and climb. The distribution of fuel in the wings401

presents a design challenge. A potential solution is to hold a large volume of fuel inside the fuselage; however, this still402

requires extensive research e�orts and introduces certification challenges. Finally, these BW concepts share specific design403

characteristics such as a rear installation of the engines and fuselage-mounted main landing gear, which increase fuselage404

weight, as well as cost and integration complexity.405

• There are a few works focused on high-fidelity optimization of BW concepts [249, 250]. Such works provided a more detailed406

perspective about its benefits in terms of the geometric arrangement. For example, the area allocation between the fore and407

aft wings provides a unique capability to the BW to redistribute its optimal lift distribution. Since the two wings are placed408

at a considerable distance from the center of gravity, the pitch damping moment is higher than in a CTW aircraft; thus,409

trim and other design constraints can be satisfied without performance reduction. Such studies focused solely on the wing410

geometry, therefore, more detailed information about the actual performance of a BW concept can be obtained if the fuselage411

is included in the aerodynamic optimization loop. This subject is being analyzed on the INTI aircraft [239]; results will be412

reported in future publications.413

Although the practical benefits of the BW configuration can only be proved in a detailed design study, the concepts reviewed in414

this article demonstrated the potential for fuel-burn reduction and the importance of adopting a multidisciplinary design approach.415

In this regard, many areas require further study. For example, through the viewpoint of flight dynamics, unconventional control416

surfaces may cause a more complex dynamic behavior. Therefore, CFD and wind-tunnel experiments are required to evaluate the417

dynamic derivatives, since empirical methods do not provide accurate results. Even though there is a recent study about the mission418

performance of a BW aircraft in low-speed conditions [251], high-lift devices still require high-fidelity analysis, in order to evaluate419

the actual behavior on the di�erent flight phases of a transport mission.420

Moreover, the aft wing of the BW configuration may su�er di�erent types of aeroelastic instabilities, such as divergence due to421

its negative sweep angle [252], and flutter, in which a dual-fin assembly is the most promising solution [225]. Some researchers have422

studied challenges and opportunities associated with dynamic aeroelasticity and the structural nonlinearities on the Prandtlplane423

aircraft [253, 254]. The authors demonstrated that its particular distribution of sti�ness, along with its dual-fin configuration,424

prevents physical instability. The relevance of considering the vehicle’s elasticity while evaluating its flying qualities is further425

highlighted by the authors. It is important to note, however, that the dual-fin configuration increases the structural weight and426

may be prone to shock formation and interference drag. Thus, their viability remains a challenge in a full-scale concept. As427

such, aerostructural optimization can provide a more detailed understanding of the e�ects of structures on weight and the entire428

aerodynamic performance. Finally, further research on the BW aircraft’s manufacture is necessary, in order for industry to take on429

the development cost and risk of this configuration.430

4.3. Strut- and Truss-Braced Wings431

Since 1950, the SBW configuration has been studied to evaluate its feasibility and potential. The SBW configuration enables432

a substantial span increase, while potentially reducing the structural weight, thereby decreasing induced drag to yield a significant433
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fuel-burn benefit. The idea of using an SBW for a long-range transonic transport aircraft was first proposed by Pfenninger in the434

early 1950s [255]. Other pioneering SBW studies were performed at NASA and Lockheed [256, 257], demonstrating that SBW435

concepts with high aspect ratio wings can improve cruise range when compared to a same baseline concept.436

Likewise, the TBW emerged due to the potential benefits of the SBW. The main di�erence is that TBW concepts have a strut and437

jury members connecting the strut and the main wing, enabling the aspect ratio to be further increased. However, longer wings are438

subject to flutter, so trusses are used to alleviate this phenomenon. Such a configuration results in a significantly larger design space,439

since truss members require additional design variables to account for the size and shape of each member in the truss. Therefore,440

the two primary challenges faced by SBW and TBW concepts are flutter and shock waves in junction regions and in the “channel”441

formed by the strut. Buckling is also a design challenge for the SBW, since the strut is compressed during negative load conditions,442

and the inboard wing segment is compressed during positive load conditions, resulting in increased weight penalties [129]. This443

is generally true for all joined wing systems, including box wings, which are statically indeterminate structures. It is important to444

note that the main challenges in terms of aerodynamic and structural nonlinearities represent a design opportunity, since detailed445

design and certification require more accurate procedures [220].446

Grasmeyer [258] investigated the benefits of SBW concepts over advanced CTW aircraft. The optimum configuration showed447

a 15% reduction in takeo� gross weight, a 29% reduction in fuel weight, a 28% improvement in L_D ratio, and a 41% increase in448

seat-miles per gallon. Since this work, several MDO methods have been developed to study the design characteristics of SBW and449

