
On the Risk of Local Optima in Aerodynamic Shape
Optimization

Gregg M. Streuber � and David. W. Zingg †

Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, M3H 5T6, Canada

A gradient-based multistart method based on a set of seventeen to thirty-three random

initial geometries is used to examine the risk associated with multimodality when applying

gradient-based optimization to aerodynamic shape optimization. Aerodynamic shape opti-

mization problems typical of detailed, preliminary, and exploratory design are shown to con-

sistently present design spaces with multiple local optima. In the case of detailed design, the

risk of converging to a local optimum with performance significantly inferior to that of the best

local optimum found is reduced due to the ability of a well-designed initial geometry, which is

often available for such problems, to converge to a well-performing local optimum. In problems

permitting increased geometric freedom typical of preliminary design the risk associated with

multimodality is much higher. This risk is further exacerbated in exploratory cases where

high geometric freedom is combined with limited knowledge of the design space in question

and hence greater di�erences between available initial geometries and the optimal geometry.

Therefore, for preliminary and exploratory design, allocating resources toward addressing

multimodality can significantly reduce the risk of overlooking a superior optimum.

I. Introduction
Aerodynamic shape optimization is a field coupling numerical optimization with computational fluid dynamics

(CFD), where the output of a CFD simulation around an aerodynamic body is optimized with respect to the shape of the

body. With the adoption of the discrete adjoint method [1], gradients can be computed at a cost almost independent of

the number of design variables. Combined with the rise of a�ordable computing, this has made aerodynamic shape

optimization practical for the optimization of full aircraft designs in high fidelity and has led to its widespread adoption in

industry and academia for the analysis and improvement of aircraft [2–11]. Aerodynamic shape optimization problems

can often be associated with two distinct phases of the design process: detailed design and preliminary design. Detailed

design is performed later in the design process when a reasonable design has already been developed and further

geometric changes are limited. Preliminary design is performed earlier in the design process and typically involves
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greater geometric flexibility. Exploratory design may be considered as a third class of problem or as a subcategory

within preliminary design, combining large geometric flexibility with often unknown design spaces, and searching for

novel designs. Common examples of exploratory optimization include the study of hybrid wing body (HWB) geometries

[3, 12], box-wing aircraft [13] or other unconventional designs. In preliminary or exploratory design, aerodynamic

shape optimization is often combined with other disciplines as in multidisciplinary optimization. In the development of

novel unconventional aircraft, where existing design experience is minimal or nonexistent and hence the optimal shape

is likely to bear little resemblance to the initial geometry, aerodynamic shape optimization can be particularly valuable.

Gradient-based optimization methods based on the adjoint method have become widely used for both classes

of problem. However, a major concern arises when a gradient-based optimization method is applied to a problem

that may not be convex and therefore multiple local optima can exist. A gradient-based method will converge to a

particular local optimum with no indication of whether multiple local optima are present in the design space. Global

optimization methods are often gradient-free and are capable of locating global optima; such methods have been

applied to aerodynamic shape optimization [14]. However, global optimization is significantly more expensive than

gradient-based approaches [15], cannot guarantee convergence to the global optimum, may experience issues with

repeatibility, and there is little consensus in the literature on best methods for global optimization. For problems with a

moderate number of local optima, methods such as Gradient-Based Multistart (GBMS) can provide an e�ective balance

between the speed of gradient-based optimization and the robustness of global optimization methods [16]. However, in

a practical setting, limits on available computing resources can restrict the use of GBMS. Therefore it is important for

the designer to have some understanding of how the risk associated with the use of a local minimizer depends on the

nature of the optimization problem.

