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Appendix A
Convergence Historye$

For BFGS optimizer, the convergence histor?\%re depicted in terms of the magnitude
of the gradient. For SNOPT, the convergence measurement is closely related to the
KKT condition. The gradient of the Lagrangian is required to be sufficienf§f$mall at
the convergence, thus an optimality value defined by the magnitude of this gfadient and

Lagra.ngi@1 multipliers is used to represent the convergence history.



REFERENCES 60

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

N. Marco, J. Desideri, and S. Lanteri. Multi-objective optimization in@@by genetic
algorithms. Technical Report 3686, INRIA, 1999.

M. Martinelli and F. Beux. Multi-level gradient-based methods and parametrization
in aerodynamic shape design. Furopean Journal of Computational Mechanics, 17(1-
2):169-197, 2008.

S. Mistry, H. Smith, and J. Fielding. Development of novel aircraft concepts to re-
duce noise and global warming effects. In 7th AIAA Awiation Technology Integration

and Operations Conference, Belfast, September 2007.

B. Mohammadi. A new optimal shape design procedure for inviscid and visous
turbulent flows. International Journal for Numerical Methods in Fluids, 25:183—
203, 1997. ‘

B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids, Numer-

ical Mathematics and Scientific Computation. Oxford University press, 2001.

A. Morris, C. Allen, and T. Rendall. High-fidelity aerodynamic shape optimization of
modern transport wing using efficient hierarchical parameterization. Int. J. Numer.
Meth. Fluids, 63:297-312, 2010.

S. Nadarajah, P. Castonguay, and A. Mousavi. Survey of shape parameterization
techniques and its effect on three dimensional aerodynamic shape optimization. In
ATAA-2007-3837, 18th AIAA Computational Fluid Dynamics Conference, Miami,
FL, 25-28 June 2007.

M. Nemec and D. W. Zingg. N ewtonﬂqylov algorithm for aerodynamic design using
the QQ\?.Vierétokes equations. ATAA J., 40:1146-1154, 2002.

M. Nemec, D. W. Zingg, and T. H. Pulliam. Multipoint and multi-objective aero-
dynamic shape optimization. ATAA J., 42:1057-1065, 2004.

A. Oyama, S. Obayashi, K. Nakahashi, and N. Hirose. Aerodynamic wing optimiza-
tion via evolutionary algorithms based on structured coding. Computional Fluid
Dynamics Journal, 8(4):570-577, 2000.

Joyce E. Penner. Awiation and the global atmosphere: A special report of IPCC
Working Groups I and III in collab. with the Scientific Assessment Panel to the



REFERENCES 58

[10]

[17]

[18]

[19]

[20]

J. Desideri, B. Abou El Majd, and A. Janka. Nested and self—adaptive@ezier parai-
eterizations for shape optimization. In International Conference on Control, Partial

Differential Equations and Scientific Computing, Beijing, China, 13-16 Sept 2004.

R. Duvigneau. Adaptive parameterization using free-form deformation for aerody-

namic shape optimization. Technical Report 5949, INRIA, 2006.

R. Duvigneau, B. Chaigne, and J. Desideri. Multilevel parameterization for shape
optimization in aerodynamics and electromagnetics using a particle swarm optimiza-
tion algorithm. Technical Report 6003, INRIA, 2006.

G. Farin. Curves and Surfaces for Computer Aided Geometric Design - A Practical
Guide. Academic Press, Boston, 1990.

R. Fletcher. Practical Method of Optimization. John \@ & Sons Ltd., 2000.

P. Gill, W. Murray, and M. Saunders. Snopt: Angag algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12:979-1006, 2002.

P. Gill, W. Murray, and M. Saunders. Users guide for@ version 7: Software
for large-scale linear and quadratic programming. Technical report, Department of

Mathematics, University of California, San Diego, La Jolla, CA, 2006.

J. Hicken and D. Zingg. Integrated parametrization and grid movement using g—
spline meshes. In 12th ATAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, number ATAAC2008C6079, Victoria, British Columbia, Canada, 2008.

J. Hicken and D. Zingg. An investigation of induced drag minimization using a
parallelwzwton#&rylov algorithm. In 12th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, number AIAA-2008-5807, Victoria, British Columbia,
Canada, 2008.

J. Hicken and D. Zingg. Globalization strategies for inexact&éwton solvers. In
ATAA 2009-4159, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas,
22 = 25 June 2009.

J. E. Hicken and D. W. Zingg. Induced-drag minimization of nonplanar geometries
based on the ‘éﬂer equations. ATAA J., 48(11):2564-2575, 2010.



CHAPTER 6. CONCLUSIONS 56

abruptly. Therefore, further investigation is required to establish the selection criteria

for thultiptetomtrotpomss insertiony a¥ V\wl‘mf‘ lo ._,MQ ? °;L'h .

6.1.4 Alternative parametrizations

There exist.;" a large variety of geometry representation techniques for aerodynamic con-
figurations. Many of them possess the flexibility to produce multiple parametrizations.
Thus, the proposed optimization sequence can be naturally extended to these methods,
and the unique properties associated with each parametrization method would result in

different implementations and applicability for each individual case.

