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Chapter 1

Introduction

1.1 Motivation

EP{eAir traffic has grown

‘e growth 1‘ate§for the fiext few decades. The Mexpa.nsion of the air transport causes

5% - 9% annually since 1960s, and it is expected to maintain qcl\

ﬁ;;pﬁl increases in jet/fuel consumption and aviation emissions. According to a special
report submitted to‘Intergovernmental Panel on Climate Change (IPCC) [44], the antic-
ipated annual growth rate of fuel consumption, C'O, and NO, emissions are 2.9%, 2.9%

and 3.3% by 2015. These figures reveal# two important consequences:

1. Increasin - fuel consumption speeds up the depletion of oil, and the scarcity of
oil wewdd Mimately increases its price. Since >](e’ fuel cost has become the most
significant expense for airline companies since 2006, it is expected to be a major

obstacle of the sustainable development of aviation industry.

]

Continuous emissions of COy and NO, worhl in,short term create meteorological
hazards such as acid rain and unhealthy aerosol particulates and in /%ong term

accelerate global climate change. “+he

Given these emerging problems, fuel efficiency and emission alleviation are significant
factors that should be accounted for in the shape design of the next generation of aircraft.
As pointed out by Mistry, Smith and Fielding [36], the current conventional configuration$
are designed and optimized to achieve the highest level of performance, and substantial
improvements can only made by adopting novel concepts. Thus, the shift from the
existing wing-fuselage shhpe to ?(e unconventional c.tonﬁguration&beﬁemesﬂg@ major trend

in aerodynamic shape depign. l’\m

aQ
pOroe
&)Q 1



CHAPTER 1. INTRODUCTION 3

relatively slow ‘{24]. The other requires additional gradient evaluation of the objective
function with respect to the design variables. This type of gradient-based optimizerg-zmre ‘3
capable of finding an optimum with relatively low computational cost. However, it in-

herently converges to a local optimum and is limited to)héproblemswith Asmooth design

dabons of :

Due to the = aerodynamic shape optimization

methocg} advanced optimization strategies are needed to improve the implementation effi-
ciency and optimal solution based on the existing numerical tools. X gossible method is
the hybrid optimization strategy presented by Vicini and Quagliarella [52]. They develop
an optimization algorithm by adding a gradient-based technique to a set of operators of = q

multiobjective genetic algorithm, and it turns out that the computational efficiency of

the hybrid algorithm is increase ile the desirable properties of genetic optimizer are
preserved. Another applicable approach is the multilevel optimization technique which P
decomposes a stiff problem into several easier sub—proble@and solves them sequenti% \

One example can be referred to Alexandrov et al. [1]. They propose an aand
model management framework that integrates aﬂ gradient-based optimizer with variable
fidelity flow analysis tools, and the optimization is accelerated by adopting Jow fidelity
model at some intermediate iterations. j(LL

The optimization strategy proposed in this thesis focuses on the effectiveness of design
variables in an optimizati%n problem;% As indicated by a number of authors [4, 3, 35], the

o Avbes o ) ) X .
presence of Aexcesswgdemgn variables C(ﬂlﬂl result in poor performance for most existing

optimization algorithms. Thus, it is essential to only include a limited number of critical
design variables in an optimization. However, for general optimization problems, the
design space features are not obvious a prioriland there are no guidelines on choosing
proper design variables. Therefore, prescribing design variables by a designer is not an
ideal treatment for an automated optimization process. Especially when investigating
unconventional configurations, {6 predetermined design space could limit the capability
of an optimizer and should be minimized. The better alternative is to strategically
introduce design variables during an optimization process based on the performance of
the existing geometry. In other words, a design problem is organized as a succession of
optimizations with an increased number of design variables.

To achieve such an optimization sequence, the set of design variables should be con- .
sistent, flexible and easy to manipulate. Since the definition of the design variables are— [ S
provided by 'ﬁgeometry parametrization, an ideal parametrization method is required to

A



CHAPTER 1. INTRODUCTION ’ 5

explicitly specified, which leaves little flexibility for a designer to adjust the design space
according to specific requirements and conditions. '

/uﬁe_ omain element approach [39] is a variation of the parametrization using grid point
coordinates. It groups a set of grid points to a macro unit (domain element), and such
grouping applies to the entire grid. Usually the vertices of the domain element are treated
as design variables which controls the shape deformation, and the internal grid points be-
longing to the domain element move according to/%\:ertain inverse mapping that preserves
the parametric coordinates of the grid points with respect to the domain element.

For typical airfoil and wing design, the geometry can also be represented by a lin-
ear combination of basis shape functions and the coefficier{&f these basis functions are
regarded as the design variables. In this approach,}sufﬁcient small number of design vari-
ables a‘.ée needed to describe a geometry, but the design space is restricted by the choice
of prescribed basis functions. Normally existing geometries with some perturbation func-
tions are adopted as the basis functions, for instance, Hicks-Henne bump functions [23],
but to reduce the linear dependence among the basis functions, some authors [49, 46] also
use orthogonal basis functions. Nevertheless, the optimal geometry is highly dependent
on the formulation of the basis functions. »

Class / shape function transformation (CST) is another x@ ‘oposed parametriza-
tion by Kulfan and Bussoletti [30]. It represents a complex geometry such as an airfoil
With%ound—nose and:sharp aft-end using analytic and well-behaved mathematical func-
tions. A considerable advantage of this approach is that conventional design parameters
like leading edge radius, camber and trailing edge angle etc. can be specified through
modifications of the local class function. However, the automation of this approach at
the current stage is not idegl? }experimentations and turnings are necessary for specific
geometry representations.

