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This paper presents a numerical investigation of the tradeo↵s between various discretiza-
tion approaches and operators, based on diagonal-norm summation-by-parts (SBP) opera-
tors, using the two-dimensional linear convection equation and simultaneous approximation
terms (SATs) for the weak imposition of boundary conditions and interface coupling. In
particular, it focuses on operators which include boundary nodes. Of the operators con-
sidered, the hybrid-Gauss-trapezoidal-Lobatto SBP operators are the most e�cient. Little
di↵erence in e�ciency is observed between the divergence and skew-symmetric forms,
making the latter preferred given its provable stability on curved meshes. The traditional
finite-di↵erence refinement strategy is the most e�cient, and the discontinuous element
approach the least. The continuous element refinement strategy has comparable e�ciency
to the traditional approach when not exhibiting lower convergence rates. This motivates
a hybrid approach whereby discontinuous elements are constructed from continuous sub-
elements. This hybrid approach is found to inherit the higher convergence rates of the
traditional and discontinuous approaches, and higher e�ciency relative to the discontinu-
ous approach.

I. Introduction

In this paper, we are interested in spatial discretizations of partial di↵erential equations (PDEs) having
the summation-by-parts (SBP) property.1–5 SBP methods are attractive as they are mimetic of integration
by parts, and when combined with simultaneous approximation terms (SATs)6–9 for the weak imposition of
boundary conditions and inter-element coupling, lead to consistent, conservative, and provably linearly and
nonlinearly stable10–13 discretizations of PDEs.

There is increasing recognition that numerous discretization methodologies can satisfy the SBP prop-
erty.3–5,14 Indeed, it has been shown that SBP operators can be developed for structured and unstructured
meshes,15,16 and can be implemented with discontinuous or continuous coupling15 and using the traditional
finite-di↵erence or element approaches.17 Moreover, given a distribution of nodes in computational space,
novel sets of SBP operators can be constructed with preferential computational properties, such as reduced
spectral radii or increased sparsity.

The generalized SBP framework3 that we employ gives great flexibility not only in what operators to use
but also how to implement the discretization. However, while this freedom is advantageous, it is necessary
to determine which attributes of particular SBP-SAT combinations are useful. The purpose of this paper
is therefore to perform an initial investigation of the utility of various combinations of the available SBP-
SAT discretization approaches and operators. In particular, we are interested in the class of diagonal-norm
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SBP operators that include boundary nodes and in comparing the divergence form of the PDE with the
skew-symmetric form.

The paper is organized as follows: in Section II, the notation used in the paper is set forth. Next, in Section
III, the two classes of SBP operators, the two means of coupling subdomains in a domain decomposition
strategy, and the two approaches to mesh refinement are reviewed. In Sections IV and V, the divergence
and skew-symmetric continuous and semi-discrete forms of the linear convection equation in curvilinear
coordinates are delineated. In Section VI, we characterize families of SBP operators and the various means
of implementing them in terms of a number of metrics. Finally, conclusions are discussed in Section VII.

II. Notation

The notation used is adapted from Ref. 15. In the interest of simplicity, the presentation is restricted to
two-dimensional operators; extension to three dimensions is straightforward.

Vectors are denoted with small bold letters, for example, ⇠ = [⇠1, . . . , ⇠N ]T, while matrices are presented
using capital letters with sans-serif font, for example, M. Capital letters with a script type are used to
denote continuous functions on a specified domain. As an example, U(⇠, ⌘, t) 2 L

2 ([⇠1, ⇠N]⇥ [⌘1, ⌘N ]⇥ [0, T ])
denotes a square integrable function on the domain (⇠, ⌘) 2 [⇠1, ⇠N]⇥ [⌘1, ⌘N ]. Lower case bold font is used
to denote the restriction of such functions onto a grid; for example, the restriction of U onto a grid of N
nodes is given by

u = [U (⇠1, ⌘1) , . . . ,U (⇠N, ⌘N )]T ,

Throughout this paper, the restriction of monomials is represented by ⇠

k =
⇥
⇠

k

1 , . . . , ⇠
k

N

⇤T
, with the conven-

tion that ⇠k = 0 if k < 0.
We discuss the degree of SBP operators, which is the degree of monomial for which they are exact. We

reserve the word order to refer to the order of the solution error and discuss the accuracy of the operators
and the discretizations exclusively in terms of degree.

