
Dynamic Geometry Control for Robust Aerodynamic Shape
Optimization

Gregg M. Streuber � and David. W. Zingg †

Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, M3H 5T6, Canada

This work presents novel progressive and adaptive dynamic geometry control algorithms
which seek to improve convergence and reduce user workload by partially automating the design
of e�ective geometry control systems for aerodynamic shape optimization. These algorithms
function by beginning in a coarse design space and periodically refining the geometry control
with additional design variables when objective improvement becomes asymptotic. When re-
finement is initiated, progressive geometry control moves through a pre-defined sequence of
increasingly fine geometry control schemes, while the adaptive algorithm instead dynamically
generates a refined search space. This is accomplished by generating a list of candidate refine-
ments and ranking them based on the minimum of a constrained quadratic suboptimization
problem which constitutes an estimate of the maximum objective reduction possible in each
candidate search space. The accuracy of this method is first validated on two inviscid problems,
after which the progressive and adaptive algorithms are applied to two common aerodynamic
shape optimization problems based on the Reynolds-Averaged Navier-Stokes equations, the
twist and section optimization of the common research model wing-only geometry, and the
planform optimization of a hybrid wing-body aircraft. In both cases, the dynamic geometry
control schemes are able to converge to lower drag, often with fewer optimization iterations,
compared to the tested static schemes.

I. Introduction
Aerodynamic shape optimization is a field coupling numerical optimization with computational fluid dynamics

(CFD), where the output of a CFD simulation around an aerodynamic body is optimized with respect to the shape of the
body. With the adoption of the discrete adjoint method [1], gradients can be computed at a cost almost independent of
the number of design variables, making gradient-based optimization a fast, cost-e�ective solution. Combined with
the rise of a�ordable computing, this has made aerodynamic shape optimization practical for the optimization of full
aircraft designs in high fidelity and has led to its widespread adoption in industry and academia for the analysis and
improvement of aircraft [2] in a variety of settings including airfoils and wings [3–7], full conventional configurations
[8–10] and unconventional designs such as Hybrid Wing-Bodies (HWB) [11, 12], lifting-fuselages [13], strut-braced
wings [14, 15] and box wings [16].

The rise of aerodynamic shape optimization is coincident with, and in part driven by, mounting pressure on
commercial aerospace to produce a step reduction in emissions [17]. E�orts to produce such a reduction can be
broadly categorized into three main streams: lighter materials, low-emissions propulsion, and improved conventional
or unconventional aerodynamics. The benefits of lighter, stronger composite materials have been demonstrated in
recent designs like the Boeing 787 [18] or Airbus A220 [19], while e�orts on the propulsive side include higher
bypass-ratio turbofans [20] or alternative fuels [21]. Directly reducing the drag of conventional aircraft through
improved aerodynamics has been assisted by the application of aerodynamic shape optimization to detailed design.
Such optimization is performed later in the design process when a preliminary design has already been developed and
further geometric changes are limited.

However, without new technologies these methods are not su�cient to produce the gains desired by industry and
regulators. Conventional aerodynamics in particular are rapidly approaching a point of diminishing returns as 70
years of optimizing tube-and-wing aircraft leaves little room for dramatic improvements. This has spurred interest
in unconventional aircraft o�ering the potential for much larger improvements in performance, but discovering and
analyzing them requires the application of aerodynamic shape optimization in the preliminary or exploratory stage prior

�Ph.D. Candidate, gregg.streuber@utoronto.ca
†University of Toronto Distinguished Professor of Computational Aerodynamics and Sustainable Aviation, Director, Centre for Research in

Sustainable Aviation, and Associate Fellow AIAA, dwz@oddjob.utias.utoronto.ca

1

to detailed design. Unconventional, exploratory problems are by necessity characterized by large geometric flexibility
combined with novel, unknown design spaces; these problems can be expensive and poorly-conditioned, making them
di�cult for the optimizer to navigate.

At the same time as this push for unconventional aircraft, the CFD models underpinning aerodynamic shape
optimization codes are growing in cost and complexity, incorporating advanced tools like transition prediction [22]
or moving from primarily inviscid optimization [23] to the current predominance of optimization based on the
Reynolds-Averaged Navier-Stokes (RANS) equations [5, 15, 24], some authors have even taken the first steps towards
enabling large eddy simulation for optimization [25]. Such improvements are necessary, but increase the cost of flow
evaluation. The field then is at a nexus where design spaces are increasingly di�cult and novel, and the costs of slow
convergence are increasingly large. Clearly, there is a benefit to reducing both upfront costs, in terms of the time and
experience requirements to formulate an e�ective aerodynamic shape optimization problem, and the ongoing costs of
converging the problems themselves. We refer to this as improving robustness, which we define in this work as “the
ability of an algorithm to reliably and consistently locate globally optimal designs with minimal user intervention”.
Previous work [26] has begun addressing the globally optimal component of this definition, while this work instead
focuses on the idea of minimizing user intervention and improving e�ciency through the use of dynamic geometry
control.

In aerodynamic shape optimization, geometry control is the system by which the optimizer manipulates and deforms
the aerodynamic surface which is being optimized. CAD-based approaches have been used previously [27], but in recent
years many authors have adopted CAD-free geometry control due its superior flexibility and customizability. CAD-free
geometry control in the literature encompasses many di�erent methods, including traditional [28] and axial-augmented
[14] Free-Form Deformation (FFD), B-spline patches [29], Hicks-Henne bump functions [30], component-based control
[31], radial-basis functions [32], and numerous other specialized geometry control methods tailored to the requirements
of their users [33–36]. Even within each category there exists significant variation between methods, including hybrid
methods or even attempts to leverage dimensionality reduction [37] or machine learning [38] to find the most e�cient
geometry control schemes. While the details of these approaches di�er, they are similar in that they are overwhelmingly
applied in a static fashion. That is, the geometry control, whatever its specifics, is designed by a user prior to optimization
and while design variables can change during optimization the topology of the control scheme remains fixed. Such
static systems are simple to implement and have been successfully utilized in a vast array of di�erent settings, but they
do have some inherent drawbacks.

First, it can be observed that in many optimization problems the optimizer tends to begin with coarse, large-scale
deformations and then steadily moves to smaller and smaller shape refinements as optimization proceeds. Having too
few design variables will stunt objective improvement, while starting with too many can lead to a poorly conditioned
optimization problem and poor convergence [39]. An example of this is shown in Figure 1, which plots the drag
convergence for five variants of the same case: the inviscid optimization of a three-dimensional wing in transonic
flow. Each variant di�ers only in the number of design variables available to the optimizer, and each was run until
convergence or for a maximum of 300 design iterations.

As we would expect, the coarsest version (with just 51 design variables) converges quickly and smoothly but to
a relatively high drag. Increasing the number of design variables to 163 produces clear improvements to final drag
at minimal cost; another increase to 546 produces much smaller reductions in final drag and a slight slowdown in
convergence. In the final two versions, however, the progressively larger number of design variables begin to significantly
impede performance, with much higher drag after 300 iterations than the coarser 163 and 546 DV cases. If allowed
to run to convergence, these cases would likely converge to superior optima than the coarser cases but this would
take a prohibitively long time. There is also no guarantee that the optimizer would not stall or otherwise fail before
convergence is achieved. Depending on the accuracy of the flow solver and the time or resources available there will be
an ideal static geometry control scheme for a given problem; however, it will rarely be known a priori.

A second potential issue with static control, particularly in the context of preliminary or exploratory design, is that it
can be overly restrictive. Any geometry control scheme can be thought of as a second set of constraints on optimization:
an optimizer can only manipulate the design variables it is given, and fitting a static geometry control system over a
continuous problem inherently invalidates certain search directions and biases the optimizer towards others. While
exploratory optimization certainly can and has been performed with static geometry control, one must very carefully
balance the contradictory goals of exploration and speed.

Dynamic geometry control (DGC) is an alternative in which the geometry control topology is modified throughout
optimization, usually through refinement. Such a system is more complicated to implement, but can sidestep these
issues by starting the optimization in a coarse search space and refining periodically throughout. This allows the

2

Fig. 1 E�ect of number of design variables (DVs) on optimizer performance

optimization to maximize initial speed with a coarse geometry control, while adding finer control later to exploit the
design space. Additionally, by leveraging sensitivity information from a gradient-based optimization it is possible to
guide the refinement process and focus new control in regions of greatest potential, increasing the flexibility of the
optimizer and preventing overly-constrictive static schemes.

Two particular flavours of DGC are considered in this work: progressive and adaptive control. Both are similar in
that an initially coarse geometry control scheme is systematically refined throughout optimization, but take di�erent
approaches to this general idea. Progressive geometry control is relatively straightforward: starting with a coarse design
space the optimizer steadily moves through a predefined sequence of progressively finer geometry control schemes.
Some early work in this field [40, 41] examined both uniform refinement schemes and multigrid-like v-cycles to improve
convergence while others such as Andreoli et al. [42] solely consider monotonic refinement. These methods have been
successfully applied in stochastic optimization [43] but they have also been shown to work e�ectively in gradient-based
optimization [44–46] where the costs of increased dimensionality are less explicit. In general, a common trait among
progressive schemes is that the geometry control systems are designed beforehand by a user, or generated at runtime
according to a fixed pattern.