6.1.5 Multilevel optimization

The existing process defines the parametrization refinements as an optimization proceeds.
One can also predetermine several different parametrization levels, and adopt multigrid
strategies (e.g. “V” cycles) to perform an optimization among different parametrization

levels.
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Chapter 6

Conclusions

insertion method provides the capability of changing the number and the distribution
of control points without modifying the shape of the existing configuration. Thus, the
B-spline parametrization associated with multiple knot insertions defineg an evolutionary
parametrizatiog so that an aerodynamic configuration can be represery(ith Aarogressi\fel}f
increasing\cox?trol points. o QQ.,\MA@ <

For aerodynamic shape optimization{, ‘design variablkgs are normally defined by ge-
ometry parametrizations. With B-spline formulations, the 1 s of control points are
regarded as design variables. Therefore, t‘he——p'rerseng'e"-\atevolutionary parametrization

allows flexible design variables for a shape optimization problem. Taking advantage of

this feature, a new optimization strategy is proposed. It organizes a design problem as a
sequence of optimizations with the number of design variables gradually increasdtj‘The
added design variables are systematically selected through sensitivity analysis and other
criteria such that they significantly affect the subsequent optimal solutions, I‘n order to
achieve ideal optimal solution with a minimum number of design variables, At the end of
each optimization, a series of termination criteria are employed to examine performance
of the optimization sequence, and the enrichment of the parametrization occurs only if
it is necessary. 'Mr b (Q“J ‘1‘3 Dﬂ/ﬁ‘@’,ﬁﬂ‘&m@,

The proposed optimization sequence is applied to airfoil optimization and induced

drag minimization test cases in {haptexX4 and 5. The optimization results display a con-
g p | p
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Table 5.2: Flexible wing optimization

Cycle | Number of streamwise CPs Number of spanwise CPs Drag coefficient
Initial ) ) 0.009412
i 6 5 0.005487
2 6 6 0.005248
& 7 6 0.005097
4 7 rf 0.004739
5 8 (4 0.004219

' o
prominent. Moreover, sectional variations are also €ggravated) Acomplex twisted shape
emerges at the region close to the wing tip. Besides the effect of new control points,
. As

can be seen from the planform shape of cycle 2 to 5, the chord lengths near the w\ng

the planform variations are primarily due to releasing the bounds of the constrain

tip progressively increase, while the root chord continuously decreases. From cycle 2{to
cycle 5, the drag coefficient is further reduced by 13.4%; this figure demonstrates that
the optimization with evolutionary parametrization refinements is effective in produfing

efficient aerodynamic designs, and its benefit can be rather significant.

M%@WKV@@&}J

\$ 5‘\‘\\ hmws u\“&:ﬁm ﬁ@lw-@*?

&“ Cobv@ﬁf'%“ ,% A
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(a) Initial shape (b) cycle 1

(e) cycle 4 (f) cycle 5

Figure 5.7: Shape changes of the Box-wing optimization
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Figure 5.8: Box-wing optimization

to Case 1. The initial parametrization places 6 control points in the streamwise direction
and 5 in the spanwise direction on the upper and lower surfaces of the wing. In order to
reduce the possibility of multiple optima, the angle of attack is constrained to 3.939685

degrees which generates the target lift coefficient with the baseline configuration.
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(a) Initial shape (b) cycle 1 (c) cycle 2
I _,al:f ,tlzf
(d) cycle 3 (e) cycle 4 (f) cycle 5

Figure 5.5: Winglet formation
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Figure 5.6: Winglet optimization

optimization sequence based on evolutionary parametrization reaches a better optimal

solution with fewer design variables.

5.2.4 Case 4: Box-wing optimization s

Another popular nonplanar geometry for induced drag reduction is a box-wing. In this
test case, a box-wing configuration is optimized using’optimization sequence with evolu-
tionary parametrization. The baseline box-wing geometry has a semi-span of 3.0, a chord
length of 1.0, and NACAQO012 sections. The initial height to span ratio is 0.105. The
mentioned 6-block grid is adopted, and it is initially approximated using B-spline vol-

umes with 9 control points in the streamwise direction and 5 in the spanwise and vertical
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(a) Initial planform (b) cycle 1

(c) cycle 2 (d) cycle 3

=l
(e) cycle 4 (f) cycle b
Figure 5.3: Shape changes of the planform and twist optimization
\(\Ns\ﬂ . and a box constraint is imposed to confine the entire geometry within —0.2 < z < 0.2. To
Wvok prevent excessive degrees of freedom, interior control points at each spanwise station are

W
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5.2.2 Case 2: Planform an(b twist optlmlzat on

: long oes not achieve

As indicated in the work by Liersch A[31] an elliptical pla?ﬂnn
minimum induced drag, and additional twist is beneficial.”The secomd test case is to in-
vestigate an optimal shape by varying both the planform and twist. The initial geometry
is the same unswept rectangular wing used in the previous problem. The reference area,
lift constraint, and the operating Mach number are also identical. The upper and lower
surfaces of the wing are parametrized using 7 control points in the streamwise direction
and 5 control points in the spanwise direction. The angle of attack is used as a design
variable, its initial value is 3.94321hich makes the baseline geometry satisfy the lift
constraint. fres

Different linear constraints are imposed to allow the planform and twist to vary. At
each spanwise station, control points are limited to rotations and scalings defined by the

leading edge and trailing edge:

T —TrE . cos(By) —sin(By)| [xrE — T1E

k - 7
Z—ZLE sin(fr)  cos(B) 2TE — 2LE

k k

—\/(ﬁcta

2rp)/(z — zrE)]. In order to reduce the effect of a nonplanar , the trailing edge is