TBW configurations. Tables 7, 8, and 9 summarise major design studies by academia, research entities, and industry arranged by450

level of fidelity. The main design and performance characteristics are as follows:451

• The most important outcomes show the advantage of strut and simple truss configurations over CTW cantilever aircraft in452

terms of fuel-burn. The high wingspan of these concepts, which can be vulnerable to aeroelastic phenomena, pose significant453

structural and aerodynamic uncertainties in the early studies. However, most recent medium fidelity frameworks expanded454

their capabilities by considering the extent of laminar flow on the wings, fuselage relaminarization, structural characteristics,455

the influence of supercritical airfoils on the wing-strut intersection and the e�ects of flutter (Table 8).456

• SBW and TBW concepts demonstrate higher ML_D values than CTW counterparts. This is an anticipated outcome, since457

these concepts have higher aspect ratio wings and are designed to operate at higher cruise altitudes than conventional aircraft.458

Furthermore, the studies reported di�erent design approaches in terms of objective functions, design constraints and techno-459

logical feasibility. For example, some aircraft used a set of aerodynamic considerations for reducing skin-friction drag such as460

fuselage relaminarization, surface riblets, and tailless arrangements, which increased the ML_D values substantially. Such461

configurations present optimistic ML_D values, as a result of the inclusion of aggressive technologies. Conversely, some462

aircraft are constrained by the e�ects of flutter, and also penalized by interference drag. Therefore, there is a discrepancy in463

the stated values.464

• A few e�orts have looked into aerodynamic shape optimization to study the aerodynamic interactions between SBW surfaces465

(e.g., reduction of shocks and separation in the wing-strut junction). Gagnon and Zingg [271] performed an Euler-based466

aerodynamic shape optimization on several unconventional configurations (see Fig. 8), enabling comparison of four distinct467

configurations. The authors designed and optimized a BW, a C-tip BWB, and an SBW concept for the same regional mission468

(similar to the Bombardier CRJ-1000) and subjected to the same problem formulation. The SBW configuration obtained the469

least amount of drag (-40.3%) relative to an equivalently optimized CTW, followed by the C-tip BWB (-36.2%), and finally470

the BW (-34.1%). Such results demonstrate the high potential of the SBW configuration relative to other unconventional471

configurations. Nevertheless, RANS-based optimization is needed to increase the confidence in these comparisons. Recent472

e�orts, demonstrate that aerodynamic shape optimization is e�ective in eliminating shocks at the wing-strut junction using a473

RANS-based approach, in particular, Secco and Martins [274] at low Mach numbers using the PADRI SBW geometry [276],474

and Chau and Zingg [129] at more conventional transonic Mach numbers (regional-class aircraft).475

There has also been progress on aerodynamic and structural characteristics since 2008 in the SUGAR program under NASA and476

Boeing sponsorship [97, 98, 99, 100, 101]. During phase I, researchers selected baselines and advanced configurations, conducted477

performance analyses, and measured noise and emissions. Additional technologies such as liquefied natural gas, hydrogen, fuel cell478

hybrids, BLI propulsion, unducted fans, and advanced propellers were evaluated in phase II. Phases III and IV focus on improving479

the maturity of CFD models and experimental campaigns in order to facilitate industry adoption of transonic TBW technology, i.e.,480

the objective is to identify remaining technical and certification challenges and develop a roadmap for the continued systematic481

reduction in risk [278, 279]. An aircraft example from SUGAR program is the SUGAR Volt (Fig. 9), that has been optimized under482

several aeroelastic constraints before being validated in high-speed wind tunnel tests. This particular concept also involves critical483

technologies such as hybrid electric propulsion, and high rate composite manufacturing, promoting a radical fuel-burn reduction of484

63.4% compared to a 2020 in-production aircraft, thus demonstrating that a high ML_D and lighter materials enable much greater485

range for a given battery energy density, as stated by Bushnell [280].486

As described in this section, many studies have been conducted to explore the potential of SBW and TBW in a multidisciplinary487

manner. The following aspects highlight the main advantages of such configurations: (i) SBW and TBW concepts provide a bending488

load alleviation to the wing, allowing for a decreased thickness to chord ratio, and consequently, a reduction of wing weight and489
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(a) Baseline conventional aircraft. (b) C-tip BWB aircraft.

(c) Box-wing aircraft. (d) Strut-braced wing aircraft.

