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This paper presents cross-validation of two aerodynamic shape optimization methodologies

in order to validate, characterize, and compare the two methodologies. Both methodologies use

gradient-based optimization based on the Reynolds-averaged Navier-Stokes equations driven

by the discrete adjoint method. The first methodology uses a B-spline surface representation

of the geometry, coupled with free-form deformation and axial curve-based geometric control,

and an e�cient linear elasticity-based mesh deformation method. The second methodology uses

class-shape-transforms for airfoil geometry control and either in-CAD or out-of-CAD surface

modelling. Two benchmark geometries are used for comparison, a wing-body configuration

representative of a large transport aircraft, and a wing-body configuration with aft-mounted

nacelles typical of a small business jet. Both single and multipoint optimizations are performed.

Cross-validation is conducted such that flow evaluations are performed on the geometries

produced by the two methodologies using a single flow solver and consistent meshes. It is

found that both methodologies provide similar geometries and performance improvements.

The primary di�erences which exist are a result of the distinct geometry parameterization and

control methods, which, in some cases, allow for more localized geometric control. The degree

of agreement is indicative of the maturity that has been achieved by modern, state-of-the-art

aerodynamic shape optimization methodologies.
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b = Wing semi-span

c = Local chord length

CD = Drag coe�cient

CL = Lift coe�cient

CM = Pitching moment coe�cient

Cp = Pressure coe�cient

J = Objection function

M = Mach number

t/c = Thickness-to-chord ratio

wi = Objective function weights

I. Introduction
The need for more fuel-e�cient aircraft, for both environmental and economic reasons, necessitates the use of

state-of-the art design tools in order to obtain the highest possible performance from a design. Aerodynamic shape

optimization, which couples high-fidelity computational fluid dynamics (CFD) solvers with numerical optimization

methods, is one such tool. With the information provided by the CFD solver, the optimizer can find the optimal

geometry, potentially more quickly than a human designer, particularly when the design space is large and the optimum

is unintuitive.

Aerodynamic shape optimization was pioneered by Hicks and Henne[1] in the 1970s, with significant advances

made by Jameson[2] the following decade. Since then, aerodynamic shape optimization methods have become a focus

of research and are widely used in the aerospace industry. Due to the increasing use of aerodynamic shape optimization,

cross-validation of methodologies is important so that designers can have confidence that their optimization results

are not overly dependent on the methodology used. Until recently, cross-validation of di�erent aerodynamic shape

optimization algorithms has been limited. Epstein et al.[3] performed optimization of a three-dimensional wing in

turbulent flow using three di�erent aerodynamic shape optimization methodologies. The drag reductions achieved by

each optimization methodology were found to be in relatively good agreement when computed with an independent

solver; however some geometric and performance di�erences were evident. This paper was presented as a step toward

the establishment of benchmark problems for cross validation of aerodynamic shape optimization methodologies.

In 2013 the American Institute for Aeronautics and Astronautics launched the Aerodynamic Design Optimization

Discussion Group, which established a set of benchmark aerodynamic shape optimization problems to be used for

cross-validation of aerodynamic shape optimization methodologies[4–8]. Using a two-dimensional benchmark problem

specified by the Aerodynamic Design Optimization Discussion Group, Destarac et al.[9] performed cross-validation of
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seven optimized airfoils produced by the various discussion group participants. Each of these airfoils was produced using

the same optimization problem formulation, i.e. objective and constraints, but with di�erent optimization methodologies

and numbers of design variables. With all optimized airfoils analyzed on a consistent set of grids and with the same

solver, the authors showed discrepancies in computed drag when compared to the original optimization results. The

paper then investigated the non-uniqueness of inviscid solutions and hysteresis e�ects, and the pitfalls that these imply

in the use of aerodynamic shape optimization.

Using the Common Research Model (CRM) wing optimization problem specified by the Aerodynamic Design

Optimization Discussion Group, LeDoux et al.[10] investigated the use of two optimization methodologies, one based

on a potential flow analysis with a boundary layer solver and the second using a full Reynolds-averaged Navier-Stokes

solver. This study examined the impact of the two di�erent fidelity levels in the underlying flow solver, as well as the

impact of the number of section shape design variables. The results highlighted the impact of flow solver fidelity on the

optimized shape and performance, and how model di�erences, particularly in viscous modelling, can be exploited by

the optimizer. At the main design point the impact of the number of shape design variables was found to be limited, but

to play a large role in o�-design performance.

This paper presents cross-validation of two state-of-the-art high-fidelity gradient-based aerodynamic shape

optimization algorithms, one developed at the University of Toronto Institute for Aerospace Studies, the other at

Bombardier Aerospace. The paper follows the spirit of the Aerodynamic Design Optimization Discussion Group, with

an emphasis on industrially-relevant optimization problems, and with cross-validation results presented so as to enable

direct comparisons independent of the final analysis solvers. Cross-validation is presented on two three-dimensional

aircraft optimization problems for both single and multipoint optimizations. Comparisons will be made between the

optimized shapes, pressure and lift distributions, and aerodynamic performance. This cross-validation exercise will

establish whether these two state-of-the-art methodologies, developed independently and using di�erent underlying

algorithms for the flow solver, geometry control, mesh movement, and optimization, produce similar optimal shapes and

aerodynamic performance.