III. Implementation of tensor-product SBP operators

Tensor-product SBP operators can be used to discretize a problem in a number of ways on structured
and block-structured meshes. The first class of SBP operators, denoted traditional operators, can be applied
to nodal distributions with essentially arbitrary numbers of nodes while retaining their point-wise error
characteristics; this is achieved by increasing or decreasing the number of times the interior-point operator
is applied. This implies that there is no restriction, beyond some minimum, on the number of nodes within
each subdomain. For example, let us consider the simplest classical first-order SBP operator on a uniform
nodal distribution. This operator is given as

D
⇠

=
1

h

2

6666664

�1 1

� 1
2 0 1

2
. . .

. . .
. . .

� 1
2 0 1

2

�1 1

3
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, H
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= h

2
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1
2

1
. . .

1
1
2

3

7777775
,

Q
⇠

=

2

6666664

� 1
2

1
2

� 1
2 0 1

2
. . .

. . .
. . .

� 1
2 0 1

2

� 1
2

1
2

3

7777775
,

where h is the mesh spacing. SBP operators require a mechanism to introduce the e↵ects of boundary
conditions; in this paper we use SATs to enforce boundary conditions weakly.

The second class of SBP operators, denoted element-type, has interior degrees of freedom (DOFs) in each
element. As an example of an element-type SBP operator, consider the following operator constructed on
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the Legendre-Gauss-Lobatto nodes ⇠ = [�1, 0, 1]T :

D
⇠

=
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.

Such SBP operators can be used to discretize PDEs using the discontinuous approach. In such an approach,
the domain is divided into K elements or blocks, and the SBP operator for the domain is constructed as

D
⇠

=

2

66664

(D
⇠

)1
(D

⇠

)2
. . .

(D
⇠

)
K

3

77775
,

where the notation ()
i

is used to reference the fact that this operator is for the i

th element or block. In this
approach, the derivative operator for the domain does not have coupling between elements or blocks; the
solution is multi-valued at interfaces and a mechanism to introduce coupling is necessary. This coupling can
be achieved using SATs.

Alternatively, if the SBP operator contains boundary nodes, then the continuous approach can be used.15

The global norm matrix, H
⇠

, and sti↵ness matrix, Q
⇠

, are assembled as follows:

H
⇠

=
KX

i=1

T
i

(H
⇠

)
i

TT
i

,

and

Q
⇠

=
KX

i=1

T
i

(Q
⇠

)
i

TT
i

,

where T
i

is of size [K(N � 1) + 1]⇥N and

T
i

((i� 1)(N � 1) + 1 : i(N � 1) + 1, :) = diag(1, . . . , 1).

For the four-node Legendre-Gauss-Lobatto example, if we have two elements, T1 and T2 are given by

TT
1 =

2

6664

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

3

7775
, TT

2 =

2

6664

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3

7775
.

For operators that can only be constructed as elements, mesh refinement is carried out by increasing
the number of elements — we denote this the element approach to mesh refinement. Alternatively, for
traditional SBP operators, mesh refinement can be carried out using either the element approach or the
traditional finite-di↵erence approach, where the number of nodes within a block is increased.17,18
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IV. The two-dimensional linear convection equation

We consider the two-dimensional linear convection equation on a unit square

@U
@t

+ �

x

@U
@x

+ �

y

@U
@y

= 0, 8(x, y) 2 [0, 1]⇥ [0, 1], t � 0, (1)

where �
x

and �

y

are constants and here are assumed greater than zero. The initial and boundary conditions
are

U(x, y, 0) = F(x, y),

U(x, 0, t) = B
x

(x, t), 8(x, y) 2 [0, 1]⇥ [0, 1], t � 0,

U(0, y, t) = B
y

(y, t).

Tensor-product SBP operators are applied in a rectilinear computational space. First, the domain ⌦ is
partitioned into K nonoverlapping elements ⌦

i

. On each element, the PDE (1) is mapped from physical
coordinates (x, y) to computational coordinates (⇠, ⌘), resulting in

@
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.