A commonly used approach in computer aided geometric design is based on polyno-
mial spline functions, specifically, Bezier and B-spline techniques [8, 26, 13]. These two
types of spline approaches share some common favourable properties. For instance, both
of them use the tensor product of polynomial basis functions and coefficient vectors to
analytically represent a shape. Since the basis functions are invariant for a prescribed
knot vector, the coefficient vectors, termed a(control points, are naturally chosen as de-
sign variables to generate shape changes. Also, for every parametrized shape, the control
points form a convex hull which contains and mimics the geometry. This property is

particularly useful for mesh movement. It allows costly mesh deformation techniques to
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are evaluated at the finest level and projected to a particular coarse level where an opti-
mization occurs. They also propose two optimization sequences: first, the optimizations
are conducted sequentially from the coarsest level to the finest level; second, multigrid
strategies are adopted. The optimizations are performed at the various levels according
to a full V-cycle sequence. This approach displays an increase of efficiency primarily due
to the faster convergence by considering less design variables in coarse parametrization
levels.

Further investigation is done by Martinelli and Beux [35]. They extend the described
strategy to other kinds of parametrizations. instead of linear interpolation, affine oper-
ators are defined to project and prolong the gradient among different parametrization
levels, thus the design variables are not restricted to the grid points. They present two
hierarchical parametrizations: the first case is constructed using orthogonal basis func-
tions, and each sub-level corresponds to a different number of basis functions; the second
case is built on the degree elevation property of the Bezier curve, and every sub-level
refers to a certain number of Bezier control points.

Similar research has also been accomplished by Desideri and colleagues [9, 3, 12].
Their evolutionary parametrization strategy is defined by Bezier curves and volumes
with a degree elevation algorithm. In these works, optimizations are carried out inde-
pendently on different parametrizatio@ollowing a predetermined sequence. Therefore,
gradient-based and gradient-free optimization algorithms are all applicable. In addition,
to increase the geometric regularity of a refined parametrization, they also propose a

self-adaptive procedure [33, 10] associated with the degree elevation mechanism.

Other geometry representation methods can also be modified to contain multiple sets
of design variabl, 5‘6 instance, Morris et al. [39] formulate/ a hierarchical domain el-
ement method which combines conventional planform variables of a wing with different
level of parametrization. Despite the different features associated with various geome-
try representations, the primary idea of all evolutionary parametrizations is the same:
the optimization efficiency and optimal solution can be improved using flexible design

variables.

1.5 Objective

The objective of the current work is to construct an evolutionary geometry parametriza-

tion based on I(_'.xisting B-spline curve formulation for an airfoil [41] and B-spline volume

din



Chapter 2

B-spline Parametrization

Qa amat\%o

When %\}{e B-spline parametrization is employed in a shape optimization, the Desitiens
of its control points are normally used as design variables. Therefore, constructing an
evolutionary parametrization requires a geometry to be represented by different num-
be@/@f control points. This can be achieved through an initial B-spline approximation,
and multiple knot insertions. This chapter is devoted to the explanation of mathemati-

cal formulation and the implementation of the evolutionary B-spline paramgtrization in

Ve

aerodynamic shape optimization problems.

2.1 Parametric Space and Knot vector

The B-spline formulation is a type of parametric representation. Thus, in simple words,
it defines a mapping from a parametric space to a physical space, {f : & — X}@both
the parametric and physical space can be multidimensional, and the mapping function
consists of a series of polynomials. Take & € R as an example,/ﬁe domain of the
parametric space can be set to any arbitrary values, and by convention [0, 1] is normally

assumed. A partition of the parametric domain is defined by dividing the domain into

several intervals, and the vector containing this partition is referred to as the knot vector,~

feel0 i t={t1 <ty <...<tpm_1 <ty} is the knot vector. Thexl,

[ti,tiy1] is the i-th kn

“interval. Since some ¢;’s may be equal, some knot intervals may

not exipt. If ¢; appears [ times, then it is a multiple knot of multiplicity /. In general, Jor

multidimensional

hoo doa tha dyed . '§¢ &/’K?

arametric space, there exist/ different knot vectors for each dimension.

?

s
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Figure 2.2: B-spline basis function with different knot vectors N

To illustrate the impact of % multiple knots, 4th-order basis funciins computed
2. Figure 2.2(a)

shows a vector consisting of only simple knots, Figure 2.2(b) displays the effect of moving

based on three knot vectors are compared in a schematic diagram

t5 to tg, and Figure 2.2(c) shows the result if both t5 and ¢; are moved to tg. The above
statements that one basis function spdnboﬁmte number of knot intervals and one knot
interval contains, ﬁmte number of non-zero basis functions are clearly depicted. Because
of them, B-spline parametrization is locally supported.

Besides the local support property, a few behawieurs of B-spline basis functions also

can be deduced from these plots. @Cé Seoley

o The knot intervals close to the boundary are not fully supported (e.g. only one
non-zero basis function exists for interval, [t1,t9]). Thus to overcome this problem,
one could put k repeated knots at both ends of the knot vector, where % is the order
of the basis functions. This could result in an open B-spline curve to be discussed
in the next section. On the other hand, one can make a periodic knot vector to

avoid boundary problems, and this will produce a closed B-spline curve 126].
e The number of non-zero basis functio@t a knot is & — 1, where [ is the multiplicity.
e At a knot of multiplicity [, the non-zero basis functions are C*~1~! continuous.

e At any point in the parametric domain, the sum of all non-zero basis functions is
unity. This is usually referred to as the partition of unity, and/\rigorous mathemat-

ical proof is given by de Boor [8]. a

These properties hold for multidimensional mappmgs/and all of them will pla'y a part

when constructing a B-spline representation.



CHAPTER 2. B-SPLINE PARAMETRIZATION 13

function, it will only affect the knot intervals where the basis function is non-zero.
Figure 2.4 gives a dear&ﬁ illustration reg:@-i\ng this property.