Here k is the index of a spanwise station, 1, = |[x—2z1g|/|xre—2LE|, and Gy

fixed. Also, to prevent generating a winglet, th@coordinate of the leading edge at
the wing tip is constrained to be the same as its neighbouring points, and the bending

angle of two adjacent spanwsie station is restricted within 20 degrees. As a result, the
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Table 5.1: Grid parameters

Grid Blocks  Nodes off-wall leading edge trailing edge tip  off-symmdtry
Flat-plate 12 1158300 0.0025 0.0025 0.0025 0.002 0.01 )
Box-wing 6 602258  0.002 0.002 0.002 - 0.01 '

5.2 Test case ,’

)
5.2.1 Case 1: Planform optimization )
A typical method to achieve minimum induced drag is to vary the planform shape, i.e. :
change chord lengths at a few spanwise stations. The flat-plate grid is approximated 2

using B-spline volumes, and the initial geometry is constructed to be a rectangular wing
with a uniform chord of 2/3, a semi-span of 2, and NACA0012 sections. The chord and
span are non-dimensionlized by the chord length of the flat-plate grid. The planform
area, S = 4/3, is used as the reference area, and remains fixed during the optimization.
The freestream Mach number is 0.5, and the lift coefficient is constrained at 0.35. The
initial parametrization for each block is 7 x 7 x 6. In other words, on the wing surface,
there are 7 control points in the streamwise and spanwise directions. The angle of attack
is considered a design variable, and it is initially 3.367799 degrees, which produces the
target lift coeflicient with the baseline geometry.

To perform an optimization through planform variation, all the control points except

the ones on the trailing edge are free to move in the streamwise direction, and the entire

trailing edg¢ xed to reduce the impact of a nonplanar wake. The leading edge control

points possessgcomplete degrees of freedon@other interior points are coupled with the
leading edge control points to provide a scaling once the leading edge changes. Therefore,
the initial effective design variables are the 7 chord lengths and the angle of attack. One
additional box constraint is imposed to confine the wing within —0.5 < z < 0.5. The
parametrization refinement is formulated such that more spanwise stations are added,
t&enoeg the the number of effective design variables gradually increases. By experience,
each knot interval is required to maintain at least 15% of the total number of parameters
in the spanwise direction, so that the B-spline control points lie sufficiently far apart.
Figure 5.1 shows the planform deformation at each optimization cycle. As % more

spanwise stations are added, the geometry approaches a crescent shape with decreasing

chord lengths along the span. The lift distributions™are plotted in Figure 5.2(a), and it

T Jont e 3 T ol M‘ﬁ(‘
A Ceaf s
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Figure 4.10: Pressure distribution for each operating point
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Figure 4.7: Optimized geometry and pressure distribution of Case 3

proposed optimization sequence is able to reach an optimal solution that is comparable

to the result obtained using 27 design variables evenly around the airfoil. "k
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Table 4.2: Thickness constraints for the Case 2

Thickness constraints 1 2 3 4 5 6 7
Location (c) 0.06 035 065 075 085 0.95 099
Thickness (¢) 0.04 0.11 0.04 0.03 0.026 0.012 0.002
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(a) Optimized geometry (b) Pressure distribution

Figure 4.5: Optimized geometry and pressure distribution of Case 2

tions with uniform reﬁnement{ are shown in Figure 4.6. The scaling factor W is the lift-
to-drag ratio of NACAQ0012 airfoil. The optimization with evolutionary parametrization

terminates at the end of cycle 6, due to the fact that all the thickness constraints are

considered. Th(z performance of the optimization sequence confirms its efﬁciency@* n-

troducing e&éﬁt‘-’xﬁecontrol points. The optimal lifft Irag ratio is obtained after adding

5 design variables. The gradient historriesare included in Figure A.2, and it can be seen

that BFGS converges rather sleser than SNOPT, so the primary optimizer used in this

work is SNOPT paekage. "¢ Sy

4.2.3 Case 3: Lif@onstrained drag minimization (transonic)

In this test case, the drag coefficient is minimized in a transonic turbulent flow. The
freestream flow has a Mach number of 0.74 and a Reynolds number of 2.7 million. The
lift coefficient is constrained to be 0.733, and the geometric constraints contain area and
thickness constraints (Table 4.3). The baseline shape is the RAE2822 airfoi@which is
parametrized by 15 control points initially. The treatment of angle of attack is the same
a.stase 1.

(w
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Table 4.1: Thickness constraints for the Case 1

Thickness constraints 1 2 3 4 5 6
Location (c) 0.05 035 065 0.85 095 0.99
Thickness (¢) 0.04 0.11 0.04 0.026 0.012 0.002
0.2 -15
0.15
0.1
0.05}
> ot
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- - -Final design - - -Final design
02502 o4 ) 06 08 1 % 02 04 } 06 08 1
(a) Optimized geometry (b) Pressure distribution

Figure 4.3: Optimized geometry and pressure distribution of Case 1
]
parametrization cycles fail to provide an improvement ¢n the objective function. Fig-
ure 4.3(a) displays the surface modification and the inserted control points upon the
completion of the optimization. Figure 4.3(b) shows the comparison of the pressure
distribution. \“J

To compare the performance gt the optimal solution using evolutionary parametriza-
tion with the results obtained ffom uniformly refined parametrizations, Figure 4.4 plots
the scaled objective function yalues versus the number of control points. The scaling
factor is the drag coefficient ofINACAQ012 airfoil. From this figure, a few typical features a‘{'
of the proposed optimization sequence can be identified. First of all, it is eﬁicientm
critical control points. In this problem, the optimization sequence achieves a reduction
of 5.96% in drag coefficient using 21 control points, but the same amount of improve-

ment requires 33 control points if they are uniformly distributed. Secondly, in theory,

there are infinitely many parametrization refinement options, but the proposed sensi-
tivity Compa.risonSare only carried out using finite number of candidates. It is possible
that the selected refinement has a relatively large gradient among all candidates, but its

absolute magnitude is still small. Therefore, it is close to a local optimum, and the im-
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permitted for knot insertions.