The paper is structured as follows. Section II describes the two methodologies used, Section III details the

optimization problem definition, including design variables, constraints, and operating conditions, and Section IV

compares the optimal shapes and performance of the two methods. Section V explores the impact of the number of

section shape design variables in one of the optimization methodologies.

II. Methodologies
This section describes the two methodologies and their underlying components. The first, called Jetstream, has been

developed at the University of Toronto Institute for Aerospace Studies, and the second, called BOOST, at Bombardier

Aerospace.
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Fig. 1 Illustration of B-spline geometry parameterization and FFD control.

A. Jetstream

Jetstream comprises four main components: 1) a Newton-Krylov-Schur solver for the Reynolds-averaged Navier-

Stokes equations coupled with the Spalart-Allmaras (SA-neg) turbulence model[11, 12], 2) an integrated geometry

parameterization and linear elasticity-based mesh movement scheme[11], 3) a free-form and axial curve deformation

technique for geometry control[13], and 4) the sparse nonlinear optimization package SNOPT[14], where gradients are

computed via the discrete adjoint method which is tightly coupled to the above three components[11, 15].

The flow solver is a parallel implicit solver that uses summation-by-parts operators for spatial discretization and

simultaneous approximation terms for the imposition of boundary conditions and block interface conditions. It uses

multiblock structured grids, and has demonstrated good scaling behaviour to thousands of processors. The Krylov

subspace method Generalized Minimum Residual (GMRES) is used with approximate Schur preconditioning in an

inexact Newton method for the solution of the discrete equations. Details of the flow solver can be found in Hicken and

Zingg[16] and Osusky and Zingg[12]. The flow solver has been validated through participation in the 5th AIAA Drag

Prediction Workshop[17].

At each optimization iteration for which a geometric shape change occurs, the computational grid must be moved

to reflect this change. To accomplish this, each block of the computational grid is fitted with a B-spline volume; this

leads to an approximation of the initial geometry. The B-spline parameterization on the surface is embedded within a

free-form deformation volume that can be controlled through free-form deformation (FFD) volumes and ‘axial curves’,

as described by Gagnon and Zingg[13]. This is illustrated in Figure 1. The B-spline parameterization also facilitates

mesh deformation. As the B-spline control points on the aerodynamic surface are moved, each B-spline volume block is

treated as a linear elastic solid, for which a finite-element solution is obtained to define the new shape of the B-spline

volume. The computational grid is then recovered from this new B-spline volume. This method has been found to be

very robust for large shape changes while being relatively inexpensive. Details can be found in Hicken and Zingg[11].

Due to the high cost of evaluating the flow equations, a gradient-based optimizer is used for optimization, as
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gradient-based optimizers typically require fewer function evaluations than genetic algorithms[18]. The gradients of

the objective and flow-dependent constraints are evaluated using the discrete adjoint method. The number of adjoint

solutions required is proportional to the number of flow-dependent functions, i.e. objective and constraints. Since this

can require significant computational cost for practical problems, an e�cient method of solving the linear system of

the adjoint problem is required. For this, a modified, flexible version of the Generalized Conjugate Residual with

Orthogonalization and Truncation (GCROT) algorithm is used[19]. The majority of the gradient terms required in

the adjoint equations are calculated analytically, with some particularly complex terms evaluated using the complex

step method. The flow solver, mesh movement, and geometry control are all tightly coupled in the development of the

adjoint equations. The gradient-based optimizer SNOPT is used, as it allows for the solution of large-scale constrained

problems. Details of the adjoint method and its integration with the flow solver and mesh movement are given by Hicken

and Zingg[11], while the details of SNOPT are described by Gill et al.[14]

This optimization framework has been used extensively for the aerodynamic optimization of wings[5], conventional

aircraft[15], and unconventional aircraft configurations[20–22].

B. BOOST

The BOOST adjoint-based optimization framework used at Bombardier consists of three main components: 1)

the FANSC (Full Aircraft Navier-Stokes Code) flow solver; 2) a geometric modeller which can either be in-CAD or

out-of-CAD , complemented by a block-structured mesh generator and a mesh-mover scheme; and 3) the e�cient

gradient-based interior point optimizer technique implemented in the IPOPT package.

FANSC is a finite-volume cell-centred three-dimensional multi-block Navier-Stokes flow solver. It features a

second-order accurate spatial discretization using matrix dissipation or Roe’s upwind scheme. The discretized system of

equations is solved implicitly with the symmetric Gauss-Seidel scheme, or the generalized minimal residual (GMRES)

approach, combined with acceleration techniques such as Full Approximate Storage Multigrid. Available turbulence

models are the widely used Spalart-Allmaras and k-!-SST equations, with the standard Spalart-Allmaras model used

for this work. The code includes a farfield drag prediction method for drag computation analysis. Details on the flow

solver can be found in Mohamed et al.[23]

During the optimization, the computational mesh needs to be moved according to the design variables which control

the geometry. The Class-Shape-Transform (CST) methodology[24] is used to parameterize the wing section shapes.

To obtain the surface mesh, two options are available: in-CAD or out-of-CAD. In the in-CAD approach, the aircraft

surfaces are modelled and updated using the CATIA V5 modeller. The surface mesh is regenerated using the MBGRID

mesh generator.[25] In the out-of-CAD approach, B-Spline surfaces are generated through the CST airfoil shapes and

discretized in sets of Radial Basis Functions (RBF) control points. The displacement between an initial set and new set

of RBF control points determines the movement of the surface mesh points. Once the surface mesh is obtained, either
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(a) CRM (b) BRAC

Fig. 2 The two aircraft configurations under consideration, with control stations illustrated.

in-CAD or out-of-CAD, the volume mesh point displacements are calculated through an inverse distance interpolation

scheme. Both of these geometry control methods are used in this work, as will be described later.