Chernukhin & Zingg [16] were among the first to study multimodality - the presence of multiple local optima - in

aerodynamic shape optimization, finding that two-dimensional airfoil optimization under transonic cruise conditions,

subject to the Reynolds-Averaged Navier-Stokes (RANS) equations, is unimodal - presenting only a single optimum -

but finding multiple local optima in both subsonic and transonic inviscid 3D wing optimizations, as well as in a highly

exploratory Hybrid Wing Body (HWB) optimization in transonic, inviscid flow. Limited studies of multimodality in the

Aerodynamic Design and Optimization Discussion Group (ADODG) case 5, the viscous twist and section optimization

of the Common Research Model (CRM) wing-only geometry, have been undertaken by Lyu et al. [17], and Koo and

Zingg [18]. Lyu et al. found evidence of multimodality in 3D optimization; however, their study observed minimal

variations in geometry and performance between local optima. Koo and Zingg, examining the same problem, found

it to be unimodal. With the publication of ADODG Case 6, a definitively multimodal 3D wing optimization case, a

large number of investigations soon followed. The problem was originally found to be multimodal by Streuber and

Zingg [19], which was confirmed in work by Poole et al. [20, 21], who studied several variations of ADODG case

6 using gradient-free global optimization methods. They located consistent evidence of multimodality, including in
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relatively low-dimensional design spaces such as chord optimization. They concluded that the addition of section

control or the permitting of large-scale planform changes like sweep or dihedral can dramatically increase multimodality,

while some of their results suggest that the relationship between the number of local optima and the number of design

variables can be complex, subject to potentially significant coupling. Yu et al. [22] investigated multimodality in the

transonic, viscous optimization of the section shape and twist of the CRM wing-only geometry and found it to be slightly

multimodal. Most recently, Bons et al.[23] have undertaken a study of the impact of varying the degrees of freedom

and monotonic or linear chord constraints on multimodality in subsonic aerodynamic shape optimization, based on

variations of ADODG Case 6 under both viscous and inviscid conditions, concluding that multimodality is minimal in

subsonic optimization, and correctable with improved physics modelling and increased constraints.

The primary question of interest to a practitioner of aerodynamic shape optimization is whether or not multiple

local optima are present; convex design spaces may be e�ciently explored using a purely gradient-based optimization

algorithm, cases with more local optima are ideal for the GBMS method of Chernukhin and Zingg [16], while for

design spaces with extreme multimodality it may be necessary to incur the cost of a gradient-free or hybrid algorithm.

Available data suggests that multimodality may be highly dependent on various parameters within the problem definition,

so understanding the behaviour of the problems most often encountered in aerodynamic shape optimization is essential.

For practitioners engaged in aircraft design these problems are largely transonic, but may be subject to a wide variety

of constraints and permit any combination of degrees of freedom; previous studies have shed some light onto these

questions, but significantly more data is required to fully understand the broader picture.

The objective of this study is to provide information to enable practitioners to make informed assessments of the

risk presented by multimodality in a variety of design spaces. This is accomplished through a parametric study of

multimodality in the optimization of wings subject to a variety of degrees of freedom, constraints, and operating points.

A particular focus is on quantifying the likelihood that a gradient-based optimizer will converge to a local optimum

that is significantly di�erent from the global optimum. While one might argue that any finite likelihood of such an

occurence would suggest the need for a global optimizer, practical considerations may dictate that a certain amount of

risk is tolerable in certain contexts.

II. Methodology
This study is undertaken using the Jetstream optimization framework, which is described in further detail below.

Additionally, a discussion of the gradient-based multistart (GBMS) protocol used to examine each problem is provided,

as is a description of the structure of the study and a variety of metrics used to quantify the degree and nature of the

multimodality in each given problem.
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A. Aerodynamic Shape Optimization framework

Jetstream utilizes Diablo, a three-dimensional structured multiblock CFD solver capable of solving both the Euler

[24] and RANS [25] equations; for the RANS equations the Spalart-Allmaras one-equation turbulence model is used.

Spatial discretization is accomplished using second-order summation-by-parts operators and scalar or matrix numerical

dissipation. Boundary conditions and block interfaces are enforced weakly with simultaneous approximation terms. The

steady-state solution is obtained with a parallel Newton-Krylov-Schur algorithm which employs an approximate-Newton

phase to generate the initial iterate for the subsequent inexact-Newton phase. GMRES is used for the solution of linear

systems with an approximate-Schur preconditioner.