Apart from the restriction caused hyf the fixed control points, the thickness constraints
imposed at certain chordwise locations play a significant role in the knot insertion algo-
rithm. Take the minimum thiclfiess constraint displayed in Figure 4.1 as an example.
This particular constraint defifes the minimum distance between two surface grid points,
s; and s9. Projecting these #wo points on the parametric domain using Eq. 2.13, one can
identify the knot intervals’they reside (Figure 4.2). If the thickness constraint is active,
it implies that the current design of this particular portion of the airfoil is on the edge
| of the design space. Thus introducing a new control point at this location has a large
probability of redundancy. On the other hand, if the thickness constraint is inactive, it
releases a signal that there exists a feasible region in the design space, and additional
degrees of freedom may result in a better optimal solution. For the following test cases,

two treatments of thickness constraints are employed: [
&

1. If a thickness constraint is active, avoid knot insertion at the interval where the

thickness constraint belongs 6. o

2. If a thickness constraint is inactive, insertfngvknot at the interval where the con-
straint resides and its adjacent intervals is preferred. The inclusion of the neigh-
bouring intervals is effective since /(cth order B-spline control points supports k knot

intervals. A

Sg%,q\\/] Msﬁ‘p@in‘c, Qs mentioned in the selection criteria, to avoid accumulation of con-
trol points, the size of the knot intervals should be restricted. In the two-dimensional
airfoil optimization problems, the minimum size of a knot interval is set to be 5% of
the parametric domain. This number has been tested in numerous experiments, and the

results indicate that it works well for airfoil optimization problems.

4.2 Test Cases

In the following test cases, the NACA0012 and RAE2822 airfoi]@ure used as the baseline
geometries for subsonic and transonic problems respectively. The adept@éd computational
grids have a “C” topology wﬁth 289 nodes in the streamwise direction and 65 nodes in
the normal direction. The normal off-wall spacing is 2 x 107% chord, the surface spacing
at the leading edge and trailing edge are 5 x 10™* chord and 1 x 1072 chord, the distance
to the far-field boundary is 24§ chordg, (:rsfujﬂlh‘/} ) aud
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2. One selection criterion uses the magnitude of the sensitivity as a test of different
parametrization refinements. This is only valid if the optimization is fairly well

converged.

Moreover, terminating the optimization process also requires a criterion. As pointed
in the work of Zingg et al. [54], the benefit of introducing control points after a certain
threshold is marginal. Thus, this process is terminated if significant improvements are
not achieved by adding further design variables. Other termination conditions are also

posed; they will be stated in the test cases.
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Figure 3.1: Optimization sequence with evolutionary parametrization

3.3.4 Optimization sequence

gn
Having all the numerical 1711tmes available, an automated optimization process can be

established with the aid of‘evolutionary B-spline parametrization. Since this evolutionary
parametrization is able to produce consistent geometry representations as the number
of control points gradually increases, the proposed process is execyked in a progressive
manner (Figure 3.1) : initially, an optimization is started with relati‘@“ﬁ-.w control points;
once it converges or is close to convergence, the geometry parametrization is refined and
the next optimization begins with more control points based on the obtained geometry.
This procedure repeats continuously until the final termination. To clearly present the
results, each time, finding an optimal geometry is regarded to be a completion of an
optimization cycle.

Although this optimization process is carried out following a straig}@rward se-

quence ’i'here are still some questions to be addressed during a practical implementa-

?
tion. First, the knot insertion algorithm can be performed at different knot intervals,

so the additional control points can be placed at various locations. To choose the effec-
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3.3.3 Optimization algorithm

(m Once an objective function and its gradient are properly deﬁnecbdn optimization

problem of the following form can be posed:

min  J(X) ‘ i
wrt X ~2 Lot ™ | e&\
b':k = &bewc

subject to Cy(X) <0, i=1,...,N, d e%, L
)

where C;,i = 1,..., N, representy the imposed constraints. The presence of constraints has
bkgs significant impact Ggthe optimization problems. Here, a summary of commonly
used constraints in aerodynamic shape optimization is given.

W For two-dimensional airfoil optimization:

e Lift constraint: the airfoil should maintain a specified lift coefficient during an

optimization

e Thickness constraint: the airfoil thickness should exceed specified minimum thick-

nesses at some stations

e Range thickness constraint: the maximum thickness of an airfoil should exceed a

specified value among a group of chordwise stations

o Area constraint: the enclosed area by the airfoil should exceed a specified minimum

value
@ For three-dimensional wing optimization:

e Lift constraint: the wing should preserve a specified lift coefficient during an opti-

mization

e Projected/surface area constraint: the wing should maintain a specified projected/wetted

area

e Volume constraint: the@ume by the wing should exceed a specified

minimum value

e Linear constraints: some linear relations for’ the surface control points coupling

should bedf2~
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tive function. In this section, the formulations of objective function, gradient evaluation,

optimization algorithm and sequence with an evolutionary parametrization are discussed.