The discrete adjoint method is implemented in the FANSC flow solver to evaluate the gradients of the objective

function and constraints. The mesh sensitivities are obtained by finite di�erencing for both the out-of-CAD and in-CAD

approaches. The function and gradient information is then fed into the gradient-based optimizer IPOPT, which is an

open source software well suited for large scale non-linear optimization that uses the interior point method.[26]

III. Optimization Problem Definition

A. Geometries

Two three-dimensional geometries are considered. The first is NASA’s CRM wing-body geometry[27]. A variant

of this geometry has been used as one of the Aerodynamic Design Optimization Discussion Group benchmark cases.

The second case is representative of a small business aircraft, and is referred to as the Bombardier Research Aircraft

Configuration (BRAC). Both of these geometries are shown in Figure 2.

B. Objective and Operating Conditions

Single and multipoint optimizations are considered for both the CRM and BRAC geometries. For the CRM, the main

design point is at M = 0.85 and CL = 0.50, where M is the Mach number and CL is the lift coe�cient of the aircraft. For

the multipoint optimization, a nine point stencil in Mach number-CL space is considered, with M = [0.80, 0.85, 0.90],

and CL = [0.45, 0.50, 0.55]. While the high Mach number-CL pairs are not a practical design condition, they provide a

challenging condition for the cross-validation.

For the BRAC, the main design point is at M = 0.80 and CL = 0.45. For the multipoint optimization, two operating

points are considered, the first at M = 0.80 and CL = 0.45, and the second at M = 0.83 and CL = 0.35.

The objective for each optimization is to minimize total drag. In the case of the multipoint optimizations, the
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Table 1 Summary of optimization cases

Geometry M CL Description

CRM 0.85 0.50 Single-point lift-constrained drag minimization
CRM 0.80, 0.85, 0.90 0.45, 0.50, 0.55 Multipoint lift-constrained drag minimization
BRAC 0.80, 0.45 Single-point lift-constrained drag minimization
BRAC 0.80, 0.83 0.45, 0.35 Multipoint lift-constrained drag minimization
BRAC 0.80, 0.83 0.45, 0.35 Multipoint trim-constrained drag minimization

objective is to minimize the sum of the weighted drag at each operating point, i.e.

J =

N’
i=1

wiCDi . (1)

For the CRM case, the weights, wi , are selected so that the sum forms a trapezoidal quadrature approximation of

the integral of drag over the Mach number-CL space, i.e. w = [1/16, 1/8, 1/16, 1/8, 1/4, 1/8, 1/16, 1/8, 1/16]. For

the BRAC, the weights are w = [2/3, 1/3]. These weights prioritize drag reduction at the main design point, while

incorporating a higher speed cruise condition.

Two multipoint cases are considered for the BRAC. For the first, only the lift is constrained to equal the targets listed

above. For the second, a constraint is imposed on the trim, with the lift constraint adjusted accordingly. No horizontal

stabilizer is included in the BRAC geometry, so the trimming capability of the tail is accounted for through an analytical

trimming model. The adjusted trim lift to be constrained is given by

CLtrimmed = CLtail-o� + CMtail-o�

lref
cos(↵)(xMAC, tail � xCG) + sin(↵)(zMAC, tail � zCG)

(2)

which accounts for a tail load required to trim the aircraft. The drag incurred by the tail is not accounted for in the

objective. The tail and CG locations are fixed, and lref is a reference length, here taken to be the MAC. The angle of

attack, ↵, is a design variable at each operating point and is bounded by ↵  3.00 deg for both the CRM and BRAC.

The five cases considered in this paper are summarized in Table 1.

C. Geometric Variables and Constraints

For both the CRM and BRAC optimizations the planform is fixed and the geometric design variables include the

wing twist and section shapes at a number of spanwise locations - 11 for the CRM and nine for the BRAC.� These

stations are shown in Figure 2. At each of these stations, the section shape is free to vary using the methods described in

Section II, as is the twist. In Jetstream, the section shapes are controlled by 6 chordwise FFD pairs of control points

which are uniformly distributed along the chord, as illustrated in Figure 1, for both the CRM and BRAC. Therefore,
�For the BRAC optimization in Jetstream, four additional FFD control stations are required at the winglet root to properly enclose the geometry.
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there are 143 and 195 geometric design variables for the CRM and BRAC, respectively. An additional study into the

impact of the number of chordwise FFD design variables is presented in Section V, where 11 chordwise FFD control

point pairs are used to control the section shape. In BOOST, the CRM and BRAC geometry are controlled with CST

functions. At each control station the section shape is controlled by 12 CST shape variables, 6 for each of the lower

and upper surfaces which are uniformly distributed along the chord, plus one twist variable. Therefore, there are 143

and 117 geometric design variables for the CRM and BRAC, respectively. For the CRM optimization, BOOST uses

the out-of-CAD geometry control approach described in Section II.B, while the BRAC optimization uses the in-CAD

approach.