—B-spline curve B / —B-spline curve 4
i = Control point . gt~ Control point
5,
4_
................... >

3 N 3l

of / 2r /

1 1t L
O L

. 1 2 3 4 5 6 1 2 3 4 5 6

X X
(a) Original B-spline curve (b) Modified B-spline curve

Figure 2.4: Local modification

e If the order of the basis function is k, each segment of the B-spline curve lies in the
convex hull of the associated £ control points. Globally, the entire B-spline curve
lies in the convex hull of all the control points. Figure 2.5(a) shows the convex hull
for the curve segment associated with the first 4 control points, and Figure 2.5(b)

indicates the convex hull for the entire curve. (N" ?(47

e For a planar B-spline curve, no straight line intersects a Bsspline curve more times

than it intersects the control polygon which is formed by connecting control points
sequentially. This property reveals an important | r that the B-spline curve is
no more complex than the control polygon. If the variation of the control polygon
is reduced, then the regularity of the curve is improved. This property also holds
for Bezier parametrization, and a couple of authors [50, 7, 11] have considered a

self-adaptive parametrization in optimization problems based on this property.

2.2.3 The derivative of a B-spline curve

To determine the tangent vectors of a B-gpline curve, it is necessary to compute its

derivative. Since the basis functions are merely polynomials, the derivatives can be
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Figure 2.6: Knot insertion

{df:i=1,....r—k+1r+1,...,n+1} reta.in{ the positions of old control points based
on the local support property of B-spline formulatio

df=d;, 1<i<r—k+1 (2.6)

(]

di=di-; r+1<i<n+1 (2.7)

7

The new control points, {d} :¢=7r —k+2,...,r}, are placed on the control polygon

formed b)}l\%vld control points, {d; :i =7 —k+1,...,r}. The quantitative relation can

be deduced using de Boor algorithm [8@

d=(1—-a)di1+od; (2.8)
i
S ¢
TN
Figure 2.6(a) shows the effect of inserting a new knot@ The new control points
are located at the old control polygon, and the B-spline curve is maintained. Figure 2.6(b)
displays the variation of the basis functions, éﬂmpared to Figure 2.3(b), the modified basis
functions are coloured. The above procedure is able to create new control points located
at the old control polygon, but their exact coordinates are unknown in advance. If a user—
specified control point d* between (d,, d,.1) is required, this procedure can be reversed
to calculate the required knot [45]:
o= L dr (2.10)
dyy1 —d,

i = tr—;—l -+ 8<i7+k — t7‘—§—1) (211)
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are placed colinearly with the leading edge point, so that G continuity is restored. This
amendment is performed at the end of the approximation.

Once the parametric domain is fully defined, the basis functions can be subsequently
computed according to Eq. 2.2, and the last step is to determins’@ the control points.
Assume the airfoil surface is defined by a set of points, {P;,j7 = 1,..., N}. The control
points can be computed by solving the least squares problem, min Z;\;l P — Xl
The obtained approximation curvey {X;,7 =1,..., N} through this procedure has a
well-known deficiency that the error vector, P; — X, is usually not perpendicular to the
tangent. To resolve this problem, Hoschek [25] proposes the following iterative parameter

correction algorithm:

- tn - tl

& =&+ Ag (2.16)

AC]' = (P] it X]) . Yj (217)

where L is the total length of the control polygon defined by connecting the control
points, and Y; is the normalized tangent vector that can be found by computing the
derivative of the B-spline curve.

One example of the approximation using 4th-order B-spline curve is shown in Fig-
ure 2.7(a). The NACA0012 airfoil is described using 15 control points, and the leading
edge is handled by keeping three adjacent control points aligned. The figure beside it
illustrates the application of knot insertion algorithm f—e—;—he—a&ﬁoﬂ One knot insertion

takes place at the interval (¢13\t14) on the upper surface, splitting this knot interval into

two parts that contain approxitgately same number of parameters. Another inverse knot

insertion occurs on the lower sur acKnemting a new control point located at z = 0.5.

2.3 B-spline Volume

The B-spline volume parametrization developed by Hicken and Zingg [17] is employed
in the three-dimensional shape optimization problems. Instead of emdy parametrizing
the surface of the object, this approach represents the entire computational grid with B-
spline volumes and ﬁ(e control points. Thus, the shape deformation is acquired through
the movement of the B-spline surface patches, and the corresponding grid perturbation is
driven by the adjustment of the volume control points to conform to the surface changes.

The B-spline volume method is formulated by extending planar B-spline curves into

ouhl
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(a) B-spline volume (b) control mesh

Figure 2.8: B-gpline volume parametrization

given by

0  otherwise

] . f — 1 (777 C) :
‘/\/3,}')<5> - ti+[;——1(77; C) _ ti(”f}, g) M,p—l(é)
tH-p(T/v C) - f

tirp(m, Q) — tiy1(n, ¢)

+

Niv1p-1(8) (2.20)

where the knot vector, ¢,(n, {), is a spatially varying function of parameters, n and (. Its
form can be arbitrarily set to accommodate the different geometries, as long as it remains

non-decreasing. For the grids made of hexahedra, a simple bilinear form is used [17[¢

£(1,¢) = 1(0,0)(1 — m)(1 = ¢) + #(L,0)n(1 — ) + 40, )(1 = )¢ + (1, ¢ (2.21)

Here £(0,0), t(1,0), t(0,1) and #(1,1) are four edge knot vectors in the ¢ direction, and
they are constructed to have roughly the same number of parameters in each knot interval.

