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This paper presents the application of a Newton-Krylov-Schur solver for the Reynolds-
averaged Navier-Stokes equations to two turbulent flow benchmark problems. The first is
the subsonic flow about a three-dimensional hemispherical-capped cylinder for angles of
attack between 0� and 19�. Comparisons are made with both experimental data as well
as the results of other CFD codes. For large angles of attack, significant di↵erences exist
between the computational and experimental results, particularly in the resolution of the
suction peak. However, the computed aerodynamic coe�cients agree well with those of
other CFD codes. The second benchmark problem, the ONERA M6 wing, is considered
at two angles of attack. At an angle of attack of 3.06� the computed pressure distributions
agree well with experimental results, with the same discrepancies widely noted in the
literature observed. The aerodynamic coe�cients agree well with those computed by other
codes. At the more challenging angle of attack of 6.06�, an unsteady analysis is performed
due to the presence of highly separated flow. Solver performance is characterized by
presenting accuracy and CPU time as a function of grid density.

I. Introduction

This paper presents the application of a Newton-Krylov-Schur solver for the Reynolds-averaged Navier-
Stokes (RANS) equations, called Diablo, to the two benchmark problems of the AIAA’s 2018 Solver Technol-
ogy Discussion Group. The problems under consideration are the three-dimensional hemispherical cylinder
(H3D) and ONERA M6 (OM6) wing, as described on NASA’s Turbulence Modelling Resource (TMR) web-
site.1 In addition, for the OM6 wing, the e↵ect of grid topology is investigated. This builds on the AIAA’s
2016 Solver Technology Discussion Group which focused on two-dimensional benchmark problems.2

The solution accuracy and solver performance will be assessed. Solution accuracy will be characterized by
examining the grid convergence behaviour of functionals, namely lift, drag, and pitching moment, in addition
to the resolution of flow characteristics such as shocks, vortices, and separated flow. Where available on the
TMR website, comparison with experimental data and the results of other CFD codes will also be made.
Solver performance will be characterized using the proposed metrics presented in Brown and Zingg,3 who
studied the convergence behaviour of Diablo for the simulation of the TMR’s benchmark NACA0012 airfoil
problem, as well as the OM6 and NASA’s Common Research Model wing. They showed good agreement
between Diablo and other solvers for the NACA0012 problem, and presented solver performance, including
functional accuracy and CPU time, as a function of grid size.

II. Solution Methodology

The solver, known as Diablo, uses a parallel implicit Newton-Krylov-Schur algorithm to solve the Euler4

and RANS5 equations with the Spalart-Allmaras turbulence model.6 A finite-di↵erence spatial discretization
is used, which is implemented using summation-by-parts operators of various orders and simultaneous ap-
proximation terms for weak enforcement of boundary and block interface conditions.7–10 This solver has been
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validated extensively using two and three-dimensional validation cases from the TMR, as well as through
participation in the AIAA’s 5th Drag Prediction Workshop.11 This section will highlight some elements of
the solution methodology which will be referred to throughout this paper as they relate to solver convergence
behaviour. Further details can be found in Del Rey Fernández et al.,8 Hicken and Zingg,4 and Osusky and
Zingg.5

The governing equations to be solved are the RANS equations in three dimensions. In conservative form
in Cartesian coordinates, they take the form
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where Q is the 5-vector of conserved quantities (mass, momentum, and energy), E, F , and G are the
inviscid fluxes, and Ev, Fv, and Gv are the viscous fluxes.12 The variables are non-dimensionalized by a
characteristic length and freestream quantities to bring their magnitudes close to unity. The viscous fluxes
in Equation 1 contain terms due to turbulence which cannot be evaluated. Thus, the negative variant of the
one-equation Spalart-Allmaras turbulence model (SA-neg)6 is used to solve for the turbulent viscosity. This
introduces a sixth PDE and solution variable, which is included in the discrete solution vector. While the
Spalart-Allmaras model contains a trip function to account for laminar-turbulent transition, it is not used
in this work and fully turbulent flow is assumed. The grid is decomposed into multiple blocks to facilitate
parallel computation.