Special treatment is required to handle geometric changes at the wing-body junction. For the CRM, the wing section

at the fuselage intersection (y/b = 10.4%) is fixed, and the wing surface between this fixed wing-fuselage intersection

and the first control station (located at y/b = 16%) varies based on the interpolation provided by either the FFD in

Jetstream, or the B-spline surface in BOOST. For the BRAC, changes to the wing-fuselage intersection (y/b = 9.7%) are

permitted; however, the intersection is handled di�erently between Jetstream and BOOST. In Jetstream, changes at the

wing root are propagated onto the fuselage using an algebraic relationship applied to the B-spline control points. The

propagation function is such that the changes to the fuselage shape are limited to a small region near the wing-fuselage

intersection. This results in small changes to the fuselage and belly fairing shape. In BOOST, the fuselage is invariant,

with a new intersection of the wing and fuselage calculated in-CAD for each new wing geometry. The flow at the

wing-body junction is important, with complexities such as side-of-body separation. Since designing the wing-body

junction to eliminate these features is not the purpose of this work, the reduced geometric freedom in this region is

acceptable so long as both optimizers have similar levels of control. For example, the known side-of-body separation

present on the CRM is not removed in the optimizations presented here.

Since multidisciplinary requirements are not explicitly accounted for, geometric constraints are introduced to capture

their e�ect and prevent unrealistic geometries. To account for structural and internal space requirements, a number of

thicknesses are constrained. At each control station the thickness at 15%, 90%, and 100% chord is constrained to be

greater than or equal to the original value. The maximum thickness, the location of which is free to move, is constrained

to be greater than or equal to the initial value. To account for low-speed performance requirements, the leading-edge

radius is constrained to be greater than or equal to its initial value. These multidisciplinary requirements can also

be addressed through other constraints, such as the use of volume or sectional area constraints to reflect structural

requirements, or explicit CLmax constraints to account for low speed requirements[28].

IV. Results
This section presents the results of the five optimization cases as obtained by each of the aerodynamic shape

optimization methodologies, and compares and contrasts the results. To facilitate cross comparison of the two
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Fig. 3 Optimization convergence histories for the single-point CRM optimization with both optimizers.

methodologies and remove a source of discrepancy, all functionals, pressure distributions, and lift distributions are

computed with BOOST unless otherwise stated.

A. NASA Common Research Model (CRM)

BOOST optimizations are performed on the medium level of the AIAA Drag Prediction Workshop (DPW) grids,

with 5.1 million nodes. Due to fitting requirements within Jetstream, the DPW grids cannot be used for optimization;

thus in-house grids are created with properties which mimic the DPW grids. These grids have 8.0 million nodes. Grids

used for optimization must be su�ciently accurate and properly resolve the relevant flow features. For example, shocks

and the wing-body separation region present on the CRM geometry must be captured, as they are a significant source of

drag which the optimizer must be able to minimize or remove. The CRM Drag Prediction Workshop grids are known to

be of good quality and to resolve these features. The in-house grids created for use with Jetstream closely mimic the

Drag Prediction Workshop grids and capture these features. Determination of grid-independent results is important

for performance comparison, so grid convergence studies are conducted on all optimized designs when reporting the

performance of optimized geometries. The grid-converged drags reported in this paper are obtained via Richardson

extrapolation based on the three finest grid levels. Grid-convergence studies conducted using both sets of grids on the

baseline CRM geometry give grid-converged drag values within 0.3 drag counts when computed by both solvers.

1. Single-Point Optimization

The optimization convergence histories for the two methodologies are shown in Figure 3. The use of two di�erent

optimization packages, SNOPT and IPOPT, necessitates reporting of di�erent optimization statistics. The relative

merit function reported by SNOPT is analogous to the relative objective in the IPOPT convergence history. These two

quantities are equal when the constraints are satisfied in the SNOPT optimization. In SNOPT, optimality is a measure

of the accuracy of the dual variables and reflects the degree of convergence of the problem. Feasibility is the norm
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Fig. 4 The optimized CRM shape produced by Jetstream, showing nonlinear tip twist feature.

of the constraint violations. In IPOPT, primal infeasibility is a measure of the constraint violation and is analogous

to feasibility in SNOPT. The dual infeasibility is the maximum of the infeasibility of the IPOPT dual variables, and

is analogous to optimality in SNOPT. At each function call, Jetstream solves the flow and adjoint problems to a final

residual tolerance of at most 10�8. BOOST uses a flow solver convergence criterion based on CL of at most �CL = 10�5,

while the adjoint problem is solved to a residual tolerance of at most 10�5. While these convergence tolerances a�ect the

time to optimization convergence, they are su�ciently low that the final optimized design is independent of their values.

Figure 3 shows design, or major, iterations on the abscissa. However, multiple flow solves may be required during

the line search procedure or backtracking, thus requiring more computation cost than is suggested in the figure. For the

CRM optimization, Jetstream performed 213 flow solves for the 204 design iterations, while BOOST performed 264

flow solves for the 147 design iterations.

Both optimizations are run until all constraints are satisfied and there is minimal change in the objective between

iteration. For both optimizations, the majority of the drag improvement is achieved in the early iterations. For example,

Jetstream has reduced the drag by 2.8%, 3.3% and 3.7% by iteration 25, 50, and 100, respectively. In comparison,

BOOST reduces the drag by 2.7%, 3.4%, and 3.7% at the same iterations. The total reduction achieved by Jetstream and

BOOST is 3.8% and 3.7%, respectively.