Figure 8: Regional transports, dimensions in meters (source from Gagnon and Zingg [277]).

lower transonic wave drag. This condition also allows for a smaller wing sweep, which can help to reduce wing weight while490

permitting natural laminar flow over the wing, which reduces viscous drag. However, some uncertainty remains regarding bu�et491

margin for the strut’s upper surface at a maximum operating Mach number. This problem could cause unacceptable vibration levels492

in the airframe, limiting the performance envelope. (ii) The TBW concept allows for higher aspect ratios than the SBW, providing a493

significant reduction in induced drag, but introduces additional challenges in shock elimination. However, given the large wingspan494

of both concepts, folding wingtips are mandatory in order to meet the gate constraints of the airports.495

Regarding the structural and aeroelastic characteristics of these configurations, the best flutter performance for SBW occurred496

when the wing and strut had the same sweep angle, whereas the TBW provided the best flutter performance using a swept-forward497

strut, reducing both the natural frequencies and flutter speed [282]. Cost-benefit analyses are needed to determine the feasibility of498

using active flutter-suppression mechanisms, as current technologies may add weight, impacting on the gross take-o� weight or the499

fuel-burn [283]. In conclusion, both the SBW and TBW concepts are promising innovative designs for next-generation airliners,500

with the highest TRL among other unconventional configurations [220].501

4.4. Advanced Propulsion Concepts502

Airframe-propulsion integration is considered one of the most important aspects in aircraft design, since the Specific Fuel503

Consumption has a direct impact on the DOC of a new aircraft. The most conventional way to reduce the Specific Fuel Consumption504

is increasing the bypass ratio, which improves the propulsive e�ciency by increasing the mass flow rate. However, the integration of505

high bypass ratio engines using pylons results in a large wetted area and heavier structures, increasing fuel-burn [284]. In addition,506

current landing gear heights are unable to accommodate further increases to bypass ratio/engine diameters, as the weight increase507
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Figure 9: SUGAR Volt aircraft (source from [281]. Credits: NASA/The Boeing Company).

incurred by extending landing gear height to accommodate these larger engines is not a viable alternative from an economic point of508

view [285]. As a result, most novel propulsion concepts integrate the engines in alternative positions, providing drag and acoustic509

benefits [286]. For example, distributed propulsion, BLI propulsion, and electrified propulsion are projected to maximize vehicle510

benefits by coupling propulsion and wing aerodynamics. These advanced technologies have enabled engineers to design new types511

of aircraft that will serve new roles in the future.512

There are appropriate reviews summarizing the most important developments in terms of aircraft propulsion technology. For513

example, Gohardani et al. [50, 51] reported complete literature revisions of design challenges of distributed propulsion technology514

and its potential application on next-generation commercial aircraft. Conventional and alternative configurations were extensively515

reviewed, highlighting the potential application of distributed propulsion using podded and BLI technologies on BWB and HWB516

configurations. Other literature reviews involving BLI modeling and its e�ects on aircraft design can be found in [55, 56, 57, 58].517

More than 70 all-electric conceptual, experimental, and commercial aircraft along with progress in battery technology were518

reviewed by Gnadt et al. [61]. In this case, the performance of such aircraft was compared to advanced fuel-powered CTW519

aircraft at the same design range. Performance limitations of full-electric aircraft are presented by Hepperle [62], where a variety520

of propulsion systems were investigated with a focus on energy and battery storage systems. Recently, Brelje and Martins [64]521

reported an overview of electrical components and electric propulsion architectures. The authors reviewed existing commercial522

products, demonstrators, and conceptual design studies, in order to provide a list of potential benefits and disadvantages of electric523

propulsion for future high-fidelity multidisciplinary design of electric aircraft.524

This section summarizes the unconventional concepts that have been designed with revolutionary propulsion technologies for525

commercial aviation. Some of them are already described in the previous sections due to their synergy with innovative airframes.526

Tables 10, 11, and 12 list other design studies by academia, government entities, and industry, arranged by the type of propulsion527

system, showing the product of Mach number and lift-to-drag ratio (ML_D) at cruise, as well as fuel/energy benefits over conven-528

tional propulsion systems. Each of the configurations involve multiple technologies with di�erent payload and range capabilities.529

The results of the studies described in the three tables can be summarized as follows:530