The introduction of the turbulence model and the discretization of the governing equations leads to a
large system of nonlinear ordinary di↵erential equations of the form

@Q
@t

+R(Q) = 0 (2)

where Q and R are the discrete solution vector and flow residual for the domain, respectively. In this work
the steady solution which satisfies R(Q) = 0 is sought.

Equation 2 is solved using pseudo-transient continuation, which involves time-marching with the implicit
Euler method. This requires the solution of, at time-step n,

⇣
T (n) +A(n)

⌘
�Q(n) = �R(n) (3)

where T is a diagonal matrix of the inverse of the locally varying time-steps, A is the flow Jacobian @R
@Q ,

and �Q(n) = Q(n+1) � Q(n) is the solution update. For an infinite time-step, i.e. T = 0, this reduces to
Newton’s method. Equation 3 is solved in two phases: 1) a start-up phase which aims to provide a good
starting point for Newton’s method, and 2) an inexact-Newton phase which drives the solution to steady-
state. The di↵erence between the two phases is the manner in which the time-step is ramped up, how the
flow Jacobian is formed, and how accurately the linear problem is solved at each time-step.

In the start-up phase, the local time-step at each node is calculated for each time-step, n, as

�t

(n) / ab

n (4)

where a = 10�3 and b 2 [1.05, 1.30]. Smaller values for b give a more gradual ramp up of the timestep which
can aid in di�cult problems. Unless otherwise stated, b = 1.30 is used for the computations performed here.
The time step �t

(n) is also a function of the metric Jacobian resulting from the coordinate transformation. In
the start-up phase, the flow Jacobian is also replaced by a first-order approximation which: 1) increases the
second-di↵erence dissipation and removes the fourth-di↵erence dissipation for the inviscid terms, 2) neglects
the cross-derivative terms in the viscous stresses, and 3) the viscosity values in the viscous fluxes are treated
as constant. These simplifications increase the sparsity of the flow-Jacobian.

In the inexact-Newton phase, the time-step is increased more quickly via
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where nswitch is the time-step at which the algorithm switches from the start-up to the inexact-Newton
phase. In the inexact-Newton phase, the full Jacobian can either be computed explicitly or, since a Krylov
subspace method is used for solving the linear problem and hence only Jacobian-vector products are required,
these Jacobian-vector products can be approximated via a first-order Frechet derivative based upon the flow
residual vector. The algorithm switches from the start-up to the inexact phase when the relative residual
has been reduced by 3 orders of magnitude, unless otherwise stated.

For both the start-up and inexact-Newton phases, the linear problem arising at each time-step is solved
using the generalized minimum residual (GMRES) method, together with approximate-Schur parallel pre-
conditioning with ILU(p) factorization. The linear problem is solved to a relative tolerance, ⌘, such that
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A tolerance of ⌘ = [0.01, 0.05] is used for the start-up phase, and this tolerance is tightened to ⌘ = [0.001, 0.01]
for the inexact phase. Unless stated otherwise, ⌘ = 0.05 and ⌘ = 0.01 are used for the start-up and inexact
phases, respectively. During start-up, a fill level of 2 is used for the ILU factorization, which increases to 3 for
the inexact phase. The most relevant algorithm parameters have been presented here. For a more detailed
algorithm description together with a list of default parameters, see Reference 13. Diablo uses both the
scalar dissipation scheme of Jameson et al.14 and the matrix dissipation scheme of Swanson and Turkel.15

In this paper, scalar dissipation will be used unless stated otherwise.

III. Performance Metrics

All computations are performed on the SciNet General Purpose Cluster in Toronto, Ontario, Canada.
This cluster consists of 3,780 nodes, each with 8 Intel Xeon E5540 processors at 2.53GHz and 16GB of RAM.
Nodes are connected with 5:1 blocking/oversubscribed QDR. Solver performance will be tracked on the basis
of both solution accuracy and solver speed. The details of the respective metrics are described below.