The divergence form of the PDE (2) can be recast into skew-symmetric form, given as

@

�
J�1U

�

@t

+
1

2

@ (�
⇠

U)
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+
1

2

@ (�
⌘

U)
@⌘

+
�

⇠

2

@U
@⇠

+
�

⌘

2

@U
@⌘

= 0. (3)

SBP-SAT semi-discretizations of skew-symmetric forms of variable coe�cient problems can be directly proven
to be stable using the energy method.16,19–21 From a practical point of view, it has been observed that such
discretizations o↵er increased robustness for discretizations of nonlinear PDEs.22

V. Spatial discretization

Before introducing the discretizations of (2) and (3), we define generalized SBP operators for the first
derivative, applicable to general nodal distributions.3

Definition 1. Summation-by-parts operator for the first derivative: A matrix operator, D
⇠

2 RN⇥N ,
is an SBP operator approximating the derivative @

@⇠

, on the nodal distribution ⇠ 2 [⇠0, ⇠1], of order and degree
p if

1. D
⇠

⇠

k = H�1
⇠

Q
⇠

⇠

k = H�1
⇠

�
S
⇠

+ 1
2E⇠

�
⇠

k = k⇠

k�1
, k = 0, 1, . . . , p;

2. H
⇠

, denoted the norm matrix, is symmetric positive definite;

3. E
⇠

= ET
⇠

, S
⇠

= �ST
⇠

, therefore, Q
⇠

+ QT
⇠

= E
⇠

; and

4.
�
⇠

i

�T
E
⇠

⇠

j = ⇠

i+j

1 � ⇠

i+j

0 , i, j = 0, 1, . . . , r, r � p.

The definition of E
⇠

given above allows for nodal distributions that do not contain boundary nodes. For
the purpose of imposing boundary conditions using SATs, it is convenient to further decompose E

⇠

as3

E
⇠

= t

⇠1t
T
⇠1

� t

⇠0t
T
⇠0
,

where
t

T
⇠0
⇠

k = ⇠

k

0 , t

⇠1⇠
k = ⇠

k

1 , k = 0, 1, . . . , r.

In this paper, we concentrate on tensor-product SBP operators that include boundary nodes and take

t

⇠0 = [1, 0, 0, . . . , 0]T, t

⇠1 = [0, 0, . . . , 1]T.

4 of 13

American Institute of Aeronautics and Astronautics



The SBP-SAT discretization of the divergence form (2) is presented in terms of two blocks with a shared
interface of constant ⇠. The discretization of the divergence form of the PDE in the left (L) element is given
as

dJ�1
L

u

L

dt
+ (D

⇠L ⌦ I
⌘
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⇠LuL

+ (I
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,

where ⌃L is a diagonal matrix of SAT coe�cients, and I
L,⇠

and I
⌘

are identity matrices. The variable
coe�cients �

⇠

and �

⌘

and the metric Jacobian, for example in the left element, are constructed as follows
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where � denotes the Hadamard product. The vectors x
L

and y

L

contain the x and y locations of the nodes.
Likewise, the discretization in the right (R) element is given as

dJ�1
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u
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dt
+ (D

⇠R ⌦ I
⌘

)⇤
⇠RuR

+
1

2
(I
R,⇠

⌦ D
⌘

)⇤
⌘RuR

=

1

2

⇣
H�1

⇠R
t

R,⇠0 ⌦ ⌃R

⌘ ⇥�
t

T
R,⇠0

⌦ I
⌘

�
⇤
⇠RuR

�
�
t

T
L,⇠1

⌦ I
⌘

�
⇤
⇠LuL

⇤
.

Here it has been assumed that in the ⌘ direction, the two elements are conforming and have the same nodal
distribution.

There are two common choices for the coe�cients in the SAT matrices ⌃L and ⌃R. The first can be
thought of as using an upwind flux function and has the form

⌃L =
�⇤̃

L,⇠

+ |⇤̃
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|
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L,⇠

=
⇣
t

T
L,⇠1

⌦ I
⌘

⌘
⇤
⇠L (1

L,⇠

⌦ I
⌘

), ⇤̃
R,⇠

=
⇣
t

T
R,⇠1

⌦ I
⌘

⌘
⇤
⇠R (1

R,⇠

⌦ I
⌘

), and 1 denotes a column vector

of ones. The second is typically referred to as a symmetric SAT and has the form

⌃L = I
⌘

, ⌃R = �I
⌘

.