• The concepts described in Table 10 show how the benefits of boundary layer ingesting and distributed propulsion systems531

can minimize the fuel-burn by improving propulsive e�ciency. However, such configurations are exposed to flow distor-532

tion arising from airframe separation, causing pressure losses, vibration, and noise. Therefore, the integration of distortion533

tolerant fan blades is mandatory, in order to operate at their maximum design performance. It is worth clarifying that the534

methods used to evaluate the benefit of boundary layer ingestion di�er among the referenced studies. For example, the older535

studies were limited to 1D propulsion system modeling and simulation, whereas some of the most recent studies involve536

numerical simulations to account for complex flow interactions, such as fully coupled body force models. In this context,537

the prediction of the potential gains of BLI in aircraft design requires propulsor models that accurately estimate upstream538

interaction of the fan with the non-uniform inlet flow. Figure 10 shows a rendering of innovative propulsion technologies539

explored by di�erent research institutions. The Double Bubble D8 concept (Fig. 10a) integrates potential technologies such540

as a lifting fuselage, BLI engines, a low-sweep wing that contributes to a lighter structure, and a lower cruise speed (Mach541

0.72) than typical commercial aircraft (Mach 0.78). This concept provides a 30% fuel-burn benefit relative to a conventional542

aircraft with 2010 technology [288]. The NASA STARC-ABL concept (Fig. 10b) integrates turboelectric propulsion with543

an electrically driven BLI mounted on the fuselage tail cone, providing a 12% fuel-burn benefit over conventional aircraft544

with advanced aerodynamic technologies for entry into services in 2035 [292].545

• Open rotors in the single-aisle category (shown in Table 11) have demonstrated high propulsive e�ciency, approximately546

on the order of 86%, at 0.72 Mach, allowing for a 30% reduction in fuel-burn over conventional turbofan engines [47]. The547

high propulsive e�ciency is a function of the di�erence between the jet velocity and the ambient velocity, i.e., open rotors548

have the capacity to accelerate a large mass flow rate, increasing the e�ective bypass ratio to more than 30:1 [48]. Despite549
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(a) The Double Bubble D8 (source from [320]. Credits:

NASA/MIT/Aurora Flight Sciences).

(b) NASA’s STARC-ABL concept (source from [281]. Credits:

ASAB Projects).

Figure 10: Revolutionary BLI concepts.

significant progress on these concepts, important challenges require further research e�orts in terms of propulsion airframe550

integration, noise and weight penalties, and certification issues.551

• Table 12 summarises aircraft concepts incorporating electric or hybrid-electric engines with various types of integration.552

The implications of using electric or hybrid power architectures, i.e., concepts that combine di�erent power sources such553

as gas turbines, advanced batteries, or liquid hydrogen fuels, dictate innovative approaches and can significantly reduce554

emissions from commercial aircraft. However, the main disadvantage is their restricted range, which is determined by the555

amount of batteries they can carry. The battery use itself brings challenges such as the weight on board, which reduces556

payload capabilities, and its specific energy, which reduces the operating capabilities [321]. For that reason, full-electric557

propulsion is currently being implemented in general aviation, urban air taxis, and commuter aircraft, which require less558

demanding requirements [322]. In contrast, hybrid-electric systems and turbo-electric systems are well-suited for application559

on distributed propulsion architectures for civil aviation. Nevertheless, in terms of aircraft performance, research into realistic560

aircraft systems integration and implementation is currently at a low TRL. Simplified models to forecast the performance of561

those concepts are widely available, but a detailed and accurate portrayal of the interaction between the propulsive system and562

the airframe is essential, as the two parts work in synergy. Indeed, the benefits of distributed propulsion concepts have been563

shown to be a�ected by structures, vibrations, and acoustics problems, given the unsteady nature of the flow interactions.564

Therefore, the implementation of high-fidelity aerodynamic shape optimization can provide a better understanding of such565

time-dependent problems [323]. Finally, there are challenges for airport infrastructure and ground operations arising from566

aircraft concepts using alternative sources of energy [324, 325].567

To conclude this section, the latest e�orts to develop hydrogen-powered commercial aircraft are mentioned. According to568

Khandelwal et al. [35], hydrogen stores three and a half times more energy than kerosene per unit weight, which undoubtedly569

represents an advantage compared to traditional aviation fuels. However, it presents an energy density three times lower than that570

of kerosene per unit volume. Therefore, the main issue is the volume needed on board to transport the same amount of energy as571

conventional fuels. As a result, very large tanks are required, particularly because the hydrogen must be stored as a cryogenic fluid572

at -423˝F [36]. That is why hydrogen-powered aircraft consider cryogenic hydrogen tanks in the fuselage, rather than in the wings.573