A. Computational Cost

To help remove hardware dependencies, solver time is reported in TauBench unitsa. The TauBench bench-
mark case used comprises 2.5 ⇥ 105 grid nodes run on 1 processor with 10 steps. The average TauBench
time for the above problem after 5 runs on SciNet is 8.188 seconds; this is defined as one TauBench work
unit, wu, in this paper. CPU time (in TauBench units) is reported throughout this paper, and is calculated
as the wall time required to reduce the L

2-norm of the residual below a certain tolerance, multiplied by the
number of processors used. Solver performance is also reported in terms of equivalent residual evaluations,
which is the total CPU time divided by the average time for one residual evaluation. This helps to remove
hardware dependence and to make comparisons between di↵erent algorithms. Since Diablo is an implicit
solver, the number of Krylov iterations is also presented, as this provides a hardware-independent metric of
problem di�culty and cost.

B. Solver Accuracy

The accuracy of the CFD solver is examined based on comparison with experimental results and with other
CFD codes. For the H3D and OM6 cases, pressure distributions are available from the TMR website. Since
di↵erences may exist between the experimental and CFD setup, e.g. the existence of the splitter plate at
the root of the OM6, comparison with other codes is important. For comparison with other codes, only the
aerodynamic functionals are available from the TMR website. These will be presented in this paper as a
function of grid size to establish how the di↵erent codes behave as a function of grid size and whether they
approach the same value with infinite refinement.

With a family of consistent grids, the grid-converged functionals, i.e. those in the limit of an infinitely
fine grid, can be estimated using Richardson extrapolation,16 which can only be applied if one is in the
asymptotic region and if the convergence is monotonic.

From the three finest members of a grid family, the order of convergence, p, can be calculated as

p =
1

ln r
ln

✓
|f3 � f2|
|f2 � f1|

◆
(8)

ahttp://www.ipacs-benchmark.org
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Table 1: H3D grid family properties. The grid is partitioned into 368 blocks.

Level Nodes Avg. o↵-wall spacing Avg. y+

L0 82,800,000 2.93⇥10

�5
0.388

L1 11,200,000 5.90⇥10

�5
0.787

L2 1,620,000 1.19⇥10

�4
1.60

L3 270,000 2.45⇥10

�4
2.93

where f1 is the functional on the finest grid, and f3 is the functional value on the coarsest of the three.
The refinement ratio, r, is the ratio of the grid spacings between successive grid levels. From this, the
grid-converged estimate, f0, can be obtained through

f0 ⇡ f1 +
f1 � f2

r

p � 1
(9)

For the results presented here, if the computed order of convergence, p, is less than unity or the functionals
on the finest grid levels are non-monotonic, first order extrapolation, p = 1, is performed, as in Brown and
Zingg.3

IV. Three-Dimensional Hemispherical Cylinder

The first benchmark case is a cylinder capped with a hemisphere. The dimensions are as specified on
the TMR website.1 The grids provided for the workshop contain a polar singularity along the cylinder’s
axis at the tip of the hemisphere. Grids with this feature are currently not supported by Diablo. Thus,
custom grids are created which aim to closely replicate the workshop grids. These grids feature a ‘cap’ at
the tip of the hemisphere where the polar singularity would exist. The grid resolution on the surface is very
similar to that in the workshop grids, and pertinent spacings, including o↵-wall, far-field, hemisphere-cylinder
interface, outflow, and farfield are preserved, as are the mesh growth distributions. The four-member grid
family is described in Table 1. For reference, the workshop L0-level grid has approximately 79.4⇥106 nodes.
The grid sizes deviated slightly form the workshop grids due to topology di↵erencesb, requirements imposed
by domain decomposition, and minimum block sizes on the coarsest grids. From the finest L0-level grid,
subsequent members are created by removing every other node, i.e. r = 2 in Equations 8 and 9. The grid is
partitioned into 368 blocks for parallel computation. Each member of the grid family is shown in Figure 1,
in which the hemisphere tip cap is evident.