Symmetric SATs provide no dissipation and sometimes lead to under-convergence when using the element
approach.4,15,23 Therefore, this article exclusively uses upwind SATs.

The discretization of the skew-symmetric form (3) in the left element is given as
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and in the right element we have
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Figure 1. Example grid: Four-element curvilinear mesh using HGTL17(8, 4) nodal distribution in each element.

VI. Results and discussion

The results presented here are for the two-dimensional linear convection equation described in equation
(1) with �

x

= �

y

= 1. The initial and boundary conditions are

F(x, y) = sin(2⇡x) + sin(2⇡y),

B
x

(x, t) = sin(2⇡(x� t)) + sin(�2⇡t), 8(x, y) 2 [0, 1]⇥ [0, 1], t � 0,

B
y

(y, t) = sin(�2⇡t) + sin(2⇡(y � t)),

and the domain is square with x, y ⇢ [0, 1]. The computational domain is Cartesian, with each block or
element discretized with the nodal distribution associated with the applied operator. Curved meshes are
obtained by applying a perturbation to the computational mesh described above (See example in Figure 1):

x = ⇠ +
1

5
sin(⇡⇠) sin(⇡⌘),

y = ⌘ +
1

5
exp(1� ⌘) sin(⇡⇠) sin(⇡⌘).

The solution is integrated from t = 0 to t = 3 using the standard fourth-order Runge-Kutta time-marching
method and a time step such that

⇢�t = 0.5,

where ⇢ is the spectral radius of the system matrix; with this choice, the error from the time-marching
method was found to be negligible. Convergence rates on curved meshes show no influence of the temporal
error for all operators considered. The accuracy of each simulation is computed relative to the exact solution
of the continuous PDE and integrated using the global norm of the discretization, H, assembled from the
local element norm matrices scaled by the appropriate transformation Jacobian determinant on each element

||u� U(x,y)||H =
q
(u� U(x,y))TH(u� U(x,y)).

The basic properties of the operators investigated in this paper are summarized in Table 1 along with the
acronyms used henceforth. When applying the element refinement strategies, the CSBP and HGTL elements
were constructed with one more than the minimum number of DOFs in each direction. Extensive convergence
studies were performed to verify the implementation of these operators.

The following conventions are used in reference to the results:

• The degree of the interior-point operator and the global degree of an operator are given by appending
an ordered pair after the acronym; for example, HGTL(p̃, p) refers to the hybrid-Gauss-trapezoidal-
Lobatto SBP operator with an interior-point operator of degree p̃ and global degree p. If the operator
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Operator Abbreviation Operator Norm Minimum # non-zeros

Degree Degree # DOFs per DOF

Classical FD-SBP CSBP
N

(2, 1) 1 1 2 2

CSBP
N

(4, 2) 2 3 8 36+4(N�8)
N

 4.5

CSBP
N

(6, 3) 3 5 12 81+6(N�12)
N

 6.75

CSBP
N

(8, 4) 4 7 16 144+8(N�16)
N

 9

Hybrid-Gauss-Trapezoidal-Lobatto HGTL
N

(4, 2) 2 3 8 36+4(N�8)
N

 4.5

HGTL
N

(6, 3) 3 5 12 81+6(N�12)
N

 6.75

HGTL
N

(8, 4) 4 7 16 144+8(N�16)
N

 9

Diagonal Norm Lobatto LGL
N

(N � 1) N � 1 2N � 3 N N

Table 1. Operators investigated: summary of their associated abbreviations and general properties, where N
denotes the number of degrees of freedom in the operator.

is of uniform pointwise degree, only a single value is given; for example, LGL(6) refers to an LGL
operator of degree 6.

• A numerical subscript is used to denote the number of DOFs in the operator, N ; for example,
CSBP5(2, 1) refers to a classical FD-SBP operator of global degree 1 with 5 DOFs.

• Following the operator description, a su�x is appended denoting the form of the continuous PDE
discretized: -d for the divergence form and -s for the skew-symmetric form.

• The refinement strategy employed is denoted with a second su�x: /t for the traditional finite-di↵erence
(FD) refinement, /c for the continuous element refinement, /d for discontinuous element refinement,
and /h/K for the hybrid implementation to be described below, where K is the number of continuous
sub-elements in each coordinate direction.