For the Jetstream optimization, at the converged solution no geometric variables are at their bounds, and the

angle-of-attack is 2.72�. For both optimizations all of the leading-edge radius constraints are active, with the exception

of the root station in the Jetstream optimization. The minimum t/cmax constraints are active, the t/c constraints at 15%

and 90% chord are active at all but the two tip control stations. The lift constraint is active in both the Jetstream and

BOOST optimizations. In the BOOST optimization, three of the section shape variables are at their bounds, and the

angle-of-attack is 2.57�.

The initial CRM optimization conducted with Jetstream produces the shape shown in Figure 4. The optimizer

utilizes the twist freedom near the tip to create a highly nonlinear twist variation localized near the tip. This feature

is not seen in the BOOST optimization results, although the freedom to obtain it is present in the design space. This
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Fig. 5 Pressure distributions on the baseline and single-point optimized CRM designs.

feature is the largest discrepancy between the BOOST and Jetstream optimization results. To determine its performance

benefit and to identify how similar the BOOST and Jetstream results would be if such a feature was not present, the

ability to select a nonlinear twist distribution over the four outboard-most control sections was removed by constraining

these control sections to have a linearly varying application of twist design variables. With this nonlinear tip feature

removed, a comparison is made between the BOOST and Jetstream results. Figure 5 shows the sectional shapes and

pressure distributions at six spanwise slices. The slice at 16% semispan corresponds with the location of the first

control station. Pressure distributions are computed on the optimization level grids using BOOST’s flow solver, FANSC.

The Jetstream section shapes in this figure are for the geometry with the nonlinear tip feature removed through the

additional constraints. Over the span, the suction side of the wing has a very similar pressure distribution between the

two optimized shapes. On the pressure side of the wing, the Jetstream result shows more curvature variation, with more

lift carried just aft of the mid-chord and near the trailing edge. Figure 6 details di�erences between the section shapes

generated by BOOST and Jetstream. The largest geometric di�erences are on the lower surface on the aft half of the

chord. This variation is a consequence of the FFD geometry control and the presence of the t/c constraint at 90% chord.

The combination of this constraint and the coarse chord-wise FFD control distribution causes the optimizer to thicken

the section aft of approximately 70% chord to satisfy the constraint, while minimizing the thickness upstream of 70%

to minimize drag. The impact of the thickness constraints and the number of section shape design variables will be

discussed further in Section V. The section/twist di�erences near the tip between the two Jetstream cases - those with
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Fig. 6 Section shapes of the single-point optimized CRM designs.
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Fig. 7 Variation in section shape and pressure distribution near the wing tip for designs optimized with and without nonlinear tip twist.

and without the nonlinear tip feature - are illustrated in Figure 7. Inboard of 87% chord, the section/twist variation

between these two cases is minimal.

The spanwise lift distributions for the three optimized shapes are shown in Figure 8. There is little discernible

di�erence between the three lift distributions, and both are close to an elliptical distribution, while carrying slightly less

lift inboard. The Jetstream-optimized design with the nonlinear tip twist features carries slightly more lift near the tip.

The grid convergence behaviour for each of the optimized designs, in addition to the baseline CRM, is computed on

grids with up to 113 million nodes and plotted in Figure 9. To remove the influence of CFD solver di�erences, the

computations for these grid convergence studies are all done with BOOST’s CFD solver, FANSC. However, similar
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Fig. 9 Grid convergence behaviour of the baseline and single-point optimized CRM Designs. All values computed with BOOST.

grid-converged �CDs are achieved when analyzed with Jetstream. For example, the Jetstream-optimized case with

nonlinear tip twist has a grid-converged �CD of 8.8 counts when analyzed with Jetstream, as compared to the 8.6 counts

when analyzed with BOOST. Extrapolated grid-converged values are also shown and are tabulated in Table 2. The drag

di�erence between the BOOST and Jetstream-optimized shapes is �0.7 and +0.4 counts for the linear and nonlinear tip

twist cases, respectively. The nonlinear tip twist found in the Jetstream result provides a 1.1 count benefit compared to

the Jetstream optimized design with this highly nonlinear tip twist prevented by additional constraints. The drag of the

BOOST-optimized shape falls between these two results. These two optimization frameworks, using di�erent flow

solvers, optimization packages, and geometry control methodologies produce final designs with similar performance

through shapes which are similar, but feature some notable di�erences.

2. Multipoint Optimization

For both the Jetstream and BOOST optimizations, the same constraints are active at the converged solution. The

angle-of-attack goes to its upper bound of 3� at the M = 0.80, CL = 0.55 operating point for both optimizations. As
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Table 2 Grid-converged drag values for the baseline and single-point optimized CRM.

CD �CD

[counts] [counts]

Baseline 249.5 –
BOOST 241.3 �8.2
Jetstream - nonlinear tip twist 240.9 �8.6
Jetstream - linear tip twist 242.0 �7.5

with the single-point optimizations, Jetstream produces a shape with a highly nonlinear twist variation near the tip.

A second optimization is conducted with this feature prevented. Sectional shapes and pressure plots are shown in

Figure 10 for the BOOST geometry and the Jetstream geometry with the linear tip twist. Results are shown for the main

operating point, M = 0.85 and CL = 0.50, and for the most challenging point of M = 0.90 and CL = 0.55. The two

optimizations produce section shapes and pressure distributions which are quite similar for the outboard half of the span.