3.3.1 Objective function

To evaluate the performance of a particular geometry, aerodynamic coefficients are usu-
ally referred to as a quantitative measure. Thus, the objective functionEf{ is commonly
formed by two basic coefficients, lift and drag coefficients. For instance, J = Cp or
J = Cp/Cyp. Because the coefficients are obtained by integrating the pressure and
stresses around the geometry, the objective function clearly depends on the flow solu-
CQ\\’”\‘\ tion. Moreover, the current treatment considers the angle of attack as a design variable,
and the angle of attack determines the direction in which the lift and drag components
C esolved. Therefore, the objective function also explicitly depends on design vari-
mtg J;khe coordinates of grid points affect:t the calculation of integrals, so they
also appear inobjective function. In general, {fpbjective function can be represented as

J = TJ(Q,X, G\, where X and G are design variables and grid pointda cm.-,j,u;(‘-s

A
3.3.2 Gradient evaluation

To derive the proper form of the gradient, two approaches are considered. The first
approach is developed by Nemec and Zingg [41}, it adopts the well-known discrete adjoint
method [27], and treats the sensitivity of the grid points implicitly. The final form of the

gradient with respect to the design variables is given by

G4 0T rOR

"X~ X T¥ax A OQ (36)

dR]" 871" .

5a) * o) and G

where, 07 /0X and 0J/0Q are easy to compute either analytidally or using)\ finite dif-

ferences. OR/0X wjheterrn implicitly contains the sensitivity ¢f grid points it is also

evaluated by finite differences. However, as pointed by Truong [51], if a sophisticated

grid perturbation algorithm is employed, computing this partial derivative is expensive.

Therefore, this approach is only used with the algebraic grid movement. Finally, OR/0Q
is the flow Jacobian, and Eq. 3.7 is solved using the GMRES linear solver [41].

The %Zér approach is developed by Truong et al. {51])\Hicken and Zingg [18]. It

h

extends the¢ previous discrete adjoint approach and explicitly expresgithe grid sensitivity

eod S
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repfesents the shape change, and § is the ng

airfoil surface. The normalization factor is the total arcleghgth from the airfoil surface to

ralized arclength from the
pe
C%‘SM the outer boundary, so the grid boundary is preserved during a perturbation.

% In three-dimensional wing optimization probleps, the shape change is more drastic.
I Y Hicken and Zingg [22] develop a semi-algebraic‘which first moves the B-spline control

mesh using a incremental linear elasticity method [51], and regenerates the computational

grid based on the perturbed control mesh afterwards. The linear elasticity equations are

g
‘{g discretized using a finite element method, the result&t&meah movement residual equation

Lobhals

(3.2)

is given by

rl) = r@(p® pli-b)
= KO(bW - b=y — 0 =1,

where r¥ is the residual, K? is the stiffness matrix whose eleffients are defined by the
spatially varying Young's modulus7 TheYouressmodulus is determined by the volume
and distortion of each element, b are the control points vector, and f¥ is the discrete
force defined implicitly by the displacements of the surface and boundary control points.
This entire procedure is done in m increment@for the optimization examples presented

in this thesis, m is fixed to be 5.

3.2 Flow Solver

A hig@delity flow solver is used to evgluate the aerodynamic performance of the ex-
isting geometry. For a two-dimensiona} airfoil, an efficient Newton-Krylov ﬂowﬂ solver
Wwds developed by Nemec and Zingg [41] solvi@g the discretized Reynolds-averaged Navier-
Stokes equations with Spalart-Allmaras turbulence model. The governing equations in
conservative form are given by
0oQ OJOE OF JOE, OF,
T = + =
ot dr Oy oz Ay

T

(3.3)
where Q = [p, pu, pv, e]’ are the conservative variables, E and F are the inviscid
fluxes. E, and F, are the viscous fluxes. The governing equations are simplified usingu*
thin-layer approximation and transformed to computational ggfl by incorporating metric
terms @e the by Pulliam and Zingg for details). T'he second-order centred

ﬁnir@fference s¢gheme is used fox;ﬂspatial dicretization, and fthe temporal derivative is

wsU e e
- V} K&"‘\" L’VW, ?u&m, W@n%%
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I

e‘ . | 'Jf/

(a) initial control points (b) refined control 1501111%5

Figure 2.9: Parametrization refinement of B-spline volumes. The white spheres in plot
(a) are the original control points and the read spheres in plot (b) are the refined control

points.

To form an evolutionary parametrization, B-spline volumegshould be constructed with
different 11umbe1§of control points. From Eq. 2.21, one can observe that the edge knot
vectors are spatially invariant; this implies that the knot insertion algorithm for B-spline
curves is still applicable to these edge knot vectors. Since the grids used in this work
consist of hexahedra, once the four edge knot vectors in the same direction are refined
simultaneously, all the other knot vectors in this direction can be subsequently refined
using Eq. 2.21. Hence, by re-solving the least squares problem, a new B-spline volume
can be established with a refined control mesh. Referring to the local support property
of the B-spline formulation, only some of the control points will be altered on the edges,
which implies that the change to the control mesh will be limited to the corresponding
sections. Figure 2.9 illustrates a control mesh refinement of a rectangular wing in the

spanwise direction (one more section is added).
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(a) initial parametrization (b) refined parametrization

Figure 2.7: B-spline parameterization of the NACAQ012 airfoil. Plot (a) depicts the
parametrized surface and control points; plot (b) shows the refined parametrization with
the additional control points.

e

multi-dimensional sppte and it inherits all the geometric properties from B-spline curves.