Adaptive control, on the other hand, leaves the design of the new geometry control system largely up to automatic
processes. Duvigneau et al. [43] developed an adaptive scheme built on the idea that a Bezier curve parameterization
with a more regularized control polygon will be more e�ective than a less-regular alternative. A more advanced
approach in the context of gradient-based optimization is to leverage readily available gradient data to optimize the
expected performance of the new geometry control scheme. This approach was examined by Han and Zingg [47], who
assessed candidate control schemes based on the value of the objective gradient, a higher gradient suggesting a greater
potential for objective improvement. Masters et al. [48] produce good results using a similar method for 2-D airfoil
optimization, in which the candidates are ranked based on a projection of the objective gradient onto the aerodynamic
surface. He et al. [49] built further on the gradient-ranking concept in 2-D by using constraint gradients to penalize
the objective gradient in the ranking. The current state of the art in the field, however, is represented by the work of
Anderson and colleagues [44, 50, 51], who performed a quadratic fit of the design space for each candidate and took the
constrained minimizer of this quadratic as an estimate of its maximum objective improvement, representing the first
apparent attempt in the literature to directly approximate the shape of a candidate design space. This approach was
adapted by Sinsay and Alonso [52] who used a genetic algorithm to determine the optimal refinement strategy.

This work furthers the investigation and application of these methods by implementing them in the context of a
two-level axial and FFD geometry control system, building on the quadratic fit approach of Anderson and colleagues
with improvements to the treatment of constraints and a novel approach to the approximation of candidate Hessians.
Additionally, a significant e�ort is made to study and quantify the benefits and applicability of DGC through application
of the developed progressive and adaptive algorithms to a variety of problems ranging from simple model problems to

3

full-scale cases representative of detailed or preliminary design.

II. Jetstream Optimization Framework
This study is undertaken using the Jetstream optimization framework, which is described below, with particular

attention given to the FFD geometry control system.

A. Optimization Overview
Flow solutions in Jetstream are obtained through Diablo, a three-dimensional structured multiblock CFD solver

capable of solving both the Euler [23] and RANS [53] equations; for the RANS equations, the Spalart-Allmaras
one-equation turbulence model is used. Second-order summation-by-parts operators and scalar or matrix numerical
dissipation are used for spatial discretization with simultaneous approximation terms weakly enforcing boundary
conditions and block interfaces. The steady-state solution is obtained with a parallel Newton-Krylov-Schur algorithm
utilizing an approximate-Newton phase for the initial iterate of a subsequent inexact-Newton phase. Linear systems are
solved using the Generalized Minimum Residual (GMRES) method.

Gradients are obtained using an implementation [54, 55] of the discrete adjoint method [1]. A flexible variant [54]
of the GCROT (generalized conjugate residual with inner orthogonalization and outer truncation) Krylov method [56]
is leveraged to obtain adjoint solutions. These gradients are used to obtain subsequent iterates using the sequential-
quadratic-programming algorithm SNOpt [57], with Hessians obtained via the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) [58–61] update method.

A linear elasticity method adapted by Hicken and Zingg [54] from the work of Truong et al. [62] handles mesh
movement. Computational performance is improved by fitting the computational mesh with a coarse B-spline control
mesh, the mesh deformation being applied to this control mesh, which is then used to generate a deformed computational
mesh.

B. Static Free Form Deformation
Free-Form Deformation (FFD) [63], is a geometry control scheme which introduces an additional layer of abstraction

between the surface and the design variables and enables consistent, intuitive design variables to be used for almost any
type of surface geometry. FFD works in principle by embedding the surface to be deformed within an FFD volume;
the optimizer then manipulates the FFD volume without needing to have any knowledge of what lies within it. As the
FFD volume is deformed, the underlying geometry is deformed in turn - akin to manipulating a rubber block with a
shape embedded inside. While it first gained traction with the animation community, FFD’s use in aerodynamic shape
optimization dates to 2004 [64].

In this work, the embedded geometry is parameterized with B-spline surface patch control points and the FFD
volumes they are embedded within are themselves B-spline volumes, deformed by displacing the control points on
their surface. The control points are arranged into cross-sections which provide local control through three degrees of
freedom (DOFs) illustrated in Figure 2: twist, a bulk rotation of the cross-section about the local origin; taper, a bulk
scaling of the chord with fixed t/c; and section, individual movement of cross-sectional control points in the local vertical
direction. Global control is provided by an axial curve [14], a B-spline curve which determines the orientation of the
FFD cross-sections. The axial curve itself is controlled with its own set of control points, each having up to three DOFs:
sweep (translation in the flow axis) span (translation in the span axis) and dihedral (translation in the vertical direction).
Figure 3 demonstrates global deformation for a simple rectangular wing. Red spheres represent the embedded surface
patch control points, black cubes are the FFD control points, and blue spheres are the axial control points. Starting from
the undeformed geometry in Figure 3a, sweep is added by pulling the outboard control points back as per Figure 3b; as
the axial curve is deformed, each cross-section is translated or rotated to maintain its position and orientation relative to
the curve, in turn deforming the FFD volume, embedded surface control points, and then the surface itself.

Finally, a note on nomenclature employed in this work. The FFD system consists of three modes of deformation
corresponding to the three types of structure that the optimizer may manipulate: axial control points, cross-sectional
control points, and cross-sections (which, while composed of cross-sectional control points, can be deformed
independently of the individual points). Each mode of deformation may have one or more DOFs: cross-sectional control
points may only have a single DOF (section shape), cross-sections may have up to two (twist and taper), and axial
control points may have up to three (sweep, span, and dihedral). Design variables (DVs) refer to the individual values
the optimizer may manipulate during optimization; a single DOF may encompass multiple DVs.

4

(a) Twist control (b) Taper control (c) Section control

Fig. 2 Cross-sectional design variables

(a) Undeformed (b) Deformed

Fig. 3 Axial deformation

III. Dynamic Geometry Control
The overall structures of the progressive and adaptive algorithms are laid out in Figure 4. In both cases refinement is

initiated by a refinement criterion which is designed to detect when the current search space (the design space defined
by the current geometry control scheme) has been exhausted. From there the progressive algorithm is straightforward:
the user-defined instructions are read in from a file, the desired points are added to the geometry control scheme,
and optimization proceeds. This process is repeated a pre-determined number of times, and once the final requested
refinement has been completed, the optimizer will iterate in the current search space until it exits or the user requests
termination.

The adaptive algorithm is considerably more involved. Once refinement is initiated, the algorithm generates a
number of candidate search spaces, each one a particular refinement of the current geometry control scheme. Each
of these candidates is then ranked based on an estimate of its potential, which can be obtained in several ways, and
the best candidate is accepted. Two termination criteria, discussed below, are used to control the behaviour of the
adaptive algorithm. The local termination criterion is checked after each candidate is accepted and determines whether
to continue refining or proceed with optimization. The global criterion is checked after the local criterion is satisfied
and controls whether this will be the final search space to explore. In the adaptive algorithm there is not generally
a manual limit placed on the number of times refinement may occur, and optimization will proceed in this cycle of
optimization-exhaustion-refinement until the global termination criterion is met, at which point optimization proceeds
in the final search space until the user is satisfied that all optimization convergence criteria have been satisfied. Salient
details of each of these stages are provided below.

A. Initiating and Terminating Refinement
One of the largest considerations in designing a DGC algorithm is when to refine the design space. Several di�erent

approaches are present in the literature. Han and Zingg [47] converged the problem fully within each search space,
whereas Anderson and Aftosmis [50] initiate refinement when objective improvement has become asymptotic. Masters
et al. [46] use a similar method, but employ several rolling averages to smooth out the refinement switch and include
both the objective and constraints in the formulation. Anderson and Aftosmis showed that fully converging, as in Han
and Zingg, tended to be less e�cient than their method, and internal testing by the present authors suggests Anderson
and Aftosmis’ method produces consistent results and is also easy to tune as desired; all tests presented results utilize a
variation of this slope criterion.

5

(a) Progressive algorithm

(b) Adaptive algorithm

Fig. 4 Dynamic geometry control algorithms

The refinement criterion implemented here signals that the current search space is exhausted, and therefore refinement
is due, when:

�M
�Mlocmax

 Aloc for =loc consecutive iterations, or

�M
�Mglbmax

 Aglb for =glb consecutive iterations
(1)

where �M is the merit function reduction between the last two design iterations, �Mmax is the largest reduction
seen since previous refinement (locmax) or the beginning of optimization (glbmax), and the A and = parameters are
user-defined. Merit function is preferred over the objective as merit is generally monotonically reducing and so makes
evaluation of these criteria more straightforward. The dual criteria augment Anderson’s criterion by separating it into
local and global components. The local criterion is meant to initiate refinement when the current search space has been
exhausted, while the global criterion protects against the optimizer becoming trapped in a poor search space that never
produces an appreciable reduction in the objective, and so may fail to make su�cient progress but never trigger the local
criterion. In practise, the former criterion dominates in early search spaces while the latter criterion is often more active
later in the design process when merit gains are more likely to be marginal.