This influences the shape of the aircraft, and therefore the aerodynamics [326]. Brelje and Martins [327] explored the aerostructural574

wing optimization for a hydrogen fuel cell aircraft. The findings indicate that storing compressed hydrogen in the wing root of575

a single-aisle transport aircraft could be a viable option at conceptual design level. However, due to the weight and volumetric576

capacity of compressed hydrogen storage tanks, it is unlikely to be used on transcontinental routes.577

Rompokos et al. [328], and Druot et al. [329] have presented several unconventional configurations using external and internal578

hydrogen tanks. In either case, there are trade-o�s between external aerodynamics and the issue of integrating very big tanks within579

the airframe, which can a�ect payload volume and fuel capacity. The BWB is thought to be a feasible solution for this idea, although580

other potential configurations are the Twin Tail-Boom and Tail-Tank concepts.581

Three hydrogen-powered concepts were presented by Airbus in the context of French public support for the aviation sector in582

the COVID-19 crisis: a BWB aircraft for up to 200 passengers, range of 2000 nm, and hybrid hydrogen turbofan engines; a regional583

aircraft for up to 100 passengers, range of 1000 nm, and hybrid hydrogen turboprop engines; a single-aisle aircraft for 120-200584

passengers, range of 2000 nm, and hybrid hydrogen turbofan engines. All are capable of a Mach 0.78 cruise speed [330, 331].585

Given the potential of new propulsion technologies for modern and unconventional configurations to reduce emissions, it is586

necessary to evaluate economic variables such as DOC in order to quantify the potential economic benefit for airlines and to quantify587

the cost and risk associated with development of such technologies.588
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4.5. Other Configurations589

This section includes other unconventional configurations that have been investigated recently. The following configurations590

involve an original layout with reduced fuel-burn when compared to their CTW counterparts. Since there are major di�erence591

among these concepts, a precise classification was not made.592

• Throughout aviation history, forward-swept wing concepts have been tested to improve aircraft performance in transonic and593

supersonic flight. The implementation in military aviation demonstrated a reduction in compressibility e�ects at transonic594

speeds and greater lift at low speeds [332]. However, earlier studies evidenced several aeroelastic problems such as diver-595

gence, flutter, bu�eting, among others [333]. Composite materials and new additive manufacturing techniques can mitigate596

those problems, enabling also lightweight structures, a substantial increase in strength ratio, and reduction in maintenance597

cost [28, 33].598

For this reason, there is recent progress on forward-swept wing concepts for commercial aviation due to the synergy between599

active load control and natural laminar flow, which can yield to significant gains in terms of fuel and cost [334]. Iwanizki600

et al. [335] presents an overview of several forward-swept wing concepts investigated in the European Clean Sky 2 and601

ONERA-DLR projects. This paper showed that forward-swept wing concepts enable NLF at high Reynolds numbers, which602

reduce friction drag by delaying the onset of turbulent flow. The combination of forward-swept wing, NLF, and composite603

materials can o�er fuel savings by about 18% compared to an improved conventional configuration with a backward-swept604

composite wing.605

Two configurations stand out within this group: the LamAiR concept [336, 337] designed with a forward-swept NLF wing,606

smart droop nose leading edge high-lift device, and carbon fiber reinforced polymer wing; and its successor the TuLam607

concept [338] designed with similar characteristics of the LamAir concept, but adding HLFC systems. Both studies fol-608

lowed a high-fidelity MDO process, obtaining an overall aerodynamic performance at cruise (ML_D) equal to 14.9 and 16609

respectively, at design cruise Mach of 0.78.610

• The twin-fuselage concept has also been proposed as an alternative commercial airliner. Some early designs demonstrated611

a substantial increase in aspect ratio while reducing the bending moment in the wing root sections. As a result, this config-612

uration provides an operational empty weight reduction without compromising payload capacity [339]. This advantage has613

enabled engineers to include additional technologies such as HLFC and active load alleviation, o�ering additional fuel-burn614

benefits [340]. This particular concept was designed using a multi-fidelity approach involving low-fidelity aerodynamics and615

a semi-analytical equation for wing mass calculation. The results show that twin-fuselage concepts combined with advanced616

aerodynamic and structural technologies provide an aerodynamic performance (ML_D) equal to 18.33 at cruise Mach of617