In the discussion of/B-spline volume formulation, emphasis is given to the approximation
of the computational grid and the implementation of the knot insertion algorithm.

The B-spline volume parametrization defines a mapping from a parametric space,
{€=(&n, Q) eR’:(&n,¢) €[0,1]} to the physical space {X(€£) € R®}. The tensor

product representation is given by

n; Ny ng

X(S) = Z ZZ dlﬂ» M,Pz<§) /\/;lpj (77) Nk,Pk (C) (2-18>

i=1 j=1 k=1

Here, the B-spline volume X(€) , and the control points, dijk‘; have analogous charac-
teristics to the B-spline curve and control points. However, the mapping parametery &
is defined using a traditional chord length parametrization for the purpose of approxi-
mating structured multi-block grids. The basis functions are defined separately for each
parameter. Theoretically, the orders of the basis functions are independent for different
parameters, but in practical applications, the order of polynomial basis functions is usu-
ally set to be the same for each parameter to maintain the same continuity condition.
Hence, the order of the basis functions is denoted by p for the rest of th® work. The
computation of the basis functions still refers to the recursive definition but with spatially

varying knot vectors. Taking basis functions in the ¢ direction as an example, they are
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2.2.5 B-spline curve approximation ModAr?

oy &
In the contgxt o} aerodynamic shape optimization, the baseline geometry is usually not
defined ¥
Therefore, convert*Phis representation into B-spline form is €k preliminary ofmmropti-

B-spline formulation, but in terms of the coordinates of surface grid points.

nmgation. In this section, the procedure of representing a given airfoil with d]‘l 4th-order
open B-spline curve is outlined. ‘ OQWML

The first essential factor is the choice of the patameter that maps % each surface
point on the airfoil to the parametric domain. As d 1 in the work of Kulfan [30], for

an airfoil with Around nose, the following centripetal parametrization [13] gives desirable

sults,e A
results, ot SQW
£ =0 (2.12)
5._”‘”'1“'_15\/5— i—9 N (2.13)
J LT Lt m J =4t =

where N is the total number of surface points on the airfoil, L,, is the segment length

between successive points, and the normalization factor, Ly is given by

N—1
Ly =Y +/Ln (2.14)
m=1

The above mapping defines a parametric domain, £ € [0,n —k — 1]. The construction
of the knot vector also significantly impacts the quality of an approximation. Many
authors [50, 26] have experimented with different choices. The cosine function adopted
here turns out be a good compromise between robustness and accuracy:

,

0 1<i<k
noboL [1 - cos (i m)] k1< e

ti=q ==l nibol < < nthtd (2.15)
[ —oos ()] 2 s
n—k—1 n+l1<i<n+k

\
Note the multiple knots appearing at the middle of the knot vector; they ensure one
control point is placed at the leading edge of the airfoil. However, because the multiplicity
of a knot decreases the continuity of the associated curve, the continuity reduction at

the leading edge is unwanted. To overcome this problem, two adjacent control points
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(a) Convex hull for a curve segment (b) Convex hull for the entire curve
Figure 2.5: Convex hull property
computed as follows:
k—1 k—1
L Ne=— L N =T N (2.4)
d¢ b — 1 tivk —tisr

Substituting these derivatives#® the curve equation, the derivative of a B-spline curve is

formulated by
—1
ZMH k=l (dit1 — di) (2.5)

H—k - tz+1
Observing the above equation, a dlrect consequence can be drawn for a open B-spline
k—1
—(da — ),

tk‘%l_tr’

ﬁ(dn ~ dp_1). Considering the fact that these two end points coincide with

the fnst and last control points, thus the B-spline curve is tangent to (dz — dy) and

(Ao —dur). [t B ﬂ(jm icane?

curve: the derivatives of the starting and end points can written as

2.2.4 Knot insertion

So far, a B-spline curve is defined, and its control points are normally chosen as design
variables in an optimization problem to govern the shape deformation. In order to form a
hierarchical parametrization suitable for multilevel optimization, a B-spline curve should
be defined Withoﬂexible number of % control points, and its shape should be preserved if
the number of (on’tx ol points changes. This reqmrement is accomplished through inserting a»
additional 1 uixbthe knot vector.

Inserting la new knot obeys the following procedure. Denote the new set of con-

trol points With a superscript *, if a knot ¢* is added to (¢,,t,41), the new control points

-4



CHAPTER 2. B-SPLINE PARAMETRIZATION 12

7 . — . . — ;
—B-spline curve e 4
gl Control point 09
08
5_
07
5
4t 5 06
> Sos
3r 0
§ 04
2r 03
/
0.2
1
0.1
O 1 L Il 1 1 0 4 ¢ N , i A
1 2 3 4 5 6 0005 019 0.39 0.61 0.81 0.95 1
X Knot vector
{a) B-spline curve (b) Basis function

Figure 2.3: An open B-spline curve and its basis functions

2.2.2° B-spline control points and curves

A B-spline curve can be written as a linear combination of basis functions weichted b
g y

proper control poin

1
X(&) =D diNi(6) (2.3)
i=0
where X represents the B-spline curve, and the coefficient vectors, {d; :i=1,...,n}, are

the coordinates of the control points. Since the parametrization in aerodynamic shape
optimization extensively uses open B-spline curves, therefore, the following discussion
focuses on open B-spline curves, and the boundary problem of the knot vector is resolved
by placing repeated knots at both ends. Figure 2.3(a) and Figure 2.3(b) display a 4th-
order open B-spline curve and its basis functions. 6 e ‘H'\ apo < ’*kf ILAA vedse.