Gradients are obtained using an implementation [26, 27] of the discrete adjoint method [1]. The adjoint systems are

solved with a flexible variant [28] of the GCROT Krylov method [29]. Once calculated, the gradients are supplied to

SNOpt [30], which provides the subsequent iterate using a sequential-quadratic-programming algorithm with Hessians

obtained via a BFGS update method.

Mesh deformation is achieved using a linear elasticity method adapted by Hicken and Zingg [28] from the work of

Truong et al. [31]. To improve e�ciency, the computational mesh is fitted with a coarse B-spline control mesh, the

mesh deformation being applied to this control mesh, which is then used to generate a deformed computational mesh.

B. Geometry Parameterization and Control

Geometry parameterization and control are separated in Jetstream, with parameterization occurring through B-spline

patches which define the surface itself, and control provided through an axial and free-form deformation (FFD) scheme

[32] depicted in Figure 1. The surface patches are fitted with 4th order B-splines; the HWB case uses 12 control points

per edge while in the CRM cases each patch has between 5 and 11 control points per edge. These surface control points

are embedded within B-spline volumes, referred to as FFD volumes, these volumes are deformed by manipulating

their control points, which in turn deforms the underlying geometry. Cross-sectional shape changes can be realized by

manipulating FFD control points, which are organized into cross-sections. Each cross section may have a twist and

taper design variable, which respectively act as a local rotation and scaling factor of the entire cross section, and each

cross-sectional control point may have its own section design variable to enable control of the cross-sectional shape.

Large deformations are driven by a B-spline curve, referred to as the axial curve, one per FFD volume. The axial curve

has its own set of control points and may be deformed by manipulating them; each cross-section is constrained to be

locally perpendicular to the axial curve and so by deforming the curve, cross sections can be easily rotated or translated

in complex fashions. Each axial control point may have up to three design variables - sweep, span, and dihedral - which

are respectively translations of the axial control points in the chordwise, spanwise, and vertical directions.

4



Fig. 1 Axial and Free Form Deformation Geometry Control System [32]

C. Gradient-Based Multistart Algorithm

Gradient-based multistart (GBMS) is an optimization method wherein multiple gradient-based optimizations in a

given design space are run starting from di�erent initial geometries within this space [16]. The initial geometries are

generated using a sampling algorithm and together represent a sample of the design space. This method represents a

compromise between the speed of gradient-based optimization and the robustness of stochastic methods. GBMS o�ers

two key properties that make it ideal for a study such as this: first, it grants some ability to study multimodal design

spaces without accepting the prohibitive cost of gradient-free aerodynamic shape optimization [16]; second, while it

greatly increases the probability of locating the global optimum, GBMS also presents any other inferior local optima

which are located. This provides a cost-e�ective means of performing a rough mapping of the design space.

The quality of the initial sample is critical to the success of a GBMS study; a robust exploration of the design space

is essential to ensure that important regions are not missed. As proposed by Chernukhin and Zingg [16], sampling

is accomplished using Sobol sampling [33, 34], which has several desirable qualities: it has superior space-filling

characteristics to random sampling, it is deterministic for a given set of input parameters - permitting easy repetition or

comparison of samples - and the position of each specific sample point is independent of the number of other sample

points - allowing one to easily add additional points later without compromising the sample.

The Sobol algorithm provides a value between 0 and 1 to sample between user provided upper and lower bounds;

the determination of these bounds plays an equally significant role in the final quality of the sample. In general, the

region of interest for the initial geometries represents a sub-space of a larger design space; it is important that this region
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be properly defined. A purely random set of initial geometries will almost certainly be composed overwhelmingly of

geometries that are physically impossible, too di�cult to manufacture, or do not lead to steady flow solutions. However,

an unnecessarily constrained sample could exclude a viable global optimum from being located. The importance of

proper sampling constraints is clear; equally important is when they are applied. The simplest method is to sample

broadly and then rely on linear constraints enforced prior to the first design iteration to bring the samples into the feasible

region, but this will simply snap all infeasible geometries to the feasible region boundary, dramatically oversampling the

boundary while undersampling the region within it. To obtain a proper, representative sample the constraints must be

applied during sampling, incorporated into the sampling constraints.