A. Relative e�ciency

Figure 2 compares the e�ciency of discretizations using CSBP, HGTL, and LGL operators on the curved
meshes. Similar results are obtained for discretizations of the divergence and skew-symmetric forms. While
the skew-symmetric form is slightly more accurate, it is also slightly more expensive per DOF for this test
case. To minimize the data shown in the figures, only the results for the skew-symmetric form are shown.

For a given degree of accuracy and refinement strategy, discretizations using HGTL operators tend to be
the most e�cient, followed by CSBP, and lastly LGL. The one exception is the degree four discontinuous
element CSBP and LGL discretizations, which have comparable e�ciency. In terms of refinement strategy,
discretizations using the traditional FD approach tend to be the most e�cient, and those using the discontin-
uous element approach the least e�cient. For odd degrees of accuracy, discretizations using the continuous
element approach have comparable e�ciency to the traditional FD approach; however, this does not hold
for even degrees of accuracy. This is expected and discussed further below.

There are a number of factors that influence these results, especially when using explicit time-marching,
which include: relative accuracy, spectral radius, and the time required to evaluate the semi-discrete right-
hand side (RHS). These factors are discussed further in the sections below.

1. Accuracy

Figure 3 shows the relative accuracy of the discretizations as a function of average mesh spacing

�xavg =
1p

K(N � 1)
, (4)
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Figure 2. Relative e�ciency: Comparison of discretizations on curved meshes using CSBP, HGTL, and LGL
operators with a degree of accuracy of 1 through 4.

where K is the total number of elements, and N is the number of nodes per element. The discretizations
all exhibit a convergence rate one order greater than their formal degree of accuracy, except for continuous
element discretizations with even degrees of accuracy. These exhibit a convergence rate equal to their formal
degree of accuracy. This can be seen relative to the reference slopes in the plots, purposely drawn one order
higher than the formal degree of accuracy. The lower convergence rate of the continuous approach has been
observed in the literature.4,15,23

Discretizations using the traditional FD refinement strategy tend to be the most accurate, but are limited
to the use of HGTL and CSBP operators. For a given degree of accuracy, HGTL and CSBP operators share
the same repeating interior-point operator and require the same minimum number of degrees of freedom.
However, HGTL operators exploit a fixed number of non-uniform nodal locations at the boundaries to
reduce the truncation error coe�cient. HGTL discretizations are therefore consistently more accurate than
CSBP discretizations. These operators are similar in form to operators proposed by Mattsson et al24 and
we anticipate that the latter should share the same preferential properties observed here. For discontinuous
element discretizations, the use of HGTL operators remains the most accurate option. For degrees of accuracy
one and two, CSBP operators tend to be more accurate than LGL operators, but this trend reverses for
degrees of accuracy three and four. Finally, continuous element LGL discretizations with odd degrees of
accuracy exhibit comparable accuracy to the traditional FD HGTL discretizations. For even degrees of
accuracy, the lower rate of convergence quickly renders them inaccurate relative to other discretizations with
the same degree of accuracy.

2. Spectral radii

For explicit time-marching, the spectral radius dictates the maximum stable time step size. In time-stability
limited simulations, this has a direct impact on relative e�ciency. The present simulations include the
influence of spectral radius by selecting a time step which is a constant factor of the maximum stable time
step. The spectral radius of a discretization strategy within a family of grids tends toward an asymptotic
value, when scaled by the average mesh spacing. Figure 4 shows the scaled spectral radii of the various
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Figure 3. Relative accuracy: Comparison of discretizations on curved meshes using CSBP, HGTL, and LGL
operators with a degree of accuracy of 1 through 4.

discretization strategies considered in this paper for both families of Cartesian and curved meshes described
above. Results obtained for the divergence and skew-symmetric forms of the PDE are very similar, therefore
only the results for the skew-symmetric form are shown.

For the Cartesian family of grids, the scaled spectral radii of CSBP and HGTL discretizations of the
same degree of accuracy are very similar. The spectral radii of the discontinuous element CSBP and HGTL
discretizations are consistently lower than those using a traditional FD refinement strategy. This reduces the
number of time steps required, increasing the potential e�ciency of the discontinuous element discretizations.
Moving to the family of curved meshes, the spectral radii increase significantly. However, the spectral radii
of the discontinuous element discretizations increase more than those using the traditional FD approach.
This can especially be seen with the HGTL discretizations, where now the discontinuous element approach
consistently yields higher spectral radii than the traditional FD approach. It requires, therefore, more time
steps for stability, reducing its potential e�ciency.