Once refinement has begun, some metric must be used to determine when to stop and proceed with optimization.
For progressive geometry control this is quite simple: refinement proceeds until all requested control has been added to
the search space. For adaptive geometry control, refinement is terminated when:

(A8 �ABL)
Amax

 0loc for <loc consecutive candidates, (2)

where A8 is the potential of the 8th candidate to be added to the design space, ABL is the potential of the design space
without A8 , Amax is the best potential found so far during the current refinement, and 0 < 0loc < 1 and <loc > 0 are
user-defined parameters. The values of A are estimates of the objective reduction that a given design space would
permit beyond the current point; this is the metric by which the adaptive candidates are ranked and their calculation is
discussed in Section III.B. This criterion then ends refinement when the expected benefits of further refinement drop
below some user-defined threshold. When the termination criterion in equation 2 is met, a second “global” refinement
termination criterion is checked as well. This determines whether the optimization problem has converged with respect
to refinement. The global criterion is tripped if

Minit �Mfinal

Minit
 0glb for <glb consecutive search spaces (3)

where Minit is the merit function at the first iteration in the search space, Mfinal is the merit function at refinement, and
0 < 0glb < 1 and <glb > 0 are user-defined parameters. This criterion states that if the total reduction in merit across the

6

Table 1 Typical Values for Refinement Parameters

Parameter Typical Range

Aloc 0.05 - 0.10
Aglb 0.005 - 0.01
=loc 5-10
=glb 25-50
0loc 0.001 - 0.10
0glb 0.005
<loc 2
<glb 3

Fig. 5 Candidate generation binary search tree

last few design spaces is below some user-defined percentage, then the problem has converged. If satisfied, optimization
is not terminated, but rather a note is made to prevent any further refinements and the optimizer is permitted to run in
the current design space until convergence criteria are satisfied, SNOPT exits of its own accord, or the user terminates
the job.

Typical values for the parameters in equations 1, 2, and 3 are given in Table 1. Tests indicated that DGC performance
is largely insensitive to values of A, and optimal ranges of this value are not highly problem dependent. On the other
hand, while adaptive performance was found to be fairly stable with respect to the value of 0loc for detailed-design
problems, sensitivity is much higher for problems more typical of preliminary and exploratory design. These design
spaces have previously been noted as having a high risk of multimodality [26] and it is possible that this sensitivity is in
fact an expression of multimodality within the problem. This could have major implications for the use of adaptive
DGC in exploratory optimization, but further investigation must await a future work.

B. Candidate Generation and Ranking
For adaptive geometry control we must generate a list of possible refinements and then formulate some way to rank

their usefulness. This is achieved through the use of a binary search tree, as illustrated in Figure 5. The baseline level is
composed of a list of all existing control points and each lower level is then formed by inserting a new control point
halfway between the control points at the previous level (while retaining all existing points). In this way a finite number
of candidates can be produced at any level, while still approaching a continuous geometry control scheme as the depth
goes to infinity. In our refinement scheme, no candidate can be considered until at least one predecessor control point has
been added, for instance in Figure 5, candidates 2(1) and 2(2) could not be considered until candidate 1(1) was added.

Once the candidates are generated each one is ranked, the best candidate is added to the baseline, and the process is
repeated with the updated baseline until the exit criterion is satisfied. By default, the algorithm may only examine a

7

Fig. 6 Quadratic fit of candidate design space. Quadratic objective in blue, linearized constraints in orange

single control point at a time, in which case in Figure 5 the first stage of refinement would see only two candidates: 1(1)
and 1(2). Suppose that 1(2) is then added; assuming that the exit criterion is not satisfied, a second stage of refinement
is started in which the algorithm would now see three candidates: 1(1), 2(3), and 2(4), with the latter two now being
available by virtue of the addition of their predecessor 1(2).

For a given stage of refinement, evaluation of the binary search tree will create a list of dozens or even hundreds of
candidates which must be ranked. This ranking is performed on the basis of “potential”, which is expressed in the value
of the candidate “indicator”. The indicator is an estimate of the maximum objective reduction that a given candidate
refinement would permit relative to the current objective. We obtain this estimate via a quadratic fit of each candidate
design space subject to a linearized set of constraints, this forms a constrained quadratic minimization problem, the
solution of which is an estimate of the minimum feasible objective in the search space. This is illustrated in Figure 6
for a simple case with just two design variables; the indicator for this candidate is the di�erence between the current
objective (Jrefine) and the objective at the minimum of the constrained quadratic fit (Jmin). The lower Jmin is for a
candidate, the greater the reduction in objective this candidate theoretically permits. The optimization problem we solve
for each candidate can be formally stated as

minimize �J =
✓
mJ
mbX · �bX

◆
+ 1

2

⇣
�bX · b��bX⌘

Subject to ⇠0
0,8 +

✓
m⇠0

8

mbX · �b̂
◆
= 0,

(4)

where J is the objective, bX are the design variables in the candidate search space, b� is the Hessian of that search space,
and ⇠0 are the active constraints. Note that ⇠0 will often contain a mix of equality and inequality constraints, but as
they are all active they may be treated uniformly as equality constraints. If the candidate permits a further decrease in
objective, we expect �J to be a negative value and so we define our indicator as A = ��J . As a constrained quadratic
optimization problem, finding the minimum for a given set of values is not a taxing problem. However, forming each
system requires us to obtain three key pieces of data: 1) mF/mbX, gradients of the objective and each constraint in the

8

candidate search space, 2) ⇠0, the set of active constraints, and 3) b�, the objective Hessian in the candidate search space.

1. Gradient Calculation
Gradients can be obtained cheaply and at high accuracy by noting that in Jetstream the gradient of each function F

is calculated as
mF
mX =

mF
mb

mb
mX , (5)

where b are the embedded surface control points, X are the FFD design variables, and F is any function. The expensive
components of the gradient calculation, including the adjoint solutions, are contained within mF/mb, while mb/mX is
purely geometric and may be calculated analytically or estimated cheaply and to arbitrary accuracy with the complex
step method [65]. Refining the FFD invalidates the latter term as mb/mX < mb/mbX; however, mF/mb is a function
of the surface parameterization, not the FFD, and so will remain constant if the geometry does not deform during
refinement. As we guarantee that the surface does not move during refinement, we can save the embedded gradients
from the current search space and for each candidate calculate the overall gradients as

mF
mbX =

mF
mb

mb
mbX , (6)

for only the negligible cost of evaluating mb
mbX . Even for progressive geometry control, for which candidate’s gradients are

not needed, preserving the surface is essential to ensuring good performance in the refined search space. To achieve this
objective, a combination of knot insertion [66] and re-embedding algorithms is used to ensure that the surface is fixed
throughout the refinement process.

2. Defining the Set of Active Constraints
The active set can also be approximated in a cost-e�ective and uniform manner. In previous quadratic fit methods

[51] it was assumed that the active set at the minimum of the quadratic fit was equal to the active set at the point of
refinement, i.e. ⇠0

refine = ⇠0
min. The assumption of a fixed active set has also been made by other authors who have

included constraints in their indicators (though without fitting the design space) [49]. This is convenient as it makes the
active set simple to obtain and in the case of quadratic indicators allows equation 4 to be solved in a single iteration.
However, unless the minimum in the refined search space is very close to the point of refinement it is unlikely that the
active sets at both points are equal. Since it can be argued that the purpose of adaptive geometry control is to find a new
search space whose minimum is as far as possible from the current point, it is likely that this assumption is invalid.

This issue can be addressed by noting that the linearized constraints enforced in equation 4 allow us to estimate what
the value of any constraint, not merely those already active, would be at a new point in the design space, permitting the
use of an active set method. The active set method, as shown in Figure 7, consists of solving equation 4 subject to a
given set of constraints, updating the active set to add violated constraints or remove unnecessary ones, solving the
problem again subject to the new active set, and repeating the process until there are no more constraints to add or
remove. This requires that equation 4 be solved multiple times, but this is a negligible cost and permits a greater degree
of accuracy in the ranking of each candidate.

3. Hessian Formulation
The final outstanding issue in the evaluation of the quadratic fit is the formulation of b�, the objective Hessian in the

candidate search space. Obtaining accurate Hessian data is not straightforward and has significant influence over the
behaviour of the adaptive algorithm. Four Hessian approximations are examined, and these form the basis of the four
adaptive algorithms tested in this work.