The flow conditions for all of the H3D cases are at a Mach number of 0.60 and a Reynolds number
of 0.35⇥106. The surface is an adiabatic no-slip surface, with Riemann extrapolation at the far-field, and
a pressure outflow boundary where the outflow pressure is specified as the freestream pressure and the
remaining quantities are extrapolated from the interior.c Computations are performed at angles of attack
↵ = 0�, 5�, 10�, 15�, and 19�. A steady-state solution is considered to be found when the L

2-norm of the
residual is reduced by twelve orders of magnitude. Due to the increased flow complexity at the higher values
of ↵, more robust solver parameters are used than the defaults described in Section II. At 15� and 19�,
the algorithm switches between the start-up and inexact phases after reducing the residual four orders of
magnitude, instead of the three orders required for the lower angles of attack. At ↵ = 19�, the time-step
ramping parameter is decreased to b = 1.25 from b = 1.30. In the interest of clarity and brevity, only the
results for ↵ = 0�, 10�, and 19� will be discussed in detail.

Comparisons are made between the computed (on the finest grid) and experimentally determined pressure
distributions at various circumferential angles, �, around the cylinder, and are shown in Figure 2, where
� = 0� is the top, i.e. leeward, side of the cylinder, and � = 180� is the bottom, i.e. windward, side.
A discrepancy between the computational and experimental results is evident near the suction peak. In
general, the magnitude of the suction peak is greater in the computational results than in the experiment,
and occurs upstream of the experimental peak.d Mayeur et al.17 performed the same computations and

bThere are two coincident nodes at block interfaces
cThese boundary conditions are enforced using the SAT approach.
dHowever, due to the sparsity of the experimental data, the location of the experimental suction peak cannot be precisely

determined.
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Table 2: Forces and moments on the H3D. Entries with p = 1 have non-monotonic convergence or p < 1.

↵ C
L

C
D

C
M

L0 Extrap. p L0 Extrap. p L0 Extrap. p

0

�
0.000 0.000 1.29 0.0112 0.0111 1.77 0.000 0.000 1

5

�
0.0150 0.0149 1 0.0122 0.0121 1.72 �0.0023 �0.0022 1

10

�
0.0344 0.0343 1 0.0161 0.0159 1.54 �0.0074 �0.0072 1

15

�
0.0611 0.0607 1.12 0.0242 0.0240 1.40 �0.0168 �0.0163 1

19

�
0.0874 0.0865 1.08 0.0351 0.0346 1.28 �0.0269 �0.0259 1.01

present results for ↵ = 0�, which exhibit the same behaviour. At ↵ = 19�, a region of separated flow is
evident in the experimental results for �  60� and approximately x � 4 in. This is not quite captured
by the CFD solution. For the ↵ = 19� case, the computed flow pattern is visualized in Figure 3, where a
separated vortex is evident. The primary vortex forms between 1 in  x  4 in, and lifts o↵ of the body by
x = 5 in where a secondary near-body vortex forms. By x = 7 in, three vortices are evident.

To characterize the resolution of the flow with grid refinement, pressure coe�cient, C
p

, and streamwise
skin friction, C

f,x

, are shown in Figure 4 at the symmetry plane as computed on each grid level. Over the
length of the cylinder, resolution of C

f,x

is relatively insensitive to grid refinement up to ↵ = 10�, with the
exception of the coarsest grid. Beyond this, particularly at ↵ = 19�, significant di↵erences arise for x � 4 in.
Figure 5 shows details of the suction peak. The L0 and L1-level grids show a nearly indistinguishable
di↵erence in both C

p

and C

f,x

. The coarsest grid does a particularly poor job at predicting the correct
C

f,x

. Discontinuities are also evident, most noticeably in C

f,x

, on the coarsest grid. These are due to the
presence of the SATs at the block boundaries. As the grid is refined, the magnitude of these discontinuities
approaches zero.