Inboard of 50% span, the section shapes, and hence pressure distributions, show larger discrepancies between the two

optimizations, with significantly di�erent section shapes at the wing root. Neither optimizer now produces a shock free

design at the main design point, and strong shocks remain at the high speed - high lift operating point. As with the

single-point optimization, the largest geometric di�erences between the two codes are produced on the lower surface, as

seen in Figure 11.

Grid convergence studies were conducted for each operating point using FANSC as was done for the single-point

optimization. The grid-converged drag at each operating point for the optimized designs is shown in Figure 12. The figure

shows the variation in drag with Mach number and lift coe�cient, as well as the di�erences in performance between the

three optimized designs. The drag di�erence between the two Jetstream-optimized shapes and the BOOST-optimized

shape is shown as �CD , where �CD = CDJetstream � CDBOOST . At the two lower Mach numbers, M = 0.80 and M = 0.85,

Jetstream produces designs with up to 4.7 counts lower drag. At the high Mach number, M = 0.90, BOOST produces

lower drag, with up to a 4.6 drag count benefit at CL = 0.55. Due to the strong shock present on the baseline design at

M = 0.90, the majority of the drag reduction achieved by all optimizers is obtained at the high Mach number and lift

coe�cient operating points, with a reduction of up to almost 170 counts at M = 0.90 and CL = 0.55. The weighted drag

reduction, i.e. objective function, across all operating points achieved with BOOST and Jetstream is shown in Table 3,

and is within 1.8 counts, with a 0.6 count di�erence between BOOST and Jetstream for the geometry with the enforced

linear tip twist. As with the single-point result, the nonlinear tip twist yields a drag benefit, 1.2 counts in this case.

B. Bombardier Research Aircraft Configuration (BRAC)

The BRAC optimizations conducted with Jetstream and BOOST use two di�erent grids. Those used by BOOST have

15.2 million nodes, those used by Jetstream have 15 million nodes. Both grids are constructed with similar resolution at

14
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Fig. 10 Pressure distributions on the multipoint optimized CRM designs.
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Fig. 11 Section shapes of the multipoint optimized CRM designs.
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Fig. 12 Grid-converged drag at each operating point for the multipoint-optimized CRM designs, where �CD = CDJetstream �CDBOOST

critical locations, e.g. o�-wall spacing, leading-edge and trailing-edge spacings, etc.

1. Single-Point Optimization

The optimization convergence histories for both optimizers are presented in Figure 13. The same convergence

criteria are used as for the CRM optimization. Jetstream performs 119 flow evaluations for the 112 design iterations,

while BOOST performs 96 flow solves for the 66 design iterations. As with the CRM, the majority of the drag reduction
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Table 3 Grid-converged objective function values for the baseline and multipoint optimized CRM.

Objective, J �J

[counts] [counts]

Baseline 294.5 –
BOOST 263.6 �30.9
Jetstream - nonlinear tip twist 261.8 �32.7
Jetstream - linear tip twist 263.0 �31.5
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Fig. 13 Optimization convergence histories for the single-point BRAC optimization with both optimizers.

is achieved in the early stages of the optimization. The Jetstream optimization was run longer than necessary, as almost

all of the drag improvement is obtained in the first 40 iterations.

At the converged solution for the Jetstream optimization, none of the geometric variables are at their bounds, with

the exception of the root control station. To restrict geometric changes at the wing-fuselage junction, the section shape

variable bounds are reduced at the first control station; the design variables which control the section shape are limited

to scaling FFD shape variables by ±10%. In the BOOST optimization, three of the twist design variables reach their

upper bound of 2.5�. For both optimizers, the angle-of-attack goes to its upper bound of 3�. For both optimizers, the

leading-edge radius and t/cmax constraints are active, as are the majority of the t/c constraints at 15% and 90% chord.

The lift constraints are active in all cases.

To perform the post-optimization analysis, the optimal shape produced by Jetstream is remeshed and analyzed with

BOOST, in order to eliminate any di�erences arising from the flow solver. The section shapes and optimal pressure

distributions at six wing stations are shown in Figure 14. Sections shown with y/b > 1 are on the winglet. The station

with y/b = 101% is at the winglet root, and that with y/b = 108% is near the winglet tip. There are some di�erences in

pressure on the upper surface, primarily near the root, where the Jetstream-optimized shape produces a smaller suction

peak. On the winglet, Jetstream produces a shock-free design while BOOST retains a shock on the winglet and near the

wing tip; the drag penalty from this shock is minor however, as evidenced by the 0.5 drag count di�erence between the
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Fig. 14 Pressure distributions on the baseline and single-point optimized BRAC designs.
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Fig. 15 Section shapes of the single-point optimized BRAC designs.

performance of the BOOST and Jetstream optimized shapes. Details of the section shapes are shown in Figure 15, where

the close similarity of the two optimized shapes can be seen, with some di�erences near the root and on the winglet.
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Fig. 16 Spanwise normal force distribution on the single-point optimized BRAC designs.
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Fig. 17 Grid convergence behaviour of the baseline and single-point optimized BRAC Designs. All values computed with BOOST.

Table 4 Grid-converged drag values for the baseline and single-point optimized BRAC.