The B-spline volume control points are determined by solving Eq. 2.18 through a
least squares procedure. For multi-block grids, consistent positions of control points
at interfaces are mandatory. Thus the least squares problem is solved sequentially for
block edges, surfaces, and volumes. The resulté@® B-spline volume control points are also
referred as a volume control mesh. Figure 2.8 shows a B-spline volume grid and its

correspoding control mesh.

s

X e



Chapter 3
Overview of Optimization Routines

In order to perform an automated aerodynamic shape optimization, a set of analysis and
optimization routines are integrated together. The present optimization codes in two

and three dimensions contain the following essential components:

1. Geometry parametrization
2. Grid perturbation algorithm
3. Flow solver

4. Optimizer

Among them, the geometry parametrization usingAB—spline formulation is described in

details{ in the previous chapter. An overview of the zest numerical routines is given in
. . \ W

the following sections. YRl ')

3.1 Grid Movement Algorithm

Once a geometry has been modified by manipulation of the surface control points, the
surrounding computational grid has to conform to the new shape. In two-dimensional
airfoil optimization problems, the movement of the airfoil surface is usually moderate
and does not involve translation and rotation, so an algebraic grid perturbation method
is sufficient and effective. Nemec et al. [42] propose the following algorithm based on the
normalized arclength from the surfa.

B:} : + (1 + cos(m9))

21

A
- (3.1)
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neglected for steady flows. Thus the governing equations are reduced to a set of nonlinear
algebraic equations, R = 0. Here, R is referred to as the flow residual.
The residual equations are solved using a Newton-Krylov method. For each Newton

iteration, an update of the conservative variables a@‘xd by the following equation:

dpesq& OL\*

where A™ is the flow Jacobian matrix. BecauseThe Newton“ method depends on the

start-up algorithm is necessary to provide a proper initial iterate. In
this solver, an implicit Euler time marching method with »e approximate-factorization
is used as the start-up algorithm. Once an initial Value;, QW is obtained, Eq. 3.4 is solved
inexactly using the generalized minimal residual (GMRES) linear solver.

i&ﬁ the optimization codes for a three-dimensional wing, a Newton-Krylov-Schur flow
solver igyleveloped for, three-dimensional Euler equations by Hicken and Zingg [21]. The
governing equations a)e given by

9,

e BQ + gx:

where x = @ @ @ [z, v, 2], Q = [p, pur, pua, pus, e]” are the conservative
variables, and E; = [pu;, puju; + pou, pugu; + pdo;, pusu; + pdsi, (e + plu]” are the

=0 (3.5)

inviscid fluxes. The Euler equations are discretized usingfsecond—order accurate summa-
tion~by~-parts operator and simultaneous approximation terms (details can be found in
the paper by Hicken and Zingg [21]) My,(ﬁ the temporal term is neglected, the
Euler equations are reduced to flew—sesidual equations of the form, R = 0. Solving the
ton-Krylov strategy, but the start-up algorithm

resiclual equation; adopts the same N
is changed to the dissipation based hgmotopy continuation [19], and the Krylov solver is

changed to @ flexible GMRES witlj approximate-Schur preconditioner.

nonlile @(3 ¢bran
An

3.3 Optimizer

Once the design variables are defined by a geometry parametrization, and the flow anal-
ysis is obtained by a flow solver, an efficient optimizer is necessary to determine the way
to modify the design variables, such that the design objective is improved. Although
there exist many optimization algorithms that only require the objective function value,

the most computationally efficient algorithms are based on the gradient of the objec-
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/
through mesh adjoint equations. Since in three- dimen;ﬁonal optimization problems, the

computational grid is represented by B- sp“l"—\ Volumeéythe dependence of the objective
function can be written as J = J(Q ‘/) and the dependence of the flow residual
equations can be explicitly oxpresse R(Q,b m),

control points and X are the design variables. The derivation of the gradient is done

), where b™ are the volume

through Lagrangi@ multlphers)whlch requires an optimal pomt;(satlsfy the flow residual
equations and grid movement equation .L

min  J(Q, X, b™)
wrt Q,X,b™
st. R(Q,b"™ X) =0
r@(b® bi-Yy =0, ie{1,...,m}
The Lagrangian is defined by
L=J+ zmj AOTE0 1 TR (3.8)

1=1

where, Y and ) are the mesh and flow adjoint variables. The optimality condition sets
the partial derivatives of the Lagrangian to zer‘

gi P (3.10)
%=O=Bé+¢ % (3.11)
()%EG)' PN ler)(; AT d;b:; ) ie{m—1,...,1} (3.13)
%{ . g}z{ > ( ()T da;(() d;X> igR (3.14)

Follow the strategy proposed by Truong et al. [51], €q. 3 %3 13 .dre solved sequen-
tiaﬂ@)rovidind the flow and mesh adjoint variables to form the Eﬁ@and side of the
last &Quation (dotaﬂ% are presented by Hicken and Zingg [22] )) Sm@e-t—he—waﬁma—l-i—‘w—eeﬁ\

dWﬂlm at the optimal point 4% it %roo\c}s@ d ?{t]}m ——
O, TR 3 12 !, 1@4/@
(pﬂp&m . 8_j + A ar® gpd I,(?E

- OX b X X

, 1.8
o, o . 28

(3.15)
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Depending on the treatment of the constraints, two optimization| algorithms are im-
plemented. One of them is the BFGS quasi-Newton algorithm assedirted with a back-
tracking line search method. This optimizer is designgffed for unconstrained optimization
prol_)lem@therefore, the imposed constraints have to be handled by penalty terms and
incorporated into the objective function. Currently, the following quadratic penalty