Finally, how the constraints are defined has considerable influence on the quality of the resulting sample; a naive

approach would be to simply sample between the upper and lower bounds of each design variable. This comes with

substantial weaknesses which are illustrated in Figure 2. Suppose the sampling is being applied to a simple wing

controlled by six control points with a baseline shape as shown in Figure 2a, and suppose some large but feasible

deformation like that shown in Figure 2b is desired. This geometry could be achieved by permitting large upper and

lower bounds on each control point, however, as Figure 2c shows, this also permits a much larger pool of clearly

unacceptable geometries, which would likely dominate the design space and almost certainly fail either in the mesh

movement or flow solution stage. One can limit the number and extent of such geometries by reducing the sampling

bounds on each design variable, but as illustrated in Figure 2d, this also precludes the target geometry and many other

sensible geometry families. If one instead defines the reference point for the sampling bounds of each design variable as

the sampled value of the previous design variable, a cascading chain of interacting constraints is created. Figure 2e

shows such a system is able to permit highly flexible deformations with bounds as tight or tighter than those used in

Figure 2d. This is analogous to a 3D animation of a human body permitting the foot to move anywhere in space provided

it is within a certain radius of the knee joint, which is in turn constrained by a set relationship with the hip position and

so on. This was the approach taken by Chernukhin & Zingg [16] in their multimodality study, and was shown to be quite

e�ective at producing high quality, sensible sample geometries. However, the B-spline geometry control system used

at the time necessitated a specialized constraint system for every class of geometry; in this work, moving to an axial

FFD geometry control scheme has permitted these constraints to be generalized to an entirely geometry-independent

form. The constraints need not be restricted to sampling, the idea of converting optimization bounds from an absolute

reference to a relative one is an interesting area of future exploration.

D. Study Structure

This study seeks to obtain one critical piece of data from each examined design space: how much risk is associated

with neglecting multimodality in this design space, if any. Careful design of experiments is necessary as there is no

definitive way to determine when one has su�ciently explored the design space. In an e�ort to balance thoroughness
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and cost a two-step structure is adopted. For each case a large sample of initial geometries is generated, then a set of

17 initial geometries - 16 sample points and the baseline - is optimized to completion. The resulting geometries are

then examined for any indication of multimodality - the criteria used are provided in Section II.E. If multimodality is

located, the case is terminated, otherwise, a second set of 16 samples is attempted; if no additional optima are located

in this set the problem is concluded to be unimodal for the purposes of this study. Because not all initial geometries

successfully converge, the final number of converged geometries is often somewhat less than 17 or 33; in cases where

convergence proves particularly di�cult, additional samples are attempted until at least 10 converged geometries were

located. Thirty-three initial geometries are not enough to constitute an exhaustive search of a design space, particularly

for the highly-dimensional, exploratory problems examined later in this study. Therefore, the objective of this study is

explicitly not to locate the global optimum, but to ascertain the presence of multimodality and, if present, some sense of

its degree. With these limited sample sizes, we cannot claim to have found the global optimum with any certainty, and

the possible presence of additional local optima with superior performance to the best performing local optimum found

cannot be ruled out.

E. Multimodality Metrics

As a result of the limitations of finite optimization convergence, in some cases the determination of whether two

geometries represent distinct local optima can be di�cult. Ascertaining at which point di�erences are su�ciently large

to indicate distinct optima in a systemic manner requires a clear set of criteria that can be applied consistently. For the

purposes of this study, two final geometries are considered distinct local optima if both have converged - defined as

a feasibility of 10�5 or less, one to two orders of magnitude reduction in optimality� - and a merit function which is

changing by less than 1 ⇥ 10�5, roughly 0.03 drag counts - and satisfy at least one of three additional requirements:

1) final drag coe�cients di�ering by 1 drag count or more, or

2) a root mean square (RMS) di�erence in surface shape of at least 0.05 units, or

3) an RMS di�erence in twist distribution of at least 0.2 degrees.

The 1 drag count threshold was introduced to avoid identifying incompletely converged geometries as local optima. With

this threshold any local optimum that is missed does not produce significant performance variation. Our conclusions

with respect to the risk of multimodality are not sensitive to the precise choice of this threshold. The third citerion

ensures that distinct twist distributions are captured even if there are very small di�erences in surface shape and drag.