The simplest approach, which was examined by Anderson and Aftosmis [50], is to assume that the Hessian is the
identity matrix. This has the advantage of solely using cheap and accurate first-order sensitivity data, but without
making the unrealistic assumption that the objective of an aerodynamic shape optimization problem is linear. We denote
this indicator as AQI and it is obtained by simplifying equation 4 to

�AQI :=

8>><
>>:

minimum
⇣
mJ
mbX · �bX⌘

+ 1
2

⇣
�bX · �bX⌘

subject to ⇠0
0,8 +

⇣
m⇠0

8

mbX · �bX⌘
= 0

(7)

9

Fig. 7 Active set method

This must be done with caution, as assuming that b� = � is not removing the Hessian from consideration, but merely
assuming a specific set of values for it. Assuming b� = � is no more valid than any other arbitrary SPD matrix and a
curvature of 1 will produce very di�erent behaviour in the indicator depending on the scaling of the problem. Therefore,
it is advisable to scale the identity matrix to more closely match the scale of the problem at hand. If refinement is
occuring after the 8th design iteration, we can scale the identity Hessian as

� = a�

a =

vuuuuutÕ
9

⇣
mJ(8)
mX 9

� mJ(8�1)
mX 9

⌘2

Õ
9

⇣
X(8)

9 � X(8�1)
9

⌘2

(8)

where � is the identity matrix and X(8)
9 is the 9 th entry of the design variable vector at the 8th design iteration. This

scaling factor is commonly used to initialize iterative Hessian approximations such as the BFGS method [67] and
should be su�cient to ensure that the Hessian is approximately of the correct order of magnitude. Substituting this into
equation 4 and simplifying, we find the equation for the scaled identity indicator, denoted as AQIS, is:

�AQIS :=

8>><
>>:

minimum
⇣
mJ
mbX · �bX⌘

+ a
2

⇣
�bX · �bX⌘

subject to ⇠0
0,8 +

⇣
m⇠0

8

mbX · �bX⌘
= 0

(9)

The identity matrix approach is simple and inexpensive, but of low accuracy. Many gradient-based optimization
algorithms build a Hessian approximation as part of their operation which could be leveraged for the quadratic
fit. However, not all algorithms permit the user to extract the Hessian and so a more general approach to building
higher-accuracy Hessian approximations is desirable. Later work by Anderson [51] suggests the use of a BFGS
approximation of the Hessian, achieved by first obtaining a BFGS approximation of the Hessian in the current search
space (�) and then projecting this approximation into each candidate search space to locate b�. The downside of this
method is that the prolongation operator to project the Hessian into the new search space is dependent on the objective
function used, and for easy portability an objective-agnostic Hessian approximation would be preferred.

For this reason we have developed two alternative Hessian approximations which do not require the objective-specific
prolongation operators employed by Anderson, one based on the BFGS approximation and the other the Symmetric
Rank-1 (SR1) [67] approximation. The BFGS approach is ideal for optimization, as when implemented as part of a
quasi-Newton optimization algorithm it guarantees an SPD Hessian matrix. The SR1 method has no such guarantee,
but theoretically o�ers superior accuracy compared to the BFGS approximation. The approximations themselves are

10

commonly written as

� (8+1)
B = � (8)

B + yy|
y|s �

� (8)
B ss|

⇣
� (8)

B

⌘|
s|� (8)

B s

� (8+1)
R = � (8)

R +

⇣
y � � (8)

R s
⌘ ⇣

y � � (8)
R s

⌘|
⇣
y � � (8)

R s
⌘|

s

s = X(8+1) � X(8)

y = rF (8+1) � rF (8)

(10)

where �B is the BFGS approximation, �R is the SR1 approximation, X(8) is the design variable vector at the 8th iteration
and F is the function whose Hessian is being approximated. Substituting these Hessian approximations into equation 4
yields the equations for the last two indicators examined in this work:

�AQB :=

8>><
>>:

minimum �J =
⇣
mJ
mbX · �bX⌘

+ 1
2

⇣
�bX · b�B�bX⌘

subject to ⇠0
0,8 +

⇣
m⇠0

8

mbX · �bX⌘
= 0

(11)

�AQR :=

8>><
>>:

minimum �J =
⇣
mJ
mbX · �bX⌘

+ 1
2

⇣
�bX · b�R�bX⌘

subject to ⇠0
0,8 +

⇣
m⇠0

8

mbX · �bX⌘
= 0

(12)

Our approach di�ers from that of Anderson in that rather than applying the algorithms in the current search space
and then projecting the Hessian into each candidate search, we instead seek to directly obtain an approximate Hessian in
each candidate search space by applying the algorithm within it. To accomplish this, during optimization the surface
gradient of each function mF (8) /mb is saved. Once refinement has been triggered and a given candidate created by
refining the geometry control, at each of these iterations the algorithm solves the geometric shape-matching subproblem

minimizebX(8)

h
S(X(8)) � Ŝ(bX(8))

i2
, (13)

where S and X(8) are the surface and design variables in the unrefined search space at the 8th iteration, and Ŝ and bX(8)

are the corresponding values in the candidate search space. This is a purely geometric minimization problem and with
proper parallelization is not a significant cost. The result of this solution is a design variable vector bX⇤

in the candidate
search space which produces the same surface, and therefore same aerodynamic solution, as was produced at the 8th

iteration in the unrefined search space. Once this has been located, equation 6 is leveraged to obtain mJ/mbX(8) and the
resulting design variable vector and gradient pair are fed into equation 10, producing an approximation of the Hessian in
the candidate search space. This is in e�ect retroactively applying the BFGS and SR1 Hessian approximations to the
candidate design space as if it had always been in use, and for this reason we refer to this approach as the “retroactive
Hessian” method; the advantage of this approach is that it is equally applicable to any objective function or flow regime.

IV. Results
With the details of the progressive and adaptive algorithms established, we will now turn to several cases testing and

illustrating their performance. The first two cases are inviscid three-dimensional optimization problems focused on
testing the adaptive indicators. The last two cases are RANS-based aerodynamic shape optimization problems, one
representative of detailed design and the other representative of optimization problems typical of unconventional aircraft
configuration research; for these cases we examine the behaviour of static geometry control and the performance of both
progressive and adaptive DGC.

A. Adaptive Indicator Studies
The purpose of the following study is to directly test the accuracy of the indicators. Two cases are attempted, each

based on the inviscid, transonic optimization of an initially unswept, planar wing with a NACA 0012 cross-section. Both
cases use the same baseline geometry control and mesh, depicted in Figure 8, and take drag as the objective function.

11

(a) Baseline geometry (b) Baseline geometry control (c) Baseline mesh

Fig. 8 Baseline geometry, geometry control and mesh for full scale indicator verification

The baseline geometry control is intentionally very sparse, and the baseline wing in transonic flow begins with a large
shock over the upper surface which is di�cult to eliminate, providing plenty of room for improvement through DGC.
For each case, the baseline design space is optimized until the refinement criterion is satisfied and adaptive enrichment
initiated. At this point, each candidate has its potential estimated using all four indicators before being optimized to
completion to obtain its true potential, allowing each indicator to be correlated to actual potential. A quadratic fit, even
one with highly accurate Hessian information, is a significant simplication of the real design space and so we are not
necessarily expecting to accurately predict the magnitude of each potential, but this is not necessary for the indicator
to be e�ective. If we can achieve reasonable accuracy in ranking the potential of the candidate search spaces, then
the indicator should be successful in guiding refinement. Additionally, to test the value of the active set method, each
indicator is tested both with and without the active set method; in the latter case, the current active set is used for the
solution.

The first of the two cases permits only changes to section shape and is defined as

minimize ⇠⇡

w.r.t. X
subject to ⇠! = 0.1

+ � +init

(14)

where + is the total volume and an additional linear constraint requires that section thickness at no point be less than
50% of the initial value. This case was designed so that there would be clear winners and losers among the candidate
refinements; each indicator must be able to reliably di�erentiate between these two families of candidates, otherwise it
is unlikely to be useful in practice. Figure 9 shows the resulting correlations.

Examining the vertical distribution of points we can see that we have obtained the desired distribution of actual
potential, with one family of near-zero potential candidates clustered about the origin and another family of competitive
candidates clustered much further up. All four indicators are e�ective at di�erentiating between the two families,
without any competitive candidates ranked as non-competitive or vice-versa. However, the indicators consistently
introduce a third family by splitting the competitive family in two. This tendency to smear high-potential candidates
and exaggerate their di�erences in performance will be noted in the following case as well and suggests the indicators
may be oversensitive to small changes in these design spaces. Nevertheless, this does not prevent them from producing
accurate rankings, and within the competitive family, the indicator value correlates well with actual potential. Hence,
any of these indicators would permit the adaptive algorithm to select promising candidates.

To study the impact of the active set method, results without the active set method (blue) are superimposed on the
results with the active set method (orange), therefore in cases where the active set method has no impact only the blue
points will be visible and the overall activity of the active set method can be deduced at a glance from the number of
visible orange points. For the AQB and AQI indicators, the active set method has a negligible e�ect, while for the
AQR and AQIS indicators it has a much greater visibility, in particular for the rightmost candidates (those with greatest
potential). This is intuitive as a large potential (all else being equal) suggests a larger step to the minimum, and a greater
chance that additional constraints become active. While in this case the active set method does not significantly change
candidate rankings its increased relevance to higher-potential candidates is interesting, as these are the candidates the

12

(a) AQB (b) AQR

(c) AQI (d) AQIS

Fig. 9 Predicted vs. actual candidate search space potential for section-only inviscid case

algorithm is most likely to select and those that we most want to accurately model. Finally, it is telling how similar the
correlations are for all of the fitted indicators; in this particular design space a less advanced Hessian formulation does
not produce a degradation in accuracy.