method is used:
(1— C’i/Cj)Q it ¢;<C7

0 otherwise

where C} is the specified target value. The above form works for inequality constraints;
when an equality constraint is encountered such as a lift constraint, only the first equa-
tion is needed. Additionally, Zingg and Billing [53] develop @ strategy that adjusts
angle of attack in the flow solver to satisfies the lift constraint, and this is used as an
alternative treatment for lift constraint. The major components of this BFGS algorithm,
i.e. the Hesslan approximation and backtracking line search strategies are documented in
many references (e.g. Fletcher [14]), but two additiongl implementation regulations are
imposed. First, the line search is limited to:ma.ximun; 0 steps to avoid unnecessary iter-
ations when the objective function values become indistinguishable due to small changes
in the step size. When this occurs, the optimization is restarted using a steepest-decent
search direction. Second, after each iteration, the constraints aye checked to prevent large
violations. 7&\(\& 4 b% \{aw ’ ‘VL* 0{0 Yos d" ]-Q @ V“l"‘(\‘h Ol ¢
The other optimization algorithm is the computational package, SNOPT, developed
by Gill et al. [15]. This algorithm handles constraints by forming a modified Lagrangian
and solves for the optimal point which satisfies the KKT optimality condition. SNOPT
adopts a sequential quadratic programming (SQP) method. The search directions are
obtained from quadratic subproblems that approximatef the Lagrangian subject to lin-
earized constraints (include initially imposed linear constraints and locally linearized
constraints). Since these quadratic subproblems are formed based on the approximated
Hessian of the Lagrangian, the full memory BFGS Hessian matrix approximation is cur-
rently used. Each subproblem is solved using an active-set method [16], while during this
procesgyethe satisfaction of the linearized constraints is required. Thus SNOPT always
d, and this property is used to es-

Unless otherwise stated, the SNOPT

keeps the initially imposed linear constraints st

tablish.necessary coupling among control points

-t

packagg is used as the default optimizer.

e
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tive control points among all the candidates, we have established the following selection

criteria:

1. The number of parameters in td¢ each knot interval should remain above a cer-
tain threshold. Since the B-spline control points are locally supported, clustering

excessive control points at some region would not lead to significant improvement.

2. Local non-linear constraints such as minimum thickness, critically impact the move-
ment of control points. If a constraint is inactive, it implies that there exists a
feasible region in the design space, and adding control points at this location has a
large probability to outperform adding control points in a region with active local
constraints. Therefore preference is given to refinements which add control points

to the regions containing inactive local non-linear constraints.

3. The satisfaction of the linear constraints is mandatory. Any parametrization re-

finement violating the linear constraints is dropped from consideration.

4. If there are multiple candidates remaining after considering the above requirements,
the magnitude of the gradient with respect to the proposed new control points is
used as a measure of the potential improvement. The prospective control points

with the highest sensitivity are selected.

Second, parametrization refinement (i.e. increasing the number of design variables)
occurs at regular intervals during the optimization process, but it is hard to identify a
clear signal that triggers this procedure. Some authors [35, 4] argue that when the number
of design variables is small, relativé¥ew mmmberof optimization iterations &(*enough and
full convergence is unnecessary since these optimization cycles are only intermediate
steps. However others [48, 11] point out that the optimizations at the begfﬁ\ﬁitlg few
cycles should be driven sufficiently close to the optimal shape, so that the current shape
can provide a good start for subsequent optimizations. At the current stage, we choose

to perform well converged optimization at each cycle for the following two reasons:

1. Tt is desirable to have a small number of critical design variables. If a significant
improvement is made by existing design variables, the optimization could be ter-
minated without attempting the next cycle. Thus, optimization at each cycle is

driven toward convergence to make full use of every design variable.



Chapter 4

Airfoil Optimization

The evolutionary parametrization is applied o two-dimensional airfoil shape optimiza-
tion. In this chapter, I present the implefientation and performance of this approach
through a number of test cases. To defmonstrate its effectiveness, the same problems
are also solved using varying numbelscontml points that are uniformly placed. Here
“uniform” means that for a two-dimensional airfoil, its knot vector obeys ){the stated
cosine function, and for a three-dimensional wing, its knot vectors evenly partitions the

parametric domain. The results from these two approaches are compared and discussed.

4.1 Implementation of Knot Insertion e

Qn

The knot insertion algorithm is discussed thoroughly in previoug’chapters,/Specifically

for airfoil parametrization, some complementary discussions gidd elaboraffions are neces-
sary. The first consideration is attributed to the frozen coufrol points #t the leading @
trailing edgeS Figure 4.1 depicts a cubic B-spline parametrization of NACA0012 airfoil

séquence is schematically displayed

using 15 control points, and its corresponding knot
in Figure 4.2. In order to prevent translation and Ainrealistic leading edge radius, three
control points at the leading edge and two points at the trailing edge are frozen. In
Figure 4.1 the frozen control points are labelled by the unshaded squares and the flexible
control points by the shaded squares. As demonstrated in @hapter 2, if a new term t*
is added to (t.,%,4+1), the new control points, {d; : i =7 — 2,...,7r}, would be relocated.
To ensure the appearance of new control points not affect the frozen control points,
{d;:i=1,7,8,9,15}, the additional knot can only be inserted at the dashed knot inter-

vals. In other words, the intervals adjacent to the multiple knot in the middle are not

31
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Figure 4.2: Knot sequence

4.2.1 Case 1: Lif@onstrained drag minimization (subsonic)

wme«I}Q

The design objective is to reduee the drag coefficient (J = C}) at a Mach number of 0.25
g J

and a Reynolds number of 2.88 million in a fully turbulent flow. The lift coefficient is

constrained at 0.33, and the thickness constraints listed in Table 4.1 define the minimum

thickness at specified chordwise locations. The initial airfoil is parametrized using 15

uniformly distributed control points.

Besides the frozen points, the ordinates of the

remaining points are used as design variables. The angle of attack is initially 3.0 degrees

and it is not a design variable but adjustable to satisfy the lift constraint [53].