0.78, which can reduce fuel-burn by roughly 30% over the current conventional configurations. However, high-fidelity studies618

are required to evaluate the benefits of this concept.619

Design challenges of twin-fuselage concepts include a significantly higher wetted area than single-fuselage concepts of620

equivalent capacity, so friction drag can be higher than conventional aircraft. In addition, twin-fuselage aircraft are prone to621

produce interference drag penalties. Other issues include roll stability requiring larger rolling moments, so ailerons must be622

larger or placed farther away from the centerline, which increases the weight of system and operational items. Operational623

challenges involve current airport infrastructure requiring wider runways due to the arrangement of the landing gears. In624

addition, the high aspect ratio wings are not able to operate on current airport gate-box limits. This problem can be solved625

in a similar way to truss-braced wing concepts, which require folding wing tips; however this adds wing weight [341].626

• The Flying V concept (Fig 11) presents an innovative tailless airframe, whose wings act as passenger cabin, fuel tanks, and627

cargo haul. Such an arrangement provides a lower aerodynamic drag than CTW aircraft, since the wetted area is reduced,628

thus reducing the friction drag, and the e�ective wingspan is increased, lowering lift-induced drag. Fuel-burn benefits reach629

20% over a comparable CTW aircraft, providing overall aerodynamic performance at cruise (ML_D) equal to 20.14 at Mach630

0.85. This concept has also demonstrated a reduction in empty weight as well as lower noise inside the cabin [342]. High-631

fidelity aerodynamic studies, including CFD and wind-tunnel experiments, have determined the ideal engine location as well632

as the arrangement of control surfaces on this concept [343, 344].633

Despite the fact that conceptual studies have shown cost-e�ective fuel-burn advantages over the CTW arrangement, this634

concept presents a number of potential issues that need to be investigated further, such as the overhaul of cabin interiors635

to improve the overall flying experience, and the fact that fuel tanks are located on the same level as the passengers cabin,636

creating potential risk in case of incidents. The flight envelope also needs to be improved in order to minimise the rate at637

which the aircraft manoeuvres while maintaining flying safety. The high angle of attack needed during take o� and landing638

could also put passengers in an uncomfortable position, especially if the seats are at an angle to the direction of flight.639

Staggered seats might be a solution for a V-shaped aircraft, but evacuation plans and more detailed designs are needed [345].640

Since the Flying V has no tail, it requires a big landing gear to meet takeo� and rotation requirements; this creates integration641

issues because the landing gear has to fit inside the fuselage.642
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Figure 11: Flying V concept (source from [346]. Credits: TUDelft).

4.6. Other Technologies643

Up to this point, the literature reviewed for this paper focused on describing the main design characteristics, design method-644

ologies, and potential fuel burn reduction o�ered by several unconventional configurations. This section discusses other potential645

technologies that can be used in conjunction with unconventional configurations in order to achieve improvements in performance646

and reductions in fuel consumption. According to Bushnell [347], there are available and emerging technologies that reduce aircraft647

operating costs and emissions through simultaneous optimization of ML_D, acoustics, and weight. For example, natural laminar648

flow uses a careful geometric design to delay laminar-turbulent transition passively, whereas hybrid laminar flow control techniques649

delay transition with the help of suction through slots or small holes. The use of natural laminar flow is more suitable for smaller650

aircraft such as regional or commuter categories, due to their relatively low Reynolds numbers and potentially lower Mach num-651

bers enabling reduced wing sweep angles. SBW and TBW concepts can also take advantage of such technology, since the use of652

external trusses reduces the wing weight, allowing the wings to be thinner than those of conventional aircraft, reducing wave drag653

and enabling reduced sweep and thus crossflow instabilities. On the other hand, aircraft with higher Reynolds numbers and sweep654

angles, such as twin-aisle aircraft, require active laminar flow control. The use of these systems often imposes operational penalties655

because of the additional weight or system complexity that, along with significant operational challenges, have restricted their use656

in transport aircraft [18]. In contrast to SBW and TBW aircraft, the high sweep angles typical of BWBs are better suited to hybrid657

laminar flow control [25].658

Other viscous drag reduction technologies include: riblets, which have been studied to evaluate their performance on several659

TBW configurations [262]; plasma actuators, which have demonstrated an increase in the lift-to-drag ratio when applied on swept660

wings, as well as noise reduction benefits when applied in high-lift devices [348]; and morphing wings [148], including variable661

camber concepts using existing control surfaces [349]. In case of induced drag, the use of wing-tip devices such as blended winglets,662

Whitcomb winglets and sharp-ranked winglets, provide an e�ective aspect ratio improvement without great span increase [22].663

From there, several wing-tip extensions have been proposed, presenting interesting aerodynamic and control implications, such as664

the C-wing concept, tip sails, spiroid tips and even morphing winglets [350, 351, 352, 353].665