The second inviscid optimization problem is an exploratory lift-constrained drag minimization permitting changes
to twist, taper, section shape, and sweep angle meant to test the behaviour of the indicators in a more complicated
optimization problem. This case uses the same baseline geometry, geometry control, and mesh as the previous case and
is formally defined as

minimize ⇠⇡

w.r.t. X
subject to ⇠! = 0.1

+ � +init

(= (init

(15)

where (is the projected area and + is the total volume. The minimum thickness constraint from before is retained, as
is the test procedure, and the resulting correlations are provided in Figure 10. The correlations are somewhat noisier

13

(a) AQB (b) AQR

(c) AQI (d) AQIS

Fig. 10 Predicted vs. actual candidate search space potential for exploratory inviscid case

than previously, not surprisingly for a more complicated problem, but we still observe a good correlation between
indicators and actual potential. As before the indicator appears to become more sensitive for candidates with larger
actual potentials, shown by a scatterplot that is predominantly vertical to the left and increasingly horizontal towards
the right. The combination of additional constraints and generally larger potentials for each candidate has made the
active set method much more visible in this case; in particular for the AQB and AQR indicators deactivating the active
set method significantly changes both the indicator values and their relative rankings. We also again see no sizeable
performance gap between the nominally more accurate AQB or AQR indicators and the more basic AQIS, lending further
credence to the theory that the value of accurate Hessian data may be less than expected.

These plots show that good performance can be achieved by assuming a static active set. Nevertheless, we believe
the active set method to be advantageous as it is most active in the candidates of greatest interest and automatically
vanishes in cases where it is of less importance. Therefore, all further cases are run with the active set method active.
This study has also clouded the potential advantages of Hessian information by showing largely similar performance
regardless of the accuracy of the Hessian data used in constructing the fit. Despite the similarity in the performance of
the various Hessian approximations, the use of a quadratic model of the design space is nevertheless important. In order
to demonstrate this, we repeat the above tests using a “non-fitting” indicator, that is an indicator which does not attempt
to model the shape of the design space. The indicator chosen for this test was developed by He et al.[49], which we

14

(a) Section-only case (b) Exploratory case

Fig. 11 AGH accuracy

denote as AGH and is defined as

AGH :=
=H’
8=1

©≠
´
mJ
mb-8

�
=6’
9=1

mC0
9

mb-8

™Æ
¨

2

. (16)

This ranks each candidate based on the value of the objective gradient, penalized by the gradients of any active constraints.
This formulation accounts for the fact that while a large |mJ/m-8 | value suggests high potential, an active constraint
with a large |m⇠/m-8 | value of the same sign may block any attempt to move a long distance in the optimal direction,
and is a considerable improvement over more basic non-fitting indicators like the earlier work of Han and Zingg [47],
which ranked solely based on objective gradient and relied on heuristics to account for constraints. Nevertheless, when
this indicator is applied to the two previously discussed cases, as in Figure 11, we see that it struggles to reliably predict
potential. Non-fitting indicators have been used to produce reasonable results before [47, 49], and these methods may
still produce performance improvement versus static design spaces, however, they are likely to be less e�cient or reliable
than fitting indicators. The present results indicate that while using accurate Hessian data in the quadratic fit does not
impart significant advantage to the indicator, the quadratic fit itself has value in modelling the behaviour of a candidate
design space.

B. Transonic, Viscous Wing Optimization
We now study the first of two RANS aerodynamic shape optimization problems in this work. This is the twist and

section optimization of the ADODG CRM wing-only geometry in transonic flow subject to the RANS equations, a
standard benchmark problem defined as

minimize ⇠⇡

w.r.t. X
subject to ⇠! = 0.5

+ � 0.2617 MAC3

⇠" � �0.17

(17)

where ⇠⇡ is the drag coe�cient, ⇠! is the lift coe�cient, + the wing volume, and ⇠" the pitching moment coe�cient.
A minimum thickness constraint is enforced requiring that the sectional thickness at no point be less than 85% of
the initial value. The baseline geometry, geometry control system, and mesh are illustrated in Figure 12 with mesh
parameters provided in Table 2. The S0 baseline geometry control in Figure 12b is somewhat coarser than what would

15

(a) Baseline geometry (b) Baseline (S0) geometry control (c) Baseline mesh

Fig. 12 Baseline geometry, geometry control, and mesh for CRM

Table 2 CRM mesh parameters

Nodes 1,068,856
Blocks 40

O�-Wall Spacing 7.3 ⇥ 10�7 MAC
H+ 0.13

normally be used for this problem, particularly in the chordwise direction, but is nevertheless a fairly reasonable control
scheme. A static study was first undertaken to explore how this problem scales with dimensionality by creating a
sequence of five progressively finer static schemes, referred to as S0 through S4. Each scheme was created by uniformly
refining the previous scheme, inserting a new control point halfway between each existing pair. The resulting series
ranges from S0, with a fairly standard 54 design variables, to S4 with 8019 design variables, nearly two orders of
magnitude finer than geometry control schemes used in the past. Each of these static schemes was optimized to
convergence or failure, at which point the progressive and adaptive DGC algorithms were applied using the parameters
in Table 3; the progressive algorithm begins in S0 and moves through each of the static schemes in turn while the
adaptive algorithms, also starting in S0, are free to refine as desired.

Merit function convergence histories for all cases are plotted in Figure 13, with optimality and feasibility for the static
cases in Figure 14 and the DGC cases in Figure 15. Table 4 summarizes the results for each case, including the number
of design iterations until convergence or termination, the maximum number of design variables, and the minimum drag
in counts. For unconverged cases the reported number of design iterations is simply how long it was permitted to run
before being terminated; for converged cases this value is the number of iterations until merit improvement had planed
o� and feasibility was satisfied. This is a subjective measure meant to communicate at a glance how quickly a given
case converged, but the complete convergence histories can be seen in Figures 13, 14, and 15. Note that the drag values
reported in Table 4 are not mesh converged; as the purpose here is to compare performance across di�erent geometry
control schemes with identical meshes, the optimization mesh is su�cient.

Regarding the static cases, the observed trends are almost exactly as expected. Refining from S0 through S2,
convergence becomes slower and deeper; as refinement continues past S2 into S3 and S4, performance breaks down
and achieving convergence becomes increasingly expensive. One unusual finding in this case is that the finest S4 level
actually converges somewhat faster than the coarser S3 level. There is no clear reason for this to be the case, but is
likely explained by the optimizer managing to find a sequence of good iterates early in the problem, and this does not
change the overall noted trends. For clarity all of the convergence plots are truncated after 400 design iterations but here,
and wherever else possible, each case was permitted to run until failure or convergence. S4 encountered numerical
di�culties and exited after 420 design iterations having found a drag of 201.3 counts, while the S3 was manually
terminated after 728 design iterations with a drag of 201.1 counts.

These results illustrate that good convergence is possible for this problem using an ideal static geometry control
scheme, e.g. S2, and we now consider the question of whether DGC can match or exceed this performance without
a priori knowledge of the design space. The progressive geometry control, plotted as a red dashed line, starts in S0

16

Table 3 DGC parameters for CRM case

Parameter Value

Aloc 0.05
Aglb 0.005
=loc 5
=glb 25
0loc 0.005
0glb 0.005
<loc 2
<glb 3

Fig. 13 Merit histories for CRM case

and sequentially moves through each static scheme. This case is able to achieve good convergence, and Figure 13 and
Table 4 illustrate that it performs favourably compared to the static schemes. While the progressive case converges in
a similar number of iterations as S2, it is able to achieve deeper convergence than any of the static cases within 400
design iterations, producing a final drag roughly a half count lower than S2, the best static case, and over 3.5 counts
lower than S0. This is achieved in substantially fewer iterations than the comparably fine S3 and S4 static spaces while
simultaneously reducing demands on the user. Achieving the best results via static control would require the user to
know that S2, or something like it, is ideal for this problem. However a novice user would be able to achieve even better
results with progressive control simply by generating a sequence of geometry control schemes, without any insight
required as to which are best or worst performing.

Like progressive geometry control, adaptive control reduces requirements on the user by automating the design
of the geometry control, with the potential for further acceleration by focusing control in regions of greatest interest.
The AQIS and AQI adaptive DGC approaches perform particularly well, taking respectively 56 and 106 fewer design
iterations than the progressive case to obtain approximately the same drag, and doing so with minimal knowledge
requirements on the part of the user. The AQR and AQB methods perform poorly; while both have found or on track to
find lower drag than the fastest static case, S2, their convergence is significantly slower than the other DGC methods.

Some discussion is warranted as to why the indicators based on iterative Hessian approximations perform so poorly
compared to the identity-based approaches. The poor performance of AQR is not altogether surprising. The use of
the SR1 Hessian is a trade-o� between its its generally greater accuracy (relative to the BFGS approximation) and its
inability to guarantee an SPD Hessian; if increased Hessian accuracy is of minimal advantage (as results thus far have
suggested), then we would expect uneven performance from AQR. The behaviour of AQB is interesting, as for the first

17

(a) Feasibility (b) Optimality

Fig. 14 Static convergence for CRM wing optimization

(a) Feasibility (b) Optimality

Fig. 15 DGC convergence for CRM wing optimization

150 design iterations the AQB and AQIS methods shadowed each other before diverging. It is likely relevant that up
until this point the number of design variables in both cases were roughly similar, with AQIS having 550 DVs and the
AQB having 605. However, past this point AQIS began refining much more aggressively than the BFGS-based indicator,
with the former growing the design space 50% faster than the latter over the proceeding 75 iterations. This suggests that
the poor performance may be more a matter of refinement timing than the accuracy of the indicator. If so, then minor
tweaks to the refinement termination criterion could improve convergence.