The optimization is terminated after adding 6 control points, because the subsequent
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3(\\"‘"' <0 1 Number of control points

¢ Figure 4.4: Objective function comparison of Case 1

provement is not gignificant. Evidenceg( can be found from theetnvergence plots listed in

Figure A.1, the initial optimality values of cycle 4 an re small, and correspondingly,

the reductions of the drag coefficient are not obvious in these cycles. In general, Thonkd

hat the optimization sequence with evolutionary parametrization gives a sys-

tematic way of selecting design variables, and its optimization efficiency is superior to

the uniform parametrization. —> é\)[,u{& 0& yd-\ VK@G&\ @?} {‘/‘«(9%
o4 Q@u‘f

. : - : «Qa,(» t w336
4.2.2 Case 2: Liff to drag ratio maximization po.u; o) Cm

This test case adopts BFGS algorithm, and its objective is to maximize the hft-to«dl ag
ratio. The baseline geometry and operating conditior§are identical to Case 1. The
thickness constraints are summarized in Table 4.2.$4itiaﬂy, the airfoil is represented by
15 control points, and the angle of attack is considered as a design variable. Since BFGS
addresses unconstrained minimization problems, the thickness constraints are included
in the objective function as a quadratic penalty term, and the objective function is
constructed as J = C‘* + wrT with the applied weight being 1.0. a

Because the thic kness constraints are handled by penalty methody, shght violation is

observed when the constraints are active. Therefore, the xg)omed lift-to~drag ratio)is a

little lower than the true value. Figure§d.5(a) and b) reveal the change of the

airfoil shape and pressure distribution. -

The scaled hft(ﬁrag T?ltlogﬁbtan?dirﬁl the proposed sequence and the optimiza-
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Figure 46 Objective function comparison of Case 2

Table 4.3: Geometric constraints for Case 3

Constraints 1 2 3

Location (¢) 096  0.99 -

Thickness (¢) 0.006 0.0012 -
Area (%) - - 0.07761

In this problem, the area constraint affects every design variable, thus it behaves as
a global constraint. The thickness constraints only influence the control points close
to them, so they are referred to as local constraints. As discussed in Section 4.1,
the parametrization refinement takes into account whether or not these two thickness
constraints are active. The optimization sequence is terminated when two successive
parametrization refinements result in negligible improvement. Figure 4.7(a) displays the
surface change and the inserted control points upon the completion of the optimization.
Figure 4.7(b) shows a comparison of the pressure distributions. The shock is completely
eliminated by the optimized airfoil.

To provide a comparison for optimization efficiency, this result is compared with a
series of optimal solutions with varying numbers of control points uniformly placed around
the airfoil. Figure 4.8 depicts the objective function (drag coefficient) scaled by its initial
value. In this figure, the consistent reduction of objective function is observed from the

optimization sequence with evolutionary parametrization. Using 21 control points, the
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Figure 4.9: Optimized geometry and objective function comparison of Case 4

0.733, and the freestream flow has a(R ynplds number of 9 x 10%. The angle of attack for

each operating point is adjusted to mieét the lift requirement. The thickness constraints

are identical to Case 3, but the area constraint is slightly modified to 0.07790(c?). &_)(M( l "‘5{4?" 0

The optimization seqﬁence starts with 15 control points around the airfoi%and termi- VH?:

nates after 4 additional control points are introduced. '@ecause of the presence of multiple e
operating points, the sensitivity analysis is adjusted to use a composite gradient magni- ok
tude to measure the potential of the prospective control points. The optimized geometry “H'\
is displayed in Figure 4.9(a), and the pressure distributions for each operating point are yé 3
depicted in Figure 4.10. To illustrate the capability of the optimization sequence, the QYLZ?'
optimal solution is compared with the results from various uniform parametrizations. In

Figure 4.9(b), it can be seen that the sequence with evolutionary parametrization sl

outperform§the conventional uniform parametrizations B'W

lem-imercages. Thus the optimization efficiency can be improved by effectively selecting

critical design variables.

Lok
(LU m!

o D et



Chapter 5
Induced Drag Minimization

The evolutionary parametrization using B-spline volumes is employed in the studies of

induced drag minimization for finite span wings. The purpose of this chapter to demon-

=

the optimal aerody-

strate that the proposed optimization sequence is

namic shape through a few test cases. Q-

5.1 Test Case Setup

o
When investigatg iiiduced drag reduction, the classical Prandtl’s lifting line theory is

considered as a benchmark for optimization results. According to the lifting line the-
ory [2], the minimum induced drag for a planar wake occurs when the lift is elliptically
distributed, and the minimum drag has the following expression:

C?
C 7nirz:'"£ 9.1
D,min = —¢ (5.1)

where C'p and Cp are drag and lift Coefﬁcient@;espectively, and A = b?/S is the aspect
ratio. The reference area, S, used to compute the coefficients and the aspect ratio in the

DO\:’} \&:N'}(A' 40 Cg@'ﬁ( L.

test cases is chosen to be the planform area.

In the following test cases, two types of computational grids are used. The first one
is a 12-block flat-plate grid which has an“H-H” topology, and the other grid is a 6-block
box wing grid. Table 5.1 summaries the details of each grid. All the spacing parameters

are stated in terms of the root chord.

41
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Figure 5.1: Planform deformation
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can be seen that the final lift distribution is close to the classical elliptical distribution
for the most part but substantially dlfferent at the tip. This phenomgnon has been 2

identified by Hicken and Zingg [20], a&dﬁey point out that the presence of th M

causes the (§rjex to release along the tip edge, which ultimately results in % nonplaniyfar
wake. Nevertheless, the purpose of this example is to demonstrate the effgctiveness of
the evolutionary parametrization. In terms of the performance of the optimal\design, the
drag coefficient is reduced from 0.006769 to 0.006606%a roughly 2.4% drop,it
The span efficiency of the final geometry is 0.9838, which is close to the efficiency of
0.988 obtained by Hicken and Zingg [20] using 15 spanwise control points. Figure 5.2(b)
compares the evolutionary parametrization with uniformly spaced parametrizations (The
optimization with 10 spanwise control points does not converge, thus it is not plotted).
The latter do not receive significant benefits from adding effective design variables, and
their performance is inferior compa,r@& to the evolutionary parametrization with the

same number of spanwise control points.