The LGL operators considered in this paper have a diagonal norm; therefore, no matrix inversion is
required for the continuous element approach and explicit time-marching is a reasonable option for time
integration. This justifies the evaluation of spectral radii for continuous element discretizations. A compari-
son of the spectral radii for LGL discretizations using the continuous and discontinuous element refinement
strategies is also shown in Figure 4. The spectral radii of the continuous element discretizations asymptote
quickly with grid resolution, and tend toward significantly lower values than the discontinuous element ap-
proach. Thus, when not a↵ected by lower convergence rates, the continuous element approach may be an
e�cient alternative. Section B also evaluates a hybrid approach, where discontinuous elements are formed
by a number of continuous sub-elements in order to combine the advantages of both approaches.

3. RHS evaluation time

For explicit time-marching, the time required to evaluate the semi-discrete RHS plays an equally important
role in the relative e�ciency of a simulation. This is influenced by the number of neighbors required to
compute the point-di↵erence operator at each node, the number of redundant DOFs introduced by element
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Figure 4. Spectral radius: Comparison of discretizations on both Cartesian (left) and curved (right) meshes
for CSBP (top), HGTL (middle), and LGL (bottom) operators.

interfaces, and the relative cost of evaluating element interfaces.
Figure 5 shows the CPU time required to compute the semi-discrete RHS using the various approaches.

For traditional FD and continuous element discretizations, the CPU time increases with the degree of ac-
curacy of the method. The reason for this is that higher-order methods require more neighbors to compute
the point-di↵erence operator at each node in the mesh.

The discontinuous element discretizations consistently require more CPU time for the same average mesh
spacing than the other refinement strategies. This results from the fact that the discontinuous interfaces
add computational expense. The figure also shows that CPU time does not always increase monotonically
with degree of accuracy. This can be seen especially for LGL discretizations, where the opposite is true.
While the higher-degree operators require more neighbors to compute their point operators, the lower-degree
methods require additional discontinuous interfaces that do not contribute to increasing the resolution of
the simulation.
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Figure 5. RHS evaluation time: Comparison of discretizations on curved meshes.

B. Hybrid approach

The hybrid element approach attempts to combine some of the advantages unique to both discontinuous and
continuous element approaches. It applies a discontinuous refinement strategy to elements formed by a fixed
number of continuous sub-elements in each coordinate direction. Fixing the number of sub-elements in each
direction was chosen for simplicity; the method can be equally applied to elements with varying numbers of
sub-elements.

Figure 6 shows the relative e�ciency, scaled spectral radius, and convergence rate of degree three and four
LGL discretizations. This includes results from the continuous, discontinuous and hybrid element approaches.
As before, the continuous element discretizations are more e�cient than those using the discontinuous element
approach. There is a significant increase in e�ciency between the full discontinuous element results and the
hybrid element approach with only two continuous sub-elements. The e�ciency then slowly approaches the
continuous approach with increasing number of continuous sub-elements.

The bottom plots show the convergence rate of the LGL discretizations. As discussed above, the even
order continuous LGL discretizations exhibit a convergence rate one order lower than the discontinuous
approach. At some point the lower convergence rate will render continuous element discretizations less
e�cient than the discontinuous element approach. Nevertheless, in the present simulations the continuous
element discretizations remain more e�cient. The advantage of the hybrid element discretizations is that
the additional order of convergence exhibited by the discontinuous approach is recovered, along with reduced
error.

The spectral radius of the hybrid element discretizations is also reduced compared to those using the
discontinuous element approach. Again, using only two continuous sub-elements has a significant impact on
spectral radius. In terms of evaluation time of the semi-discrete RHS, using continuous sub-elements reduces
the number of discontinuous interfaces. This reduces the number of redundant degrees of freedom required,
and reduces the additional expense of computing discontinuous interfaces. Both factors contribute to the
higher relative e�ciency of the hybrid approach.
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Figure 6. Comparison of continuous, discontinuous and hybrid element approaches on curved meshes for LGL
operators.