The convergence behaviour with grid refinement is shown in Figure 6, together with the validation data
from the TMR website. The dashed horizontal lines represent the Richardson extrapolated values for each
solver. The values on the finest grid and the extrapolated values are tabulated in Table 2. In general, Diablo
agrees well with the results of the other codes. All of the codes agree quite well for C

D

, while larger spreads
exist for C

L

and C

M

, and this spread increases with increasing angle of attack. The functionals computed
with Diablo are, in general, of slightly larger magnitude than the other solvers, with the greatest di↵erence
being in C

L

and C

M

. At the higher angles of attack, the error on the coarsest grids is larger than that of
the other solvers. This error on coarse grids can be reduced through the use of matrix dissipation, as shown
for Diablo in Osusky and Zingg;5 this will be further discussed in Section V.

The solver performance is shown in Figure 7. For ↵ = 15� and 19�, a solution was not attainable on the
L0 grid when partitioned into 368 blocks. When partitioned into 1334 blocks a solution was obtained and
is presented here. For large grids with a small number of block interface nodes, the CPU time di↵erence
due to di↵erent partitionings is relatively small and can thus be ignored. Performance is given by several
metrics. First, the error as a function of grid size is shown, along with the CPU time vs. the functional error.
Second, the total CPU time and the CPU time per grid node is given. As in Brown and Zingg,3 a line of
best fit for CPU time per grid node is included. In the case of perfect scaling, the slope of this line should
be zero. However, in general the problem becomes more challenging with increasing grid size, such that a
small positive slope is usually observed. On average, Diablo requires approximately 8⇥ 10�3 work units per
grid node on this hardware.

Finally, to decouple solution time from hardware performance, the number of equivalent residual eval-
uations and Krylov iterations is given. Equivalent residual evaluations are counted as the total CPU time
divided by the average CPU time for one residual evaluation. For this problem, Diablo requires 5,000-20,000
equivalent residual evaluations to converge, with most cases converging within 10,000. Tracking Krylov
iterations is a good metric for the changes in problem di�culty with grid size, as it is independent of any
time metric. As would be expected, the finest grids can require up to 5 times as many Krylov iterations. On
the coarse grids, deep convergence is obtained quickly once the algorithm transitions to the inexact phase,
typically within a few Newton iterations. However, the linear solves performed during the inexact phase still
account for over 60% of the Krylov iterations. As the grid is refined, a larger number of Newton iterations
are required during the inexact phase. This fact, together with the fact that the linear problem at each
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Table 3: OM6 grid properties. Grid is partitioned into 748 blocks.

Level Nodes Avg. o↵-wall spacing Avg. y+

L0 73,634,000 1.3⇥10

�6
0.507

L1 9,818,000 2.6⇥10

�6
1.08

L2 1,391,000 5.5⇥10

�6
2.30

L3 220,000 1.2⇥10

�5
4.03

Newton iteration in the inexact phase is more computationally demanding due to the tighter Krylov solver
tolerance, lack of simplifying approximations in the flow Jacobian, and the large pseudo-time step, gives rise
to the significant increase in the number of Krylov iterations with grid refinement.

V. ONERA M6 Wing

As with the H3D grid, the workshop grids contain a polar singularity for the OM6. Thus, grids are
created which have the same topology as the H3D grid in Section IV and mimic the spacings and growth
ratios of the workshop OM6 grids. A family of grids is created by removing every other node from the finest
grid, L0. The properties of these grids are given in Table 3, and they are shown in Figure 8. The grid sizes
deviated slightly from the workshop grids due to topology di↵erencese, requirements imposed by domain
decomposition, and minimum block sizes on the coarsest grids, but the near-body resolution remains the
same as the workshop grids.