Sette gr/z(g
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parameters in this direction.

The shape deformations are depicted in Figure

- in Figure 5.4(a). To better illustrate the performs

I\W‘ a bl (’ coefficient is plotted with the number of spanwis¢ control ppints (Figure 5.4(b)). It can
(on W . be seen from these diagrams that the optimal solution using evolutionary parametrization
03 ok does not have a elliptical planform or lift distribution, and the final drag coeflicient is

qud’ (’{wfg reduced to 0.006326 which is 2.65% lower than the lifting line prediction. The deficienes~ J:
CAale A«» may be attributed to the edge separation effect and $B& numerical errors. A grid refine-
@q{'{’*‘( r~ ment study is conducted, and the resolution in every direction is increased by a factor of
\H( ’ 2.0, which generates a grid with 9.3 million nodes. The span efficiencies obtained with
@(WAM the refined grid and the coarse grid are 1.029 and 1.027; this small difference suggests
? H{:( v, that t)Q numerical errors are not the dominabé- factorg. Besides the theoretical value, the

(oosed 2

.4 . .
Q)umform refinements. The former ac.hleveSAEi.()% induced drag reduction, but the latter

Lo &

comparison is also conducted between evolutionary parametrization refinements and the

3 are unable to improve upon the result obtained with the initial parametrization, which
/Q,Q? leads to only 50% of the improvement achieved using the evolutionary parametrization .

5.2.3 Case 3: Winglet optimization

With regard to induced drag reduction, the effect offnon—planar structure has been
well recognized [29]. In this problem, the optimization sequence based on evolution-
ary parametrization is adopted to investigate an optimal spanwise vertical structure that
yields minimal induced drag. The baseline geometry is the same rectangular wing used
for the previous two test cases. The freestream Mach number is 0.5, the planform area,
S = 4/3, is considered as the reference, and the lift coeflicient is constrained at the value
of 0.35. The angle of attack is chosen such that the lift constraint is satisfied at the
beginning.
The initial B-spline volume approximation uses 7 X 5 x 6 control points for each
“block, so on the wing surfaces, there are 7 points in the streamwise direction and 5 in the

spanwise direction. The vertical coordinates of the surface control points are free to move,

e
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0 a
coupled with the corresponding leading ghd trailing edges such that the thickness of the
section is maintained. Also, to generate’ reasonable vertical structure, the control points
near the wing tip are maintained in a consistent manner. The formed winglet can be either
upward or downward with wavy surface details, but an abrupt change of angle is avoided.
This is done by defining the maximum dihedral and anhedral between adjacent control
points to be 145 and 35 degrees respectively. These relations are expressed in terms
of linear constraints, which effectively restrict the total number of degrees of freedom;
complete freedom is only given to the vertical coordinates of the control points located
at the leading and trailing edges. Consequently, the parametrization refinement occurs
along the spanwise direction, adding more effective design variables. The same restriction
on knot interval size still applies; moreover, the added stations are required to satisfy the
existing linear constraints.

Figure 5.5 shows an upward winglet produced during the optimization. The added
control points provide additional degrees.of freedom to make the winglet more or less
normal to the horizontal wing. The last two refinements fail to provide sufficient improve-
ment, so the optimization is terminated with 9 spanwise stations. The drag coefficient
is reduced from 0.006730 to 0.005835, and the span efficiency is increased from 0.9656

to 1.1137. This result is close to the performance of the optimized winglet configuration

- obtained by Hicken and Zingg [20] as they reported a span efficiency of 1.147 using 13

spanwise stations for the upward winglet. This optimization result is compared to the

optimal solutions if control points are uniformly distributedy Figure 5.6 shows that the

(k e
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5.87; it is used as th¢/reference area and constrained to this value during optimization.

The imposed lift ¢#fistraint requires a lift coefficient of 0.25, and the angle of attack is

fixed to reduce phe ¢hance of non-unique optimal designs and its value is chosen to meet

thid targetlift ‘with

The control points along the horizontal wings are allowed to move in vertical direction,

baseline geometry.

and the control points on the vertical plate are free to move in the ;})anwise direction.
The&xﬂcoordinates of control points at the horizontal wings are linearly interpolated using
the locations of the root and junction. Similarly, the*zstcoordinates of control points at
the vertical plate are scaled by the upper and lower junctions. For control points in
the same section, linear relations are established to couple them with the leading and
trailing edge. Thus only the leading and trailing edge control points have complete
freedom. In addition, to maintain the integrity of the geometry, dihedral and anhedral
angle limitations are defined between successive control points, so no abrupt bending is
allowed. At the junctions of the horizontal wings and the vertical plate, control points are
extrapolated based on adjacent sections including the points at the leading and trailing
edges. Besides these couplings, a box constraint is imposed to confine the entire geometry
within 0 <y < 3,-0.315 < z < 0.315. The parametrization refinements occur along the
span and the vertical plate, additional sections are simultaneously inserted at the upper
and lower horizontal wings as well as the vertical plate.

Figure 5.7 shows the geometry deformation at the end of each cycle. The process
is terminated because sufﬁcienkqamount of control points have been placed on the ver-
tical plate. The aerodynamic performance of diﬁ’ere_nt parametrizations is depicted in
Figure 5.8. From this plot, one can see that the optimization based on evolutionary
parametrization gains substantial benefit from the added design variables, and the drag
coefficient is reduced by a considerable amount. However, the optimization results with
uniformly placed control points do not exhibit much dependence on the enriched design

variables, and the optimization efficiency is clearly lower than the proposed sequence.