A number of metrics are employed to quantify any multimodality found with the above criteria. The first three are

straightforward measurements: the number of local optima, the best performance located, and the di�erence between the

best and worst performance - the latter two in drag counts. The fourth metric, ', is a measurement of the risk associated

with multimodality in a given design space and is defined as the percent of initial geometries that converged to local

�In optimization with the RANS equations, it is often not possible to achieve deeper convergence
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Table 1 Classification of design space multimodality

' Classification

' = 0% No noted multimodality
0% < '  5% Slightly multimodal
5% < '  20% Somewhat multimodal
20% < '  50% Moderately multimodal

' > 50% Highly multimodal

optima that are outperformed by the best local optimum by at least one drag count. It thus quantifies the likelihood that

a local optimizer starting from a single initial geometry will get trapped in a local optimum significantly inferior to a

best estimate of the global optimum.

Using ', the nomenclature of Chernukhin & Zingg [16] for categorizing degrees of multimodality is adapted for the

test procedure used in this study, categorizing the degree of multimodality based on the risk rather than the raw number

of local optima. The thresholds used in this work are given in Table 1; unlike Chernukhin & Zingg’s work, there is

no explicitly unimodal category. This is because given the finite sample sizes involved it is not possible to conclude

definitively in this study that a problem is unimodal, only to recognize a shrinking likelihood of locating additional

optima and the weak nature of multimodality in that search space, if any.

The value of ' is not su�cient to quantify the shape of a design space, nor the risk posed by multimodality within it.

For instance, the distribution of local optima within the design space - how much they underperform the best optimum

and how many initial geometries converge to them - impacts the overall risk of overlooked performance associated with

the use of a single initial condition. Additionally, researchers engaged in aerodynamic shape optimization, particularly

exploratory optimization, are not necessarily singularly focused on maximizing performance. It is often desirable to

determine the geometric variation across the local optima in the design space, in which case geometrically distinct,

di�cult to locate local optima are equally or more problematic than easy to find, poorly performing optima. Previous

work [35] has attempted to quantify these qualities, but for simplicity here the focus is placed on ' as a measure of

risk, and further insight can be obtained by looking at the range metric in conjunction with '. We are measuring the

risk in terms of the likelihood that a reasonable arbitrary initial geometry will converge to an inferior local optimum.

Another way of defining the risk is in terms of the likelihood that the baseline geometry will converge to an inferior local

optimum, as opposed to an arbitrary initial geometry. In an aerodynamic shape optimization problem typical of detailed

design where the final geometry is likely to be quite similar to the baseline geometry, the latter risk is substantially

lower than the former. However, in preliminary or exploratory design, the final geometry is expected to be substantially

di�erent from the baseline geometry, and thus the risk associated with starting with the baseline geometry is no di�erent

from that associated with starting with any reasonable arbitrary geometry.
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(a) Baseline geometry (b) Target geometry

(c) Bound sampling: too much freedom (d) Bound sampling: too little freedom

(e) Cascading sampling: flexible sampling constraints

Fig. 2 Various constraint methods for sampling. Control points in red, bounds in black.
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III. Results
The e�ect on multimodality of optimization degrees of freedom (DOF), constraints, numerical mesh, and operating

points is examined. A note on nomenclature is relevant here: in this work there must be a di�erentiation between the

number of design variables - the number of values the optimizer may use to improve the design - and a more general

indication of the type of design variables that are permitted, such as sweep or twist. To aid in this distinction slightly

non-standard terminology is employed. From this point “design variable” will be taken in the traditional sense within

optimization, while “degrees of freedom” will be used exclusively to refer to types of design variable. For example,

permitting twist to vary adds a single DOF, but potentially many design variables.