The test conditions for the OM6 are at a Mach number of 0.84 and a Reynolds number, based on the root
chord, of 14.6⇥106. Two angles of attack are considered, 3.06� and 6.06�. The case at 3.06� has a double
shock, but the flow is largely attached, while it is known that the 6.06� case exhibits significant turbulent
boundary-layer separation.18 This paper will examine both cases in terms of both solver performance and
accuracy, grid resolution, as well as the e↵ect of grid topology. All default algorithm parameters are used,
with the exception that the time-ramping parameter is decreased to b = 1.15, and the tolerance at which to
switch between the two phases is reduced to 10�4. A steady-state solution is considered to be found when
the L

2-norm of the residual is reduced by eleven orders of magnitude.

A. Angle of Attack = 3.06

�

The accuracy of the solver is assessed by examining 1) agreement of pressure distributions with experimental
data, 2) impact of grid refinement on flow resolution, and 3) comparison of CFD functionals with other codes.
Figure 9 shows the pressure distributions compared with experimental data. In general, the CFD results
agree well with the experimental data. As with some other computational studies5,19 di↵erences exist in the
amount of lift carried at the mid-chord on the inboard station, as well as the resolution of the double shock
at 80% span. The impact of grid resolution on the C

p

and C

f,x

distributions at 20%, 65%, and 96% span is
shown in Figure 10. The two finest grid levels, L0 and L1, resolve the primary flow features, including the
suction peak and shocks, with the L1-level grid slightly smoothing out the shock and underpredicting the
drop in C

f,x

after the shock. The two coarsest grid levels, L2 and L3, are insu�cient to resolve the shocks,
and the L3-level grid is unable to properly predict C

f,x

.
Figure 11 compares the convergence of functionals with grid refinement with other CFD results provided

on the TMR website. The functionals computed by Diablo on the finest grid and the extrapolated values are
tabulated in Table 4. As demonstrated for Diablo in previous work by Osusky and Zingg,5 the use of scalar
dissipation increases functional error, particularly on coarse grids. Thus, results computed using matrix
dissipation are included in Figure 11, where it can be seen that the use of matrix dissipation reduces the
functional error by up to almost 50% on the coarsest grids. In some cases, the use of matrix dissipation makes
the solution algorithm less robust, resulting in non-physical flow quantities or divergence of the solution. This
can require the use of more conservative algorithm parameters, such as the use of b = 1.05 on the L0-level
grid.

Solver performance is shown in Figure 12. The results presented use scalar dissipation. The solution

eThere are two coincident nodes at block interfaces
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Table 4: OM6 at ↵ = 3.06�: Forces and moments computed using scalar dissipation.

↵ C
L

C
D

C
M

L0 Extrap. p L0 Extrap. p L0 Extrap. p

3.06

�
0.2716 0.2725 2.058 0.01713 0.01700 2.087 �0.1925 �0.1931 2.210

on the finest grid had di�culty converging to the required tolerance, resulting in increased cost as seen
in the figure. After transitioning to the inexact phase, the algorithm was not able to drive the residual
to the required tolerance of 10�11. The data point shown in Figure 12 for the L0-level grid is that for
which the residual of the mean flow equations has been reduced to the required tolerance, while the residual
of the turbulence equation has been reduced by 6 orders of magnitude. At this depth of convergence, the
functionals are accurate to more than 8 digits. On the L1 to L3-level grids, Diablo converges in approximately
1,000-2,500 Krylov iterations. On the coarsest grid, approximately 50% of the Krylov iterations take place
in the start-up phase, while on the L1-level grid 65% occur in the start-up phase. A larger proportion of
Krylov iterations are required in the start-up phase compared to the H3D cases. This is due to the use of
the smaller residual reduction tolerance at which the algorithm transitions between phases. In general, for
more challenging problems, a smaller switching tolerance is required to ensure a suitable initial iterate for
Newton’s method is found.