CD �CD

[counts] [counts]

Baseline 289.0 –
BOOST 247.2 �41.8
Jetstream 246.7 �42.3

The spanwise distribution of the wing-plane-normal force are shown in Figure 16. Both optimizations produce very

similar distributions which deviate from an elliptical distribution due to the winglet.

Grid convergence studies on the baseline and two optimized shapes are conducted using FANSC with up to 121

million nodes; the behaviour of drag with grid density is shown in Figure 17. Drag values reported in Table 4 are

grid-converged estimates based on these grid convergence studies. Both optimizations produce very similar optimized

performance, within 0.5 counts.
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Table 5 Grid-converged drag values for the baseline and multipoint optimized BRAC.

Untrimmed1 Trimmed2

M 0.80 0.83 – 0.80 0.83 –
CL 0.45 0.35 – 0.45 0.35 –

CD J CD J

[counts] [counts] [counts] [counts]

Baseline 289.0 309.3 295.8 308.2 328.2 314.9
BOOST 249.3 225.5 241.4 259.3 236.9 251.8
Jetstream 248.7 229.4 242.3 258.1 238.8 251.7
1 CL = CLtail-o�
2 CL = CLtrimmed

2. Multipoint Optimization

Two multipoint optimizations are presented for the BRAC. The first is similar to the single-point case, where the

wing-body lift is constrained, while in the second a ‘trimmed lift’ is constrained, as described in Section III. Results for

both multipoint cases are presented here. Optimization convergence histories are similar to the single-point case.

At the converged solution for all of the multipoint cases, the same geometric constraints are active as for the

single-point case. The angle-of-attack goes to its upper bound at the M = 0.80, CL = 0.45 operating point for both

cases and both optimizers. The lift constraints, untrimmed and trimmed, respectively are active.

Grid convergence studies are conducted as for the single-point case. Table 5 shows the grid-converged drag estimates

for both multipoint cases as found by both optimization methodologies, as well as the objective function value. Optimal

drag at the main design point (M = 0.80, CL = 0.45) is within 0.6 counts for the untrimmed case, and 1.2 counts for the

trimmed case. For the high speed case (M = 0.83, CL = 0.35) a more significant drag di�erence exists, particularly

for the untrimmed case, of up to 3.9 counts. For both multipoint cases, BOOST achieves a lower drag at the high

speed operating point, while Jetstream achieves lower drag at the main design point. The weighted objective function,

also tabulated in Table 5, is within 0.9 counts between the two optimization methodologies for the untrimmed case

and within 0.1 counts for the trimmed case. Figure 18 shows the pressure distributions for the two operating points

of the untrimmed case. The magnitude of the di�erences between the section shapes found by the two optimization

methodologies is similar between the single and multipoint optimizations.

For both optimization methodologies the trim requirement incurs a drag penalty. At the main design point, the

penalty is 10.0 counts for the BOOST optimization and 9.4 counts for the Jetstream optimization. The penalty at the

M = 0.83 point is similar in magnitude. Figure 19 shows select pressure distributions at the main design point for the

untrimmed and trimmed designs as designed by both optimizers. Both optimizers decrease aft loading when the trim

requirement is imposed, resulting in a slight increase in the shock strength. Jetstream decreases the aft loading on the

inboard portion of the wing, while BOOST has a larger aft loading reduction on the outboard wing. The increased shock
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Fig. 18 Pressure distributions on the multipoint optimized BRAC designs.
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Fig. 19 Pressure distributions on the untrimmed and trimmed designs as optimized with the two optimization methodologies.

stength combined with the increased CLtail-o� results in the increased drag from the trim requirement.

V. Impact of the Number of Design Variables
To quantify the impact of the number of section shape variables on optimized shape and performance, Jetstream

optimizations are conducted on both the CRM and BRAC cases with twice the number of section shape FFD design

variables. Due to computational limitations, a similar study is not conducted with BOOST. In the previous optimizations,

Jetstream used 6 chordwise pairs of FFD control points to control the section shape, for a total of 12 section shape

design variables per section. In this study, the optimizations are repeated with 11 chordwise pairs for a total of 22

section shape variables per section. This study is conducted on the single and multipoint CRM cases, with the nonlinear

twist near the wing tip permitted, and on the single and multipoint BRAC cases. Of the two BRAC multipoint cases,

only the untrimmed case is used for this study. With the exception of the number of design variables, the optimization

problem definition for each case remains the same as that presented previously.
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Fig. 20 Section shapes and pressure distributions for the single-point Jetstream-optimized CRM, when optimized with 12 and 22 section
shape variables.

A. NASA Common Research Model (CRM)

The optimized section shapes and pressure distributions for the single-point Jetstream-optimized CRM are shown in

Figure 20 for the cases with 12 and 22 design variables (DVs) per section. The upper surface pressure distribution is

similar for both cases, with noticeable di�erences in shape and pressure on the lower surface. In particular, the design

optimized with 22 section shape design variables per section carries more lift on the aft half of the airfoil. This is the

result of increased camber and reduced thickness of the airfoil from approximately 50-90% of the chord. With 6 FFD

control point pairs controlling the section shape, the thickness constraint at 90% chord prevents thinning of the section

immediately upstream of 90% chord due to the coarseness of the control parameterization. With 11 FFD control point

pairs over the chord, there is su�cient control to allow the optimizer to satisfy the 90% chord thickness constraint while

still thinning the section between 50-90% chord. The influence of the thickness constraint at 90% chord is evident by

the thickening of the section at this location and the resulting sharp suction spike on the lower surface in this region.