The final question relates to the surprisingly good performance of AQI, which is both the simplest and most e�ective
indicator in this case; the explanation may again be the number of design variables. While it ultimately produced more
design variables than any other case, for much of the first 150 design iterations AQI produced much coarser search
spaces than any other indicator, only deeply refining much later during optimization. Why this would be advantageous
here comes down to clustering. This geometry begins with a large shock on the upper surface and every tested indicator
clusters large numbers of cross-sectional control points in this region. This is exactly what the adaptive algorithm is
designed to do; however, excessive clustering can cause numerical issues with the B-splines that would not be captured

18

Table 4 Results summary for CRM case. Unconverged cases denoted with ⇤.

Case Design Iterations
(Convergence)

Max
DVs

Drag
(Counts)

S0 50 54 203.5
S1 150 165 201.2
S2 300 567 200.5
S3* 728 2091 201.1
S4* 420 8019 201.3
% 306 8019 199.9

AQB* 296 1875 200.1
AQR* 273 1469 200.7
AQIS 250 1999 199.8
AQI 200 2380 200.0

(a) Region 1 (b) Region 2

Fig. 16 Chordwise clustering of control points in two regions for AQIS (Green) and AQI (Orange)

by the potential indicator, leading to poor convergence and candidates underperforming their potential. Figure 16
compares the chordwise distribution of cross-sectional control points for the AQI and AQIS indicators at two key points
along the surface of the wing after 100 function evaluations, and it is clear that the former is substantially less clustered
simply by virtue of having fewer control points. This stands in contrast to the AQB indicator, which appears to have
been hampered by having too few design variables. The di�erence likely lies in the timing: AQI benefited early on by
focusing control around the shock without over-clustering; AQB and AQI su�ered, relatively speaking, early on due
to their degree of clustering. Once the shock had been largely eliminated and further global refinement was needed
to continue optimization, the more conservative AQB could not match the performance of the more aggressive AQIS
indicator.

Together, these results suggest several conclusions: 1) adaptive and progressive geometry control are capable of
o�ering improved performance and increased automation in detailed design; 2) adaptive performance can be further
improved by developing a method to prevent excessive clustering while still permitting the algorithm to focus control,
and 3) the criteria for terminating adaptive refinement may require further tweaks to ensure performance is consistent
across di�erent indicators. The latter two points in particular are a focus of ongoing development work on the DGC
algorithm.

C. Transonic, Viscous Hybrid Wing-Body Optimization
The final examined case is the transonic lift-constrained drag-minimization of an HWB subject to the RANS

equations. The active degrees of freedom are twist, taper, and section shape, in addition to an angle of attack design
variable. Enforced non-linear constraints include pitching moment, minimum volume, and a cabin shape constraint
meant to ensure adequate passenger capacity in the final geometry. The problem can be formally stated as

19

(a) Baseline geometry (b) Baseline (S0) geometry control (c) Baseline mesh

Fig. 17 Geometry, mesh and control for HWB baseline design

Table 5 HWB mesh parameters

Nodes 2,314,368

(Nodes)� 2
3 5.72 ⇥ 10�5

Blocks 128
O�-Wall Spacing 3.5 ⇥ 10�7 MAC

H+ 0.8

minimize ⇠⇡(

w.r.t. X
subject to ⇠!(= 0.12 MAC2

+ � 0.0786 MAC3

⇠" (= 0

(18)

where (is the projected area, and optimization is performed at a Mach number of 0.78 and a Reynolds number of 76
million. This is representative of preliminary design problems often encountered in the literature [11, 12], characterized
by the ability of the optimizer to create larger changes to the design, particularly planform changes, but with less freedom
than a fully-exploratory problem. The baseline geometry, geometry control, and mesh are shown in Figure 17, with
optimization mesh properties tabulated in Table 5. The baseline geometry control in Figure 17b is much coarser than
would generally be used for a problem such as this: there are just four control points per cross-section, arranged in two
rows of two, and there are only enough cross-sections to define the critical geometric transition points in the geometry.
The axial control points are similarly coarse, but as these are not used for this problem they are shown for illustration
purposes only. The geometry control was designed this way intentionally to establish a floor on the performance of
DGC performed by an inexperienced user initialized with an unfit-for-purpose baseline geometry control.

In the same vein as the CRM study, this baseline geometry control scheme was uniformly enriched by inserting a
new control point between each existing pair in order to create a sequence of static schemes labelled S0 through S5. To
represent an inexperienced practitioner, all of the static schemes use 2nd order (? = 1) B-splines, and to maintain a fair
comparison the DGC algorithms are not permitted to increase their order beyond 2. Due to the coarseness of the S0
level, six static schemes were created rather than the five used previously, and all six static levels were then optimized
as far as possible. Alongside the static cases, the progressive and adaptive DGC algorithms were also applied, using
the parameters given in Table 6. Due to the coarseness of the S0 geometry control we deviate slightly from the CRM
test procedure here. It was expected that S0 would struggle and S1, while still coarse, represents a more reasonable
initial geometry control; therefore two versions of the progressive geometry control were optimized: P0 which begins in
S0 and moves through all six static schemes, and P1 which begins in S1 and moves through the last five of the static
schemes. This allows P0 to test DGC performance starting from a manifestly unsuitable geometry control scheme and

20

Table 6 DGC parameters for HWB case Modify if parameters change

Parameter Value

Aloc 0.010
Aglb 0.001
=loc 5
=glb 25
0loc 0.100
0glb 0.005
<loc 2
<glb 3

(a) Static and progressive (b) P1 and adaptive

Fig. 18 Drag histories for HWB case

P1 to test performance from a more sensible starting point. All of the adaptive DGC methods were initialized in S1.
Drag convergence for all cases is plotted in Figure 18; to more clearly show the di�ering performance between the two
progressive cases we have provided two plots, Figure 18a compares the static cases with both progressive approaches,
while Figure 18b compares the four adaptive tested adaptive methods with the best progressive and static approaches.
Finally, overall results are summarized in Table 7.

As expected, S0 fails to meaningfully make progress; it is unable to reduce drag and lacks the necessary control
resolution to satisfy the optimization constraints, causing the optimizer to stall with extremely large values for optimality
and feasibility. Even for the static schemes which converged, insu�cient control has a stark e�ect on final drag, with S1
converging to a final drag 50% larger than S2. While too few design variables is clearly a potential problem in this case,
as we refine past S2 we observe that too many design variables is equally problematic. S3 runs for over 800 design
iterations before ultimately failing while S4 and S5 stall and exit within the first 100 iterations.

Figure 18a plots the drag convergence for both progressive cases alongside the static methods. Both progressive
approaches perform well, and Table 7 indicates that the final drag P0 locates is approximately 1% higher than the
best static case, but it converges to it roughly 20% faster. Both cases fully converged, so the di�erence in drag may
represent a degree of multimodality. P1, starting from the more reasonable S1 geometry control, produces nearly ideal
performance, converging 70% faster than the best static case to a slightly lower final drag.

Adaptive convergence is plotted in Figure 18b compared to the best progressive and static schemes, and we note
that all of the adaptive cases outperform the static geometry control schemes, o�ering faster and deeper convergence.
Looking broadly at the adaptive results, while all outperform the static cases and some outperform the progressive

21

(a) Feasibility (b) Optimality

Fig. 19 Static convergence for HWB case

Table 7 Results summary for HWB case. Unconverged cases denoted with *.

Case Design Iterations
(Convergence)

Max
DVs

⇠⇡(
⇣
MAC2

⌘

S0* 130 30 1.25 ⇥ 10�2

S1 25 72 9.31 ⇥ 10�3

S2 350 204 6.75 ⇥ 10�3

S3* 480 860 6.80 ⇥ 10�3

S4* 63 2340 8.01 ⇥ 10�3

S5* 49 8772 8.13 ⇥ 10�3

%0 275 8772 6.84 ⇥ 10�3

%1 100 8772 6.74 ⇥ 10�3

AQB 257 700 6.66 ⇥ 10�3

AQR 275 1134 6.51 ⇥ 10�3

AQIS 350 1856 6.60 ⇥ 10�3

AQI 250 1300 6.63 ⇥ 10�3

algorithm, there is a nearly 2% range in final drag and a 30% range in convergence time. Examining the final planform
shapes and geometry control schemes for three of the best performing DGC cases, shown in Figures 21 and 22, reveals
that these di�erences in performance may be partially due to multimodality.