1. Alternate Grid Topology

The TMR test case for the OM6 specifies the use of a sharp trailing edge (TE). While this feature can
be meshed using an O-topology as above, it lends itself well to an H-topology grid. The use of an H-
topology grid for a sharp TE can both simplify gridding and avoid the highly skewed cells present when an
O-topology is adapted for use with the sharp TE. However, an H-topology is ine�cient in terms of the nodal
distribution, particularly as it goes to the far-field. To help remedy this, a hybrid HO-topology is used. This
uses an H-topology near the body, which is in turn surrounded by an O-topology blocking. A schematic of
the HO-topology is shown in Figure 13. To investigate the impact of this alternate topology on the OM6
configuration, an HO-topology grid is created which has the same surface resolution (number of nodes and
spacings) as the grid used previously. The finest grid level has 156⇥106 nodes. While this grid has the name
near-body resolution as the workshop grids, by nature of the H-topology, this results in more nodes in the
domain extending to the far-field, particularly emanating fore and aft along the wake plane, and hence a
larger overall grid. A family of grids is created by removing every other node.

Solutions are computed on the this grid family using scalar dissipation. A converged solution was not
attained on the L0-level grid, caused by divergence of the turbulence residual. For the remaining grid levels,
the aerodynamic functionals are shown in Figure 14 along with those computed on the O-topology grid from
previously (i.e. that which mimics the workshop grid.) Both results use scalar dissipation. The HO-topology
grid possesses slightly more error on the coarser grids for a given grid size, particularly in C

L

and C

M

, with
good agreement in C

D

. The extrapolated values computed from the results on both topologies are within 1%
of each other. However, as noted above, the HO-topology requires more grid nodes in the domain for a given
surface resolution. So, if the curves for the HO-topology results in Figure 14 were to be shifted horizontally
to the right to match the O-topology curves on a surface node basis, the HO-topology grids would produce
the same C

L

and C

M

as the O-topology grid, while the error in C

D

, most notably C

D,p

, would be almost
50% lower. The pressure distributions computed on the O and HO-topology grids are compared in Figure 15.
The solid black line is the solution on the L0-level O-topology grid. From this figure, it can be seen that on
the coarser grids, particularly L2 and L3, the HO-topology grid better captures the suction peak. This is
likely a result of the o↵-body clustering at the LE, a region critical to drag prediction, due to the nature of
the HO-topology. Details of the LE grid are shown in Figure 16. Since the boundary-layer resolving blocks
must extend to the far-field, the LE and TE o↵-body regions are naturally better resolved with this topology.
This does however, also imply the increased grid size as discussed above.

While the HO-topology grid o↵ers more accurate functionals for a given surface resolution, this is obtained
at increased computational cost for two reasons. First, the ine�cient nature of the node distribution for
the HO-topology results in the need for more computational resources (for fixed nodes per CPU). Second,
at least in the cases presented here, the algorithm has di�culty reducing the turbulence residual. In the
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results presented above, the mean flow equations have been solved to within the specified tolerance, while
the turbulence equation cannot be solved to within a relative tolerance less than 10�7. Regardless of the
turbulence equation, the problem algorithm has more di�culty solving on the HO-topology grids. If the
mean flow residual reduction is taken as the convergence criterion, then the HO-topology grid requires up
to 60% more Krylov iterations to converge.

B. Angle of Attack = 6.06

�

The OM6 at 6.06� presents a particularly challenging case due to the strong shocks and resulting separation.
Indeed, Diablo is unable to obtain a steady solution on all but the coarsest grid. To investigate this case
further, an unsteady analysis is performed on the L1-level grid. Diablo has been extended for time-accurate
integration by Boom and Zingg.9 Here, a 2nd-order backwards di↵erencing time-marching method is used
with a non-dimensional time-step of �t = 5 ⇥ 10�2. The unsteady solution is run for 125 time units, the
history of which is shown in Figure 17 in terms of C

L

and C

D

. After the initial flow has developed, periodic
behaviour develops after approximately t = 40. Three full periods are shown in the figure. Over the last two
periods, the time-averaged C

L

and C

D

are 0.521 and 0.05869, respectively. The solution at four separate
instances is shown in Figure 18. The first and third instances correspond to the first and fourth crests in
the periodic portion of the unsteady history, and the second and fourth instances correspond to the first
and fourth troughs. It is evident that the flow on the inboard portion of the wing is steady, and it is only
the outboard 25% which varies in time. Over this outboard portion, the chordwise location of the tip shock
varies with time, as does the size and position of the resulting separated flow.