C il ey nope, Seon ot

5.2.5 Case 5: Flexible wing optimization

The last test case is an exploratory example. The objective is to use the proposed
optimization sequence to produce a wing design that minimizes the induced drag. The

baseline geometry, reference area, lift constraint and operating conditions are identical
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In this case, no effective design variables are specified,[lbut to maintain the integrity
of the grid, a series of linear constraints are imposed and or each individual degree of

freedom, upper and lower limits are specified:

1. The control point at the root section trailing edge is fixed to eliminate translational

motion.

2. The control points at the root section leading edge, tip section leading and trailing

edge are free to move in three directions.

3. The leading and trailing edge control points can move in the z and z directions,

and their y coordinates are interpolated between the root and tip points.

4. The control points at the tip can adjust in the y and z directions, and their =

coordinates are obtained by scaling the leading and trailing edgeS

The interior points and the points on the symmetry plane only have the degree

(W31

of freedom in the 2 directiongf, and their horizontal locations are determined by

interpolations among the boundaries.

< 0.22.

>
Y

T
6. The entire configuration is confined Wit}‘/{é! < 2/3, |yl < 2.2,

The parametrization refinements allow additional control points to be inserted in both
strem@ and spae directions. However, adding points close to the trailing edge
is excluded because excessive manipulations of the trailing edge would produce unsteady
flows. Besides modifying the number of control points, the upper and lower limits of
each degree of freedom are also examined at the end of every optimization cycle. If one
control point reaches;:éertain bound, it is released in the next cycle to provide additional
freedom. As aresult, this optimization sequence gradually increases the number of design
variables and progressively releases the beunds-ef constrainty{. bousds, > Dges +ah

The shape deformations at the end of each optimization cycle are shown in Figure 5.9,
and the performance of the geometries is summarized in Table 5.2. The large drag
reduction occurréﬁt\in cycle 1 is mainly due to the increase of the span and the generation
of the nonplanar geometry. Upon the completion of cycle 1, the drag coefficient decreases
by 41.7%. The following cycles introduce two control points in the spanwise direction
and two points in the streamwise directions. The appearance of these additional design

variables reinforces the vertical structure so that the nonplanar effect becomes more

@w%‘fkdﬂ
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(a} Initial shape ’ . (b) cycle 1

(c) cycle 2 (d) cycle 3

(e) cycle 4 (f) cycle 5

Figure 5.9: Shape changes of the flexible wing optimization
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sistent feature that the proposed strategy effectively capturgs critical design variables,
and the optimal solutions are gradually improved as the sef of design variables enlarges.
Comparison examples with uniform parametrizations arg also provided for most cases.
In airfoil optimization problems, uniformly increasing the number of control points can
normally improve the design objective, but the benefit{is not as significant as the evolu-
tionary parametrization refinements. For induced dragfreduction cases, the optimizations
using evenly distributed control points do not exhibit kstrong dependence on the number
of control points( while the results frorr;‘évolutionary parametrization clearly indicates

b He A
substantial g parrﬁ 111%&11 objective is-aecompiished: HAlnsag

6.1 Future Work MM&#W ‘\(\7‘:

6.1.1 Automation

The current process is not fully automated since the implementation of parametrization
refinements and the termination conditions still requires experimentation and tuﬁnno
Since sensitivity analysis can only plOVlde&local measure of the potential of a design
\cLI‘ldbl% Atore general treatment is necessary to utilize sensitivity analysis and design

constraints.

6.1.2 Evolutionary parametrization with adaptation

The linear couplings among control points sometimes prevent adding essential control
points or restrict the performance of the additional control points. As presented in the
exploratory case of a flexible wing, inequality relations with adaptive bounds may provide

_more freedom to the optimizer and enhance the 1mpa<‘t of the mtrodu( ed design variables.
T foutt Yook ymdem/«%nc Cuougt d Sf?gs /m,sen#eéo%ls
&7 ls Se \«%

6.1.3 Multiple insertions e P(,,u?

In the presented test cases, except the box-wing optimization, the optimization sequence
introduces one point or one section for each refinement. However, for complex configu-
rations, adding multiple control points is a necessary procedure. The current sensitivity
analysis is constructed to test every possible insertion, and this becomes infeasible as

multiple control points are inserted at a time, the number of combinations increases
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A.1 Airfoil Optimization
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Figure A.1: Convergence kistor& or airfoil optimization case 1



APPENDIX A. CONVERGENCE HISTORY

Cycle 1
1078
z
g
2107
o)
107
0 20 40
Number of iterations
Cycle 4
1079
=
E
E 107
o
107
0 2 3
Number of iterations
Cycle 7
107
z
E
2107
[¢]
107
) 20

40 Y
Number of iterations

Figure A.3: Convergence

Cycle 2

Optimality

10

20
Number of iterations

Cycle 5

40

1
&

o

L

Optimality
=

0 40
Number of iterations

Cycle 3
1079
=
E
E 107
o
1079
0 10 20 30 40
Number of iterations
Cycle 6
107
k=
£
B107
O
1079
0 25 30

10 15 20
Number of iterations

istory 'I)or‘ airfoil optimization case 3

65



APPENDIX A. CONVERGENCE HISTORY

Cycle 1 Cycle 2 Cycle 3
1079 107 1073
£ 2 2z
E10 E10 1o
<3 B B
(o] o Q
107 107 107°
0 10 20 40 50 0 10 20 30 40 50 0 5 10 15 20 25
Number of iterations Number of iterations Number of iterations
Cycle 4 Cycle 5
107 107
z Z
= kS|
£ 107 g 107
& &
10° 1077
0 10 20 30 40 50 60 0 40
Number of iterations Number of iterations
Figure A.6: Convergence History for planform and twist optimization
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