VII. Conclusions

This paper presents an initial investigation of the tradeo↵s between various SBP-SAT discretization
approaches and operators. The focus is on diagonal-norm SBP operators that include boundary nodes. The
results are obtained using the two-dimensional linear convection equation on both Cartesian and curved
meshes. The main conclusions of the study are:

• Little di↵erence in e�ciency is observed between the divergence and skew-symmetric forms. This
motivates continued evaluation of discretizations of skew-symmetric forms, given the ability to prove
stability on curved meshes for linear PDEs.

• HGTL operators resulted in discretizations that were consistently the most e�cient for a given degree
of accuracy and refinement strategy. This results from the use of non-uniform nodal locations at the
boundaries, which reduce the truncation error coe�cient. Future work should include application of
these operators to nonlinear problems to determine whether they retain their preferential e�ciency
properties.
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• The traditional finite-di↵erence and continuous element refinement strategies lead to the most e�cient
simulations when the continuous element approach does not exhibit lower convergence rates. These
simulations do not consider meshes with high stretching, where a discontinuous approach may hold an
advantage; future work will consider the influence of mesh smoothness and stretching.

• The hybrid element approach leads to discretizations that inherit many of the benefits of the continuous
and discontinuous element approaches. Moreover, this represents a potential methodology for mesh
adaptation. This will be considered in future work.
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14Ranocha, H., Ö↵ner, P., and Sonar, T., “Summation-by-parts operators for correction procedure via reconstruction,”
Journal of Computational Physics, Vol. 311, No. C, 2016, pp. 299–328.

15Hicken, J. E., Del Rey Fernández, D. C., and Zingg, D. W., “Multi-dimensional Summation-By-Parts Operators: General
Theory and Application to Simplex Elements,” SIAM Journal on Scientific Computing, Vol. 38, No. 4, 2016, pp. A1935–A1958.

16Del Rey Fernández, D. C., Hicken, J. E., and Zingg, D. W., “Simultaneous Approximation Terms for Multidimensional
Summation-by-parts Operators,” Submitted to Journal of Scientific Computing (see arXiv:1605.03214v2 [math.NA]), 2016.

17Hicken, J. E., Del Rey Fernández, D. C., and Zingg, D. W., “Opportunities for e�cient high-order methods based on the
summation-by-parts property,” 22nd AIAA Computational Fluid Dynamics Conference, No. AIAA–2015–3198, Dallas, Texas,
June 2015.

18Fernández, D. C. D. R., Boom, P. D., and Zingg, D. W., “Corner-corrected summation-by-parts operators for the first
derivative with increased order of accuracy,” Accepted to the Journal of Computational Physics, 2016.

19Olsson, P. and Oliger, J., “Energy and maximum norm estimates for nonlinear conservation laws,” Tech. Rep. 94–01,
The Research Institute of Advanced Computer Science, 1994.

20Nordström, J., “Conservative Finite Di↵erence Formulations, Variable Coe�cients, Energy Estimates and Artificial
Dissipation,” Journal of Scientific Computing, Vol. 29, No. 3, 2006, pp. 375–404.

21Kopriva, D. A. and Gassner, G. J., “An energy stable discontinuous Galerkin spectral element discretization for variable
coe�cient advection problems,” SIAM Journal on Scientific Computing, Vol. 4, No. 36, 2014, pp. A2076–A2099.

22Gassner, G. J. and Andrew R. Winters, D. A. K., “Split Form Nodal Discontinuous Galerkin Schemes with Summation-
By-Parts Property for the Compressible Euler Equations,” Journal of Computational Physics, Vol. 327, 2016, pp. 39–66.

23Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications,
Springer, 2008.

24Mattsson, K., Almquist, M., and Carpenter, M. H., “Optimal diagonal-norm SBP operators,” Journal of Computational
Physics, Vol. 264, No. 1, 2014, pp. 91–111.

13 of 13

American Institute of Aeronautics and Astronautics


	Introduction
	Notation
	Implementation of tensor-product SBP operators
	The two-dimensional linear convection equation
	Spatial discretization
	Results and discussion
	Relative efficiency
	Accuracy
	Spectral radii
	RHS evaluation time

	Hybrid approach

	Conclusions