In terms of weight reduction approaches, advanced composites have been used to reduce the aircraft structural weight. Their666

lightweight and substantial strength ratio enhance aircraft performance and reduce maintenance costs. Other benefits include reduc-667

tion of parts, reduction of scraps, improvement of fatigue life and improvement of corrosion resistance [31]. According to Soutis668

[30], an empty weight reduction can be achieved by using developments in the following areas: advanced metallic technologies,669

advanced composite technologies, and optimized local design. In case of metallic technologies, new alloys with specific properties670

are being developed. For example, a lower density has been obtained by aluminum-lithium alloys and higher permissible stress671

alloys. In addition, the use of fiber/metal laminates and metal laminates structures often saves some mass. For composite materials672

technologies, di�erent lay-ups obtained through optimization techniques may result in high-strength fibers with improved matrix673

properties [32]. New composite sandwich panels with truss-like cores have the potential to take the place of metallic panels [33].674

Finally, potential improvements through optimized local design can be obtained, such as the use deployable chutes for refused675

takeo� instead of heavy brakes, and new additive manufacturing processes that allow to obtain more precise geometries, as well as676

greater emphasis on the material properties of the components [347].677

5. Discussion678

As noted in the previous section, several unconventional aircraft have been investigated towards the next-generation airliner. All679

those studies showed improvements in fuel-burn compared to equivalent conventional aircraft. However, in order to achieve these680
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benefits, some configurations must cruise at altitudes higher than is currently typical. This could introduce air tra�c management681

challenges as such aircraft are introduced into the fleet, but more importantly in our current context, a high cruise altitude has682

implications for block fuel burn, especially for short-range missions, and for climate change impact.683

Following the same path as Green [16, 17], we derive an expression for the dynamic pressure that minimizes the drag for a684

given aircraft (Eq. 1):685

q2
ÿ

=

(W _S)2

CD0

⇡Ae
(1)

where q
ÿ

is the freestream dynamic pressure, given by (q
ÿ

= ⇢
ÿ

U 2

ÿ

_2), ⇢
ÿ

is the fluid density, U
ÿ

is the freestream speed, W _S686

is the wing loading, CD0

is the zero-lift drag coe�cient,A is the aspect ratio, and e is the span e�ciency factor. For a fixed U
ÿ

, a687

lower optimal q
ÿ

requires a lower density and thus a higher altitude.688

For this reason, in order to profit from their unique design features and reduce fuel consumption, the majority of the unconven-689

tional configurations detailed in Section 4 have optimal cruise altitudes higher than typical altitudes for conventional aircraft. For690

example, BWBs and HWBs are characterized by their large reference area, i.e., low wing loading (W _S), and hence the optimal691

altitude is higher than for an aircraft with a higher wing loading. Similarly, SBW and TWB aircraft, whose fuel-burn benefits come692

from their high aspect ratios (A), have a higher optimal altitude than conventional aircraft with lower aspect ratios. Finally, BW693

aircraft are characterized by high e values, which also decreases the optimal dynamic pressure, and thus require a higher cruise694

altitude than conventional aircraft.695

Increasing cruise altitude has some significant drawbacks, including increased fuel burn during the climb segment of the flight,696

which is particularly significant for short-range missions. In addition, the climate change impact from NO
x

emissions is sensitive697

to altitude, and it is important that this be taken into account when considering the overall benefits of a novel configuration. This698

e�ect could be mitigated if NO
x

emissions can be reduced through low NO
x

combustors or alternative fuels.699

For all-electric or hybrid-electric aircraft, the optimum flight speed and altitude are restricted by the ratio of power generated by700

an electric engine in a hybrid aircraft to the total power consumed by the aircraft (i.e., degree of hybridization), as well as the risk701

of electrical arcing at high altitude. More details about the optimal flight conditions for a hybrid-electric aircraft were described by702

Pornet and Isikveren [63].703

It is not yet clear what energy source or sources will facilitate aviation’s path toward zero emissions that contribute to climate704

change. Biofuels, electrification, and hydrogen are all being pursued. Such energy sources are likely to be significantly more705

expensive than kerosene for the foreseeable future, and availability will also be an issue. Consequently, the potential improvements706

in energy e�ciency associated with the unconventional aircraft configurations reviewed here can play an important role in facilitating707

the introduction of alternative energy sources by mitigating their adverse economic impact.708