The final geometries in Figure 21 are clearly distinct from one another; this is most obvious when comparing the
P1 final geometry to the adaptive results, but even the geometric di�erences between the AQI and AQR results, while
subtle, are su�cient to produce a 1.4% di�erence in final drag (equivalent to approximately 1.6 drag counts). These
di�erences would be enough to qualify each of these three results as a distinct local optimum according to the criteria in
[26], and that same work also confirms the presence of multimodality in design spaces similar to this. The concept of
multimodality is somewhat thorny in the context of DGC, as all three of these cases are technically independent design
spaces. However, we would expect that with su�cient refinement similar optimal geometries would be contained within
all three. Given the very fine nature of the final geometry control schemes shown in Figure 22, we believe that this

22

(a) Feasibility (b) Optimality

Fig. 20 DGC convergence for HWB case

(a) P1 (b) AQI (c) AQR

Fig. 21 Final geometries for selected DGC cases

should be the case. Therefore we are left with the conclusion that our DGC cases may be converging to distinct local
optima; this complicates our assessment of their performance, as it is di�cult to separate which gains or losses are due
to the quality of the algorithm and which are due to the quality of the local optimum the algorithm converged to. A study
of the relationship between DGC and multimodality to determine, among other questions, whether adaptive geometry
control has any e�ect on the amount of multimodal risk in a design space is an obvious candidate for future investigation.
Despite this ambiguity, we reiterate that all of the adaptive cases perform well and provide reliable convergence with a
high degree of automation.

23

(a) P1 (b) AQI (c) AQR

Fig. 22 Final geometry control for selected DGC cases

V. Conclusions
A novel dynamic geometry control algorithm has been developed and validated before being applied to two

aerodynamic shape optimization problems typical of detailed and preliminary design, respectively. Both progressive
and adaptive algorithms have proven capable of improving convergence while increasing automation, with the adaptive
geometry control generally o�ering deeper and occasionally faster convergence relative to the progressive approach.
The benefits of DGC are particularly pronounced in higher-dimensional preliminary design problems but gains are also
apparent in lower-dimensional detailed design problems. Results confirm the value of a quadratic fit for estimating the
potential of each candidate search space, but also demonstrate that accurate Hessian data is of lesser importance. A
quadratic fit based on a BFGS approximation of the Hessian performs poorly compared to simpler approximations, while
one based on the SR1 Hessian approximation produces variable results, achieving among the best results in one case and
the worst in another. Key areas requiring further study are preventing over-clustering in adaptive DGC, improvements to
the adaptive refinement termination criterion, and the intersection of multimodality and dynamic geometry control.
The latter could be e�ectively studied by combining the developed DGC algorithms with the gradient-based multistart
(GBMS) approach of Chernukhin and Zingg [68].

Acknowledgements
The authors wish to gratefully acknowledge the financial support of Bombardier Aerospace and of the Government of

Ontario through the Ontario Graduate Scholarship. All cases were performed using computational resources generously
provided by Compute Canada.

References
[1] Jameson, A., “Aerodynamic design via control theory,” Journal of Scientific Computing, Vol. 3, No. 3, 1988, pp. 233–260,

doi:https://doi.org/10.1007/BF01061285.

[2] Jameson, A., Martinelli, L., and Pierce, N. A., “Optimum aerodynamic design using the Navier–Stokes equations,” Theoretical
and Computational Fluid Dynamics, Vol. 10, No. 1, 1998, pp. 213–237, doi:https://doi.org/10.1007/s001620050060.

[3] Bisson, F. and Nadarajah, S., “Adjoint-based aerodynamic optimization of benchmark problems,” 53rd AIAA Aerospace
Sciences Meeting, No. 2015-1948, 2015, doi:https://doi.org/10.2514/6.2015-1948.

[4] Méheut, M., Destarac, D., Ben Khelil, S., Carrier, G., Dumont, A., and Peter, J., “Gradient-based single and multi-
points aerodynamic optimizations with the elsA software,” 53rd AIAA Aerospace Sciences Meeting, No. 2015-0263, 2015,
doi:https://doi.org/10.2514/6.2015-0263.

[5] Lyu, Z. and Martins, J., “Aerodynamic design optimization studies of a blended-wing-body aircraft,” Journal of Aircraft,
Vol. 51, No. 5, 2014, pp. 1604–1617, doi:https://doi.org/10.2514/1.C032491.

[6] Mura, G. L., Hinchli�e, B. L., Qin, N., and Brezillon, J., “Nonconsistent mesh movement and sensitivity calculation on adjoint
aerodynamic optimization,” AIAA Journal, Vol. 56, No. 4, 2017, pp. 1541–1553, doi:https://doi.org/10.2514/1.J055904.

24

[7] Epstein, B., Jameson, A., Peigin, S., Roman, D., Harrison, N., and Vassberg, J., “Comparative study of three-dimensional
wing drag minimization by di�erent optimization techniques,” Journal of Aircraft, Vol. 46, No. 2, 2009, pp. 526–541,
doi:https://doi.org/10.2514/1.38216.

[8] Reist, T. A., Koo, D., Zingg, D. W., Bochud, P., Castonguay, P., and Leblond, D., “Cross Validation of Aero-
dynamic Shape Optimization Methodologies for Aircraft Wing-Body Optimization,” AIAA Journal, 2020, pp. 1–15,
doi:https://doi.org/10.2514/1.J059091.

[9] Chen, S., Lyu, Z., Kenway, G., and Martins, J., “Aerodynamic shape optimization of common research model wing–body–tail
configuration,” Journal of Aircraft, Vol. 53, No. 1, 2016, pp. 276–293, doi:https://doi.org/10.2514/1.C033328.

[10] Ronzheimer, A., Hepperle, M., Brezillon, J., Brodersen, O., and Lieser, J., “Aerodynamic optimal engine integration at the
fuselage tail of a generic business jet configuration,” New Results in Numerical and Experimental Fluid Mechanics VIII,
Springer, 2013, pp. 25–32, doi:https://doi.org/10.1007/978-3-642-35680-3_4.

[11] Reist, T. A., Zingg, D. W., Rakowitz, M., Potter, G., and Banerjee, S., “Multifidelity Optimization of Hybrid Wing–
Body Aircraft with Stability and Control Requirements,” Journal of Aircraft, Vol. 56, No. 2, 2019, pp. 442–456,
doi:https://doi.org/10.2514/1.C034703.

[12] Meheut, M., Arntz, A., and Carrier, G., “Aerodynamic shape optimizations of a blended wing body configuration for several
wing planforms,” 30th AIAA Applied Aerodynamics Conference, No. 2012-3122, 2012, doi:https://doi.org/10.2514/6.2012-3122.

[13] Reist, T. A. and Zingg, D. W., “High-fidelity aerodynamic shape optimization of a lifting-fuselage concept for regional aircraft,”
Journal of Aircraft, Vol. 54, No. 3, 2017, pp. 1085–1097, doi:https://doi.org/10.2514/1.C033798.

[14] Gagnon, H. and Zingg, D. W., “Aerodynamic optimization trade study of a box-wing aircraft configuration,” Journal of Aircraft,
Vol. 53, No. 4, 2016, pp. 971–981, doi:https://doi.org/10.2514/1.C033592.

[15] Secco, N. and Martins, J., “RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes,” Journal
of Aircraft, Vol. 56, No. 1, 2019, pp. 217–227.

[16] Chau, T. and Zingg, D. W., “Aerodynamic shape optimization of a box-wing regional aircraft based on the
reynolds-averaged Navier-Stokes equations,” 35th AIAA Applied Aerodynamics Conference, No. 2017-3258, 2017,
doi:https://doi.org/10.2514/6.2017-3258.

[17] “Consolidated statement of continuing ICAO policies and practices related to environmental protection - Climate change,” 2019.

[18] Fraga, J., “Boeing 787: From the Ground Up,” Aero Magazine, Vol. 4, 2006.

[19] Nathan, S., “The wing master: Bombardier’s award-winning aerodynamic production,” The Engineer, October 2019.

[20] Owens, R., Hasel, K., and Mapes, D., “Ultra high bypass turbofan technologies for the twenty-first century,” 26th Joint
Propulsion Conference, 1990, p. 2397, doi:https://arc.aiaa.org/doi/abs/10.2514/6.1990-2397.

[21] Shuba, E. S. and Kifle, D., “Microalgae to biofuels:‘Promising’alternative and renewable energy, review,” Renewable and
Sustainable Energy Reviews, Vol. 81, 2018, pp. 743–755, doi:https://doi.org/10.1016/j.rser.2017.08.042.

[22] Piotrowski, M. and Zingg, D., “Smooth Local Correlation-Based Transition Model for the Spalart–Allmaras Turbulence Model,”
AIAA Journal, Vol. 59, No. 2, 2021, pp. 474–492.

[23] Hicken, J. E. and Zingg, D. W., “Parallel Newton-Krylov solver for the Euler equations discretized using simultaneous
approximation terms,” AIAA Journal, Vol. 46, No. 11, 2008, pp. 2773–2786, doi:https://doi.org/10.2514/1.34810.

[24] Koo, D. and Zingg, D. W., “Investigation into Aerodynamic Shape Optimization of Planar and Nonplanar Wings,” AIAA
Journal, Vol. 56, No. 1, 2018, pp. 1–14, doi:https://doi.org/10.2514/1.j055978.

[25] Wang, Q., Hu, R., and Blonigan, P., “Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations,” Journal of
Computational Physics, Vol. 267, 2014, pp. 210–224.

[26] Streuber, G. M. and Zingg, D. W., “Evaluating the Risk of Local Optima in Aerodynamic Shape Optimization,” AIAA Journal,
Vol. 59, No. 1, 2021, pp. 75–87.