This increased freedom allows for a drag reduction of 1 drag count compared to the 12 variables-per-section case.

For the multipoint CRM case, the benefit of the increased freedom becomes more pronounced. The increased

freedom allows the optimizer to better tailor the section shapes at each operating point. The resulting performance

at each operating point is shown in Figure 21. The multipoint BOOST-optimized results from Section IV.A.2 are

included for reference, and �CD = CDJetstream � CDBOOST . With the increased geometric control, greater drag reductions

are seen at each operating point, with the largest benefit of 12.3 drag counts at M = 0.90 and CL = 0.50, relative to the
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Fig. 21 Grid-converged drag at each operating point for the multipoint-optimized CRM designs, including Jetstream optimization with
varying numbers of section shape design variables, where �CD = CDJetstream �CDBOOST

Table 6 Grid-converged drag values for the baseline and multipoint optimized BRAC, including Jetstream optimization with varying
numbers of section shape design variables.

M 0.80 0.83 –
CL 0.45 0.35 –

CD J

[counts] [counts]

Baseline 289.0 309.3 295.8
BOOST 249.3 225.5 241.4
Jetstream - 12 DVs / sec. 248.7 229.4 242.3
Jetstream - 22 DVs / sec. 247.6 226.1 240.4

12 variables-per-section case. The weighted drag objective function value is reduced by 5.2 counts relative to the 12

variables-per-section case, with most of this reduction coming from the high Mach number operating points.

B. Bombardier Research Aircraft Configuration (BRAC)

For the BRAC, the single-point optimization benefit is similar to that of the CRM case, at 0.9 drag counts. The

interaction of the thickness constraint at 90% chord with the increased geometry control is again seen, but to a lesser

extent. The larger impact in this case is a reduction in washout. The tip washout in the 12 variables-per-section case is

4.0�, while that of the 22 variable case is 0.2�. This is compensated for with increased camber to maintain an equivalent

sectional lift, and hence similar spanload.

As with the CRM, the multipoint BRAC case experiences a greater benefit from the increased freedom. The

weighted drag objective function is reduced by 1.9 counts due to the increased freedom. The majority of this reduction,

is achieved at the higher Mach number operating point. The drag reduction for each case is given in Table 6.
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As expected, increasing the geometric freedom available to the optimizer to control the section shapes results in

designs with lower drag. Part of the reason for this in the cases presented here is the interaction between the geometry

control and the thickness constraints, particularly the thickness constraint at 90% chord. It may be possible to formulate

an alternative constraint, which aims to prevent an excessively thin trailing edge, that does not exhibit this interaction with

the geometry control method so as to achieve improved performance even with fewer design variables. The increased

level of geometric control also leads to less smooth geometries, again, partly due to the thickness constraint, which may

be undesirable. This trade-o� between improved performance and geometries which may be deemed undesirable should

be considered and potentially addressed through the addition of constraints to remove the undesirable geometric feature

rather than omitting them from the design space by reducing the geometric flexibility.

VI. Conclusions
This paper presents cross-validation of two state-of-the-art aerodynamic shape optimization methodologies, one

developed in academia, the other in industry. The methodologies use di�erent geometry control, mesh movement, CFD

solvers, and optimization algorithms. The purpose is to investigate the degree of agreement achieved with respect to the

optimized geometries and their performance. Cross-validation is conducted using grid convergence studies and a single

solver so as to remove grid and CFD solver dependencies.

Two aircraft configurations were considered, with single and multipoint optimizations being conducted. The

geometries resulting from the single-point optimizations are in good agreement for both configurations, with some

di�erences stemming from the interaction between the geometry control and thickness constraint formulation. Despite

the geometric di�erences, the optimized drag di�ers by no more than 0.7 counts. The most notable geometric di�erence

was the introduction of highly nonlinear twist near the wing tip for the CRM case by the Jetstream methodology. The

multipoint-optimized CRM showed larger section shape di�erences at the wing root than the single-point case, with a

corresponding performance di�erence of up to 4.6 drag counts at the high Mach number-high lift coe�cient operating

point, and of 1.6-2.7 drag counts at the main design point. For the multipoint BRAC cases, the two optimization

methodologies produced very similar section shapes, with a maximum performance di�erence of up to 3.9 drag counts

at the high speed design point, and of 0.6-1.2 drag counts at the main design point.

When more section shape design variables are used in the Jetstream optimizations, performance is improved,

particularly for the multipoint optimizations. However, part of this improvement is again due to the interaction of

the geometry control and a thickness constraint, and revised geometric constraints may be needed with the increased

geometric flexibility in order to avoid geometries that are too thin in places.

Both optimization methodologies are found to exhibit very similar optimization convergence behaviour, such that

the cost, as characterized by the number of function evaluations to achieve a given objective improvement, is similar.

It is thus concluded that these di�erent optimization methodologies using di�erent flow solvers (based on the same
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underlying equations), geometry control methodologies (with similar levels of geometric control), and optimization

techniques are capable of finding optimal aerodynamic shapes which produce equivalent performance. This lends

confidence to the use of these tools, as it gives confidence in the methodology-independence of aerodynamic shape

optimization results obtained by di�erent but consistent codes.
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