VI. Conclusions

This paper presents the application of a Newton-Krylov-Schur solver for the Reynolds-averaged Navier-
Stokes equations to two turbulent flow benchmark problems. The first is the subsonic flow about a three-
dimensional hemispherical-capped cylinder for angles of attack between 0� and 19�. Comparisons are made
with both experimental data as well as the results of other CFD codes. For large angles of attack, significant
di↵erences exist between the computational and experimental results, particularly in the resolution of the
suction peak. In general, agreement with experimental data was better on the windward side of the cylinder
than that on the leeward side. However, the computed aerodynamic coe�cients agree well with those of
other CFD codes. The second benchmark problem, the ONERA M6 wing, was considered at two angles of
attack; 3.06� and 6.06�. At an angle of attack of 3.06�, the computed pressure distributions agree well with
experimental results, with the same discrepancies at the inboard and shock locations as widely noted in the
literature observed. The computed aerodynamic coe�cients agree well with those computed via other codes.
At the more challenging angle of attack of 6.06�, a steady solution is only obtained on the coarsest grids
considered. These results support the conclusion, as has been reported, of the existence of highly separated
flow on the outboard wing, leading to an unsteady flow. Unsteady analysis was performed on this case and
a region of unsteady flow was identified towards the wing tip, with movement in the shock location and
recirculation region identified. The inboard flow was found to be steady.
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Figure 1: H3D grid family. Red lines denote block boundaries.
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Figure 2: H3D: Comparison of computed Cp distributions with experimental results for selected angles of
attack.
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(a) Five slices of total pressure showing vortex formation.

(b) x = 1 in (c) x = 3 in (d) x = 5 in (e) x = 7 in

Figure 3: H3D at ↵ = 19�: Five slices of total pressure showing vortex formation, with details of four slices
showing in-plane streamlines.
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Figure 4: H3D: Resolution of C

p

and C

f,x

with grid refinement.
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Figure 5: H3D: Detail of C
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and C

f,x

near the suction peak with grid refinement.
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Figure 6: H3D: Force convergence behaviour of Diablo compared with other solvers. Dashed horizontal lines
represent extrapolated values for each solver.
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Figure 6 (continued): H3D: Force convergence behaviour of Diablo compared with other solvers. Dashed
horizontal lines represent extrapolated values for each solver.
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Figure 7: H3D: Solver convergence behaviour at selected angles of attack.
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Figure 7 (continued): H3D: Solver convergence behaviour at selected angles of attack.
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(a) L0 (b) L1

(c) L2 (d) L3

Figure 8: OM6 grid family. Red lines denote block boundaries.
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scalar dissipation, with experimental results.
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Figure 12: OM6 at ↵ = 3.06�: Grid convergence behaviour as computed on the workshop topology grid. Grid
is partitioned into 748 blocks.

  

Figure 13: Schematic of the HO-topology grid. Near-body blocks enlarged for clarity.13
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Both grids have the same surface and near-body resolution.
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Figure 15: OM6 at ↵ = 3.06�: C

p

compared on both O and HO-topology grids computed with scalar dissipation.
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(a) O-topology grid (b) HO-topology grid

Figure 16: OM6: Detail of the LE region of the L1-level O and HO-topology grids.
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Figure 17: OM6 at ↵ = 6.06�: Unsteady force history.
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(a) t = 68.7

(b) t = 70.2

(c) t = 81.7

(d) t = 83.7

Figure 18: OM6 at ↵ = 6.06�: Upper surface C

f,x

and C

p

at four time instances.
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