[27] Fudge, D., Zingg, D., and Haimes, R., “A CAD-free and a CAD-based geometry control system for aerodynamic shape
optimization,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, No. 2005-451, 2005.

25

[28] Kenway, G., Kennedy, G., and Martins, J., “A CAD-free approach to high-fidelity aerostructural optimization,” 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, No. 2010-9231, 2010.

[29] VuÃina, D., Marini∆-Kragi∆, I., and Milas, Z., “Numerical models for robust shape optimization of wind turbine blades,”
Renewable Energy, Vol. 87, 2016, pp. 849–862.

[30] Hicks, R. M. and Henne, P. A., “Wing design by numerical optimization,” Journal of Aircraft, Vol. 15, No. 7, 1978, pp. 407–412.

[31] Secco, N., Jasa, J., Kenway, G., and Martins, J., “Component-based geometry manipulation for aerodynamic shape optimization
with overset meshes,” AIAA Journal, Vol. 56, No. 9, 2018, pp. 3667–3679.

[32] Jakobsson, S. and Amoignon, O., “Mesh Deformation using Radial Basis Functions for Gradient-Based Aerodynamic Shape
Optimization,” Computers and Fluids, Vol. 36, 2007, pp. 1119–1136.

[33] da Silva, J. P., Giraldi, G. A., and Apolinário Jr, A. L., “Data-driven optimization approach for mass-spring models
parametrization based on isogeometric analysis,” Journal of Computational Science, Vol. 23, 2017, pp. 1–19.

[34] Lu, X., Huang, J., Song, L., and Li, J., “An improved geometric parameter airfoil parameterization method,” Aerospace Science
and Technology, Vol. 78, 2018, pp. 241–247.

[35] Limkilde, A., Evgrafov, A., Gravesen, J., and Mantzaflaris, A., “Practical isogeometric shape optimization: parametrization by
means of regularization,” Journal of Computational Design and Engineering, 2020.

[36] Agromayor, R., Anand, N., Müller, J.-D., Pini, M., and Nord, L., “A Unified Geometry Parametrization Method for
Turbomachinery Blades,” Computer-Aided Design, Vol. 133, 2021, pp. 102987.

[37] Cinquegrana, D. and Iuliano, E., “E�cient Global Optimization Method for Multipoint Airfoil Design,” Advances in Evolutionary
and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, Springer, 2019, pp. 95–114,
doi:https://doi.org/10.1007/978-3-319-89988-6_6.

[38] Chen, W. and Ramamurthy, A., “Deep Generative Model for E�cient 3D Airfoil Parameterization and Generation,” AIAA
Scitech 2021 Forum, No. 2021-1690, 2021.

[39] Kedward, L., Allen, C. B., and Rendall, T., “Gradient-Limiting Shape Control for E�cient Aerodynamic Optimization,” AIAA
Journal, Vol. 58, No. 9, 2020, pp. 3748–3764.

[40] Beux, F. and Dervieux, A., “A Hierarchical approach for shape optimisation, Inria report 1868,” Attouch & Cominetti (1996)]
Attouch H., Cominetti R, 1996, pp. 519–540.

[41] Désidéri, J., “Hierarchical optimum-shape algorithms using embedded Bézier parameterizations,” Numerical Methods for
Scientific Computing, Variational Problems and Applications, 2003, pp. 45–56.

[42] Andreoli, M., Ales, J., and Désidéri, J.-A., “Free-form-deformation parameterization for multilevel 3D shape optimization in
aerodynamics,” Tech. Rep. 5019, INRIA, 2003.

[43] Duvigneau, R., Chaigne, B., and Désidéri, J.-A., “Multi-level parameterization for shape optimization in aerodynamics and
electromagnetics using a particle swarm optimization algorithm,” Tech. Rep. 6003, INRIA.

[44] Anderson, G. R., Nemec, M., and Aftosmis, M. J., “Aerodynamic shape optimization benchmarks with error control and
automatic parameterization,” 53rd AIAA Aerospace Sciences Meeting, No. 2015-1719, 2015.

[45] Masters, D., Taylor, N., Rendall, T., and Allen, C., “Progressive subdivision curves for aerodynamic shape optimisation,” 54th
AIAA Aerospace Sciences Meeting, No. 2016-0559, 2016.

[46] Masters, D., Taylor, N., Rendall, T., and Allen, C., “Multilevel subdivision parameterization scheme for aerodynamic shape
optimization,” AIAA Journal, Vol. 55, No. 10, 2017, pp. 3288–3303.

[47] Han, X. and Zingg, D. W., “An adaptive geometry parametrization for aerodynamic shape optimization,” Optimization and
Engineering, Vol. 15, No. 1, 2014, pp. 69–91.

[48] Masters, D. A., Taylor, N. J., Rendall, T., and Allen, C. B., “A Locally Adaptive Subdivision Parameterisation Scheme for
Aerodynamic Shape Optimisation,” 34th AIAA Applied Aerodynamics Conference, No. 2016-3866, 2016.

[49] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J., “Robust aerodynamic shape optimization - from a circle to an airfoil,”
Aerospace Science and Technology, Vol. 87, 2019, pp. 48–61.

26

[50] Anderson, G. R. and Aftosmis, M. J., “Adaptive Shape Control for Aerodynamic Design,” 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, No. 2015-398, 2015.

[51] Anderson, G. R., Shape Optimization in Adaptive Search Spaces, Ph.D. thesis, Stanford University, 2016.

[52] Sinsay, J. and Alonso, J., “A Heuristic Approach to Finding the Preferred Design Variable Parameterization for Optimization,”
57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. 2016-0415, 2016.

[53] Osusky, M. and Zingg, D. W., “Parallel Newton–Krylov–Schur Flow Solver for the Navier–Stokes Equations,” AIAA Journal,
Vol. 51, No. 12, 2013, pp. 2833–2851, doi:https://doi.org/10.2514/1.j052487.

[54] Hicken, J. E. and Zingg, D. W., “Aerodynamic optimization algorithm with integrated geometry parameterization and mesh
movement,” AIAA Journal, Vol. 48, No. 2, 2010, pp. 400–413, doi:https://doi.org/10.2514/1.44033.

[55] Osusky, L., Buckley, H., Reist, T., and Zingg, D. W., “Drag minimization based on the Navier–Stokes equations using a
Newton–Krylov approach,” AIAA Journal, Vol. 53, No. 6, 2015, pp. 1555–1577.

[56] De Sturler, E., “Truncation strategies for optimal Krylov subspace methods,” SIAM Journal on Numerical Analysis, Vol. 36,
No. 3, 1999, pp. 864–889, doi:https://doi.org/10.1137/s0036142997315950.

[57] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM
Review, Vol. 47, No. 1, 2005, pp. 99–131, doi:https://doi.org/10.1137/s1052623499350013.

[58] Broyden, C. G., “The convergence of a class of double-rank minimization algorithms 1. general considerations,” IMA Journal
of Applied Mathematics, Vol. 6, No. 1, 1970, pp. 76–90.

[59] Fletcher, R., “A new approach to variable metric algorithms,” The Computer Journal, Vol. 13, No. 3, 1970, pp. 317–322.

[60] Goldfarb, D., “A family of variable-metric methods derived by variational means,” Mathematics of Computation, Vol. 24, No.
109, 1970, pp. 23–26.

[61] Shanno, D., “Conditioning of quasi-Newton methods for function minimization,” Mathematics of Computation, Vol. 24, No.
111, 1970, pp. 647–656.

[62] Truong, A. H., Oldfield, C. A., and Zingg, D. W., “Mesh movement for a discrete-adjoint Newton-Krylov algorithm for
aerodynamic optimization,” AIAA Journal, Vol. 46, No. 7, 2008, pp. 1695–1704, doi:https://doi.org/10.2514/1.33836.

[63] Sederberg, T. W. and Parry, S. R., “Free-form deformation of solid geometric models,” Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques, 1986, pp. 151–160.

[64] Samareh, J. A., “Aerodynamic shape optimization based on free-form deformation,” 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, No. 2004-4630, 2004, pp. 3672–3683.

[65] Squire, W. and Trapp, G., “Using complex variables to estimate derivatives of real functions,” SIAM Review, Vol. 40, No. 1,
1998, pp. 110–112.

[66] Boehm, W., “Inserting new knots into B-spline curves,” Computer-Aided Design, Vol. 12, No. 4, 1980, pp. 199–201.

[67] Nocedal, J. and Wright, S., Numerical Optimization, Vol. 35, Springer Science, 1999.

[68] Chernukhin, O. and Zingg, D. W., “Multimodality and Global Optimization in Aerodynamic Design,” AIAA Journal, Vol. 51,
No. 6, 2013, pp. 25–34, doi:https://doi.org/10.2514/1.j051835.

27

	Introduction
	Jetstream Optimization Framework
	Optimization Overview
	Static Free Form Deformation

	Dynamic Geometry Control
	Initiating and Terminating Refinement
	Candidate Generation and Ranking
	Gradient Calculation
	Defining the Set of Active Constraints
	Hessian Formulation

	Results
	Adaptive Indicator Studies
	Transonic, Viscous Wing Optimization
	Transonic, Viscous Hybrid Wing-Body Optimization

	Conclusions