6. Conclusions709

Next-generation civil transport aircraft must have greatly reduced environmental impact while remaining economically viable,710

meeting the many constraints associated with the air transportation system, and maintaining the necessary level of safety. While the711

conventional configuration has served well over many decades, it is an open question whether it will remain the optimal solution in712

the future. Considerable research has been conducted to develop and investigate unconventional aircraft configurations which have713

the potential to displace the conventional configuration as a result of their potential improvements in environmental and economic714

performance. A review of this research has been presented here with the objective of providing the reader with a summary of the715

benefits, challenges, and trade-o�s associated with the various concepts currently under consideration.716

Given the paucity of design experience with unconventional aircraft configurations, virtually all of the studies described rely on717

some sort of physics-based design tools, ranging from simple and fast conceptual design methodologies through multidisciplinary718

optimization frameworks where the aerodynamics discipline is based on the numerical solution of the Reynolds-averaged Navier-719

Stokes equations. The purpose of the studies reviewed is generally twofold. First the authors seek to develop solutions to the design720

challenges faced by the unconventional configuration under study and to develop a preliminary model of such an aircraft. This721

model is then used to provide a performance estimate of the novel configuration relative to a conventional tube-and-wing aircraft722

designed and evaluated consistently for the same mission. The development of accurate estimates of such performance benefits723

is crucial to enabling industry to make informed decisions on whether to commercialize a given configuration. The credibility of724

performance estimates for unconventional aircraft configurations depends on both the number of disciplines included in the design725

as well as the level of fidelity of the analysis. Both of these have steadily evolved over the years such that the relative performance726

of several unconventional configurations is now moderately well understood, although there remains work to be done to determine727

which configuration should be selected for a given aircraft class.728

The studies discussed make various assumptions with respect to technology levels, which can make direct comparisons di�cult.729

Some studies assume next-generation technologies in all aspects, such as engines. It is then critical to compare with a tube-and-wing730

that is also equipped with next-generation technologies. Other studies assume current technologies and can therefore be compared731
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with today’s most e�cient aircraft in order to assess the benefit of the configuration alone. A disadvantage of this latter approach732

is that the aircraft developed will not be representative of the aircraft that could eventually be built, which will be equipped with733

next-generation engines, for example. A major advantage, however, is that this approach reduces the guesswork associated with734

new technologies in terms of their viability and e�ectiveness, hence providing a credible estimate of the impact of the configuration735

on its own, although this may not be possible when several new technologies are tightly integrated. In any case, it is important for736

the reader to be careful to have a clear understanding on the technology assumptions made in making an assessment of a particular737

concept.738

In evaluating unconventional aircraft configurations, benefits and risks must be weighed against one another. For example, the739

TBW/SBW and BW have reduced risk relative to an HWB because they can use existing fuselage technology. Another important740

consideration is the trade-o� between competing priorities, such as fuel e�ciency, climate change impact, and noise. A clear741

understanding of how these are to be prioritized will be needed in order to choose the most promising configuration. Finally, the742

optimal configuration may be di�erent for di�erent aircraft classes, and the benefits of unconventional configurations depend on743

the aircraft class.744

Aviation must reduce its environmental impact as quickly as possible. Adding advanced technologies to the conventional745

configuration can be accomplished in a fairly short time frame and should be aggressively pursued. Based on the studies presented,746

it appears that a strut-braced-wing configuration could be brought to market in the medium term and could provide significant747

benefits in the single-aisle and regional classes. The hybrid wing-body, on the other hand, may o�er a better solution in the long term,748

especially for large long-range aircraft. Given the urgency of the environmental challenge, unconventional aircraft configurations749

with both medium and long term potential should be pursued, with academia and government continuing to pave the way until the750

cost and risk can be reduced to the point where one or more unconventional configurations can be commercialized.751
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Appendix A. Literature Review Protocol769

First of all, we defined a set of "key-words", "search strings" and search limitations in order to classify each paper regarding770

the subjects under evaluation. Search strings were composed by combining key-words. Search limitations refer to the selection and771

rejection criteria. Once determined the aforementioned parameters, we selected the search sources for the review methodology, in772

this case, the ISI Web of Science database and Google scholar. The ISI Web of Science database includes peer reviewed papers773

from other databases (such as Scopus, AIAA and Wiley) that were published in indexed journals with a calculated impact factor774

in the JCR (Journal Citation Report). Google scholar aided to include "grey literature" such as reports arising from conferences775

and symposiums, as well as master’s dissertations, Ph.D. theses, and technical reports. No limitation on year of publication was776

imposed on the database searches. The search criteria is provided in Fig. 12. In sum, the complete literature sample consisted of777

203 journal articles, 88 conference papers, 36 technical reports, and 26 additional references (including thesis, books and websites).778
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