B-spline curvel passess# many favourable properties that can be used to construct a
desired geometry. Some of them are Adirect consequence of the bel_);wﬁl{s of the basis
functions. e ¢

e An open B-spline curve passes through the two end control points d; and d,,. This
is due to the fact that the two basis functions at each end of the parametric domain

have the value of unity, thus Eq. 2.3 is reduced to X(¢ = 0,1) =d;,i = 1, n.

e Changing the position of a particular control point affects the shape of the B-spline

curve locally. Since a control point is the coefficient of its corresponding basis



CHAPTER 2. B-SPLINE PARAMETRIZATION 10

Nis
SN
JV].,4 Mz,4
VAN AN
NI,B NQ.S s
SN NS N
2 N < N4 2

SN NS NN
Nl,l N?,l -/\/:"),1 N4,1 MS,I

towy Bte) [ty el [t N

Figure 2.1: Schematic representation of the recursive relation

2.2 B-spline Curve

; 3 B . . .
A planar B-spline curve, {{ € R — X € R?}, is the simplest geometry representation
using B-spline approach, but it is effective to describe a two-dimensional object such as
an airfoil. In this section, some critical B-spline properties are introduced in the context

of a planar B-spline curve, but they also hold in a more general situation.

2.2.1 B-spline basis function

B-spline basis functions are polynomials of order k defined in a parametric space by the

following recursive relation:

it 4, <6<y
Nia(€) = 1 $Stn (2.1)

0 otherwise

_&7h N, bk =& 99
— s Nipi)t+ 7 Noprp1(6) (2.2)
bih—1 — bivk — tita

Niw(€) =

The above is usually referred to as the Cox-de Boor recursion formula [8]. To visualize

this recursive relation, a triangle scheme is made in Figure 2.1. From the above figure,
‘ {

Cﬁ'wo important observations can be ceneluded. FlfS‘@,@ one traces down from a particular

basis function to the lowest level, then it can be seen that a basis function, By is non-

zero at most on the interval ‘ SGCOBd,@ one starts with an interval, [¢;,¢;,1], and
search for the basis functions It contributes to, then it is easy to identify that at most
k non-zero basis functions of order k are non-zero at this interval. The term @t most”
is used because the presence of multiple knots would reduce the numbers, and these

statements describe the upper limits.
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parametrization for general three-dimensional objec@22]. This process consists of a B-
spline approximation and a series of knot insertions. The difference ¥ this approach
and the above methods is that the knot insertion procedure is not unique due to the
intrinsic properties of B-spline formulation. Therefore, parametrization refinements can-
not be predetermined but can be selected during the optimization process. As a result,
the proposed optimization is carried out sequentially from the initial parametrization to
more refined parametrizations as long as the objective function continues to improve.
The proposed process is applied to different aerodynamic shape optimization prob-
lems, and its implementation is adjusted by considering different design problems. For
airfoil optimizations, special considerations are devoted to geometric constraints; while
for three-dimensional wing optimizations, different control point/ coupling methods are
employed for different design purposes. The expected benefits of this process are mainly

twofold. First, it eliminates the assumptions of the number and locations of design

variables before an optimization, and ts intervention from a designer during an
optimization. Thus it may yield geometfies not anticipated. Second, this process has
the potential to achieve a more optimal/design with fewer design variables compared K’!‘Q

optimizations using regular parametrjzation strategy.

!

A
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move relatively few control points, and an inexpensive algebraic method to adjust a large
number of mesh points [22]. Besides these common properties, there exist unique features
for individual approach. Regarding Bezier curves and surfaces, two characteristics of the
basis functions limit their flexibility. First.,' the number of control points of a Bezier curve
or surface is associated with the degree of the basis functions. In order to increase the
number of control points, degree elevation of the basis functions is necessary [26, 13].

Second, a Bezier curve or surface does not provide local control. i.e. moving a control

point changes thg-entire geometry.

"ZLL B-spline forion [8] overcomni Jhe mentioned disadvantages because its intrinsic
basis function formulation provides local control of a parametrized shape, and its flexible
knot vector structure allows additional control points to be introduced without increasing
the degree of basis functions. Hence, the B-spline approach is an appropriate candidate
for hierarchical parametrization. An additional advantage of the B-spline approach is
that it is used in most CAD packages to represent the geometry. Therefore, it provides

the most natural way to integrate the CAD geometry into the design process.

1.4 Evolutionary Parametrization

An evolutionary parametrization is i@éd a sequence of parametrization refinements that
gradually enlarge the set of design variables. Such a procedure relies on the characteristics
of the geometry representation method. Two essential conditions are required for such a

procedure:
e Multiple parametrization refinements can be carried out in a consistent manner;
e The geometry should not be changed as its parametrization is refined.

Attempts Aperforming optimization with a changing parametrization have been car-
ried out by several authors. Beux and Dervieux [4] describe a gradient based multilevel
optimization using surface grid point coordinates as design variables. The hierarchical
parametrization is defined by extracting different subsets of grid points from the complete
surface points forming a family of embedded parametrization levels (i.e. a coarse level
corresponds to a small number of grid points, and a fine level refers to a large number
of points). A linear prolongation operator defined by Hermitian interpolation is used to

switch between different parametrization levels. The objective function and the gradient
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progre;*ively evolve as an optimization proceeds. This type of parametrization strategy
is refer \to as evolutionary parametrization in this thesis. The following two sections are
devoted to a brief review of existing geometry parametrization techniques and previous

applications and constructions of evolutionary parametrization.

1.3 Parametrization Methods

The choice of geometry parametrization is a crucial procedure in shape optimization. ‘A
number of authors have outlined the desirable characteristics of an ideal parametrization

method [47, 30, 11], and several essential criteriaAworth additional emphasi@
. MR
¢ A parametrization should be able to provide fast, accurate and consistent repre-

sentations for complex geometries
e A parametrization should produce a compact and flexible set of design variables

e A parametrization should provide easy control and interpretation for geometry

deformation

A large variety of parametrization methods have been established for various appli-
cations [47, 6. 40]. An intuitive method is the discrete approach which uses surface grid
point coordinates as design variables. This approach is able to describe a large number
of dramatically different geometries and can also reflect subtle shape changes in a local
region. However, since the shape change is tied to individual grid points, it is difficult
to maintain a smooth surface profile, and there is a tendency to yield unrealistic design$’ )
as indicated by Braibant and Fleury [5]. Another obstacle associated with this method
is the excessive number aﬁ& design variables. Because the stiffness of the numerical op-
timization increases abu;a-p‘s-ly with the number of design variables, the efficiency of the
shape optimization is adversely impacted if a fine mesh is adopted. These problems are
well understoo@ome complementary procedureSsuch as a smoothing routine ha¥¢been
established in many works [38, 37].

On the other hand, some strategies, such as extended Joukowski transformation 28]
and PARSEC [43], can produce a compact set of design variables, but these methods are
restricted to represent the shape of an airfoil, and lack %genemhty for arbitrary complex

configurations. In addition, the design variables used in such a parametrization must be
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1.2 Aerodynamic Shape Optimization

With the purpose of exploring novel aerodynamic configurations, ¢ numerical shape

optimization mePkQd exhibits distinct advantages compari@é to the traditional “cut and

try” and inverse design approaches. One significant advantage of Ix¢ optimization medkgd

is that it reduces Mg intervention from designers. Both the “cut and try” and inverse

design approaches require extensive experience from designers to either manually alter

the geometry or specify the target pressure distribution, but when facing unconventional

configurations or unfamiliar design objectives, the manipulation based on empirical data

could mislead or restrict the design results. In contrast, }Q@ shape optimization n%td@d /’\VW‘( a(‘

combines a geometry control technique and an optimization algorithm to mdthematlc/3 K4
‘//;e:@opmmal design. Thus an optimal configuration can be obtained through systemati-

cally and effectively searching a design space. Another prominent benefit is its capability

of addressing complex design problems. e A practical design is required to have robust

and

performance under a range of operating conditions and constraints, Y€ Trumerical shape
optimization is ideal to handle the situation consisting of multiple design requirements

and conditions.

A fully automated prodynamic shape optimization contains several key components:

@ geometry parametrization which defines the design variables and governs shape changes;

o mesh movement algorithm that perturbs the computational grid according to the geom-
etry deformation; objective function definition that typically indudeShft, drag, and mo-
ment functionals; flow analysis tool (flow solver), and optimization algorithm (opﬁmizer}
Each component influences the implementation efficiency and the optimal solution of a
particular optimization process. One of the major factors i;l,téow solver. %WA flow Té‘é"
solver is repeatedly used to obtain flow solutions for ob_jectiife function evaluations, @———
accuracy and fast computational speed is greatTy demanded. Owyfing to the improvement
in computational fluid dynamics (CFD)I( and the development of computing capabili-
ties, high fidelity analysis codes are now available to handle three-dimensional Reynolds-
averaged Navier-Stocks equations Within%easonable amount of time, but solving complex
nonlinear flow features such as lammar turbulence transition still remquﬂ costly taski
Beﬂdes flow solver, Loptimizer also critically affects the performance of an optimization
method. In most aerodynamic applications, two types of optimizers are adopted. One
only makes use of the objective function value, for instance, genetic algorithx@él, 43).

This type of optimizerf havg a large probability of finding a global optimum, but converge
YI I g 2
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Abstract

An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization

Xiaocong Han
Masters of Applied Science
Graduate Department of Aerospace Engineering
University of Toronto
2011

An evolutionary geometry parametrization is established to represent aerodynamic con-
figurations. This geometry parametrization technique is constructed by integrating the
classical B-spline formulation with the knot insertion algorithm. It is capable of insert-
ing control points to a given parametrization without modifying its geometry. Taking
advantage of this technique, @hape design problem can be solved as a sequence of
optimizations from the basic parametrization to more refined parametrizations. Owy—
ing to the nature of B-spline formulation, feasible parametrization refinements are not
uniqu@uidelines based on sensitivity analysis and geometry constraints are developed
to assist the automation of the proposed optimization sequence. Test cases involving
airfoil optimization and induced drag minimization are solved adopting this method. Its

effectiveness is demonstrated through comparisons With% optimizations using uniformlf\(

parametrizations. { Q;
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