Five distinct studies are presented, each with multiple variations, ranging from practical design optimization to

highly exploratory cases. All cases are governed by the RANS equations. The first case examines two variations of

ADODG case 5, the twist and section optimization of the CRM wing-only geometry. In the second and third studies this

baseline geometry is retained, but the number of degrees of freedom and constraints are varied to determine their impact

on multimodality. The fourth study examines the e�ect of multiple operating points on two variations of this case, while

the fifth study exchanges the CRM problem for an HWB optimization based on the work of Reist et al. [3] in order to

examine multimodality in the context of a problem more representative of exploratory optimization. Finally, a brief

investigation of grid dependence in multimodality is undertaken.

A. CRM ADODG Case

This case is defined as the Aerodynamic Design and Optimization Discussion Group (ADODG) case 5 and represents

a common family of wing optimization cases, performed in viscous flow at a Mach number of 0.85 and a Reynolds

number of 5 million. The Common Research Model (CRM) wing-only geometry, shown in Figure 3, is used as the

baseline geometry with dimensions scaled by the mean aerodynamic chord (MAC). The computational mesh is a

modified version of that used by Koo and Zingg [18] with parameters as listed in Table 2. This grid has been shown to

be su�ciently accurate for aerodynamic shape optimization, and a grid refinement study was not repeated here as the

specific drag values are not of primary interest in this study. Geometry control is accomplished with the FFD system

illustrated in Figure 3c. Two separate FFD volumes are used, meeting at the crank, the inboard with three spanwise

stations and the outboard with five. Each FFD volume has its own axial curve, fitted to the wing trailing edge, which can

provide global control. In this case only twist and section design variables, in addition to angle of attack, are available to

the optimizer while all other design variables are fixed, totalling 147 active design variables. The optimization problem

itself can be formally stated as
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Table 2 CRM mesh parameters

Nodes 1,068,856
Blocks 40

O�-Wall Spacing 7.3 ⇥ 10�7 MAC
H+ 0.13

minimize ⇠⇡

w.r.t. E

subject to ⇠! = 0.5

+ � 0.2617 MAC3

⇠" � �0.17

(1)

where ⇠⇡ is the drag coe�cient, ⇠! is the lift coe�cient, + the wing volume, and ⇠" the pitching moment coe�cient.

Apart from generous upper and lower bounds on each design variable, no linear constraints are enforced. This test

was examined using the sampling algorithm and test protocol outlined previously. Ultimately 33 initial geometries

were attempted, 29 of which converged, all to a single optimum. The full results are provided in Table 3 and uniformly

depict a problem for which multimodality presents a negligible risk, in agreement with previous studies of this problem

[17, 18].

The problem was repeated with the addition of a minimum thickness constraint - denoted as CRM(MT) - requiring

the thickness at each section to be not less than 85% of the baseline thickness at that section. With the addition of the

minimum thickness constraint, once the 15 successful initial geometries had converged a second local optimum was

noted, so the test did not proceed to a full 33 initial geometries. Based on the ' value of 7% and performance range of

7.6 drag counts this problem is deemed to somewhat multimodal with a small but nonnegligible risk of significant lost

performance if multimodality is ignored.

Figure 4 plots the twist distributions of the identified local optima from both cases relative to the freestream flow

direction. The best twist distributions in both cases, shown in black, are highly similar. The addition of the minimum

thickness constraint has not impacted this optimum, but introduced a new, inferior but locally optimal twist distribution

that is not observed without the minimum thickness constraint. An alternative explanation is that the supposed new

optimum was in the original design space, but was simply missed. To investigate this, the second optimum from the

thickness constrained case was re-optimized from its final position with the minimum thickness constraint disabled.

Doing so caused the geometry to converge rapidly to the optimum found without the minimum thickness constraint.

This is evidence that a local optimum similar to that found with the thickness constraint present does not exist in its
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(a) Baseline geometry (b) Baseline mesh

(c) FFD System

Fig. 3 Geometry, mesh, and control for CRM baseline wing

absence, and that this minimum is associated with the minimum thickness constraint.

B. DOF Study Under Transonic Conditions

One of the questions of most immediate interest regarding multimodality is how it scales with DOF, a question of

particular importance given the growing study of high-dimensional, exploratory optimization problems. Using the

baseline geometry in Figure 3 and the problem definition in Equation 2 the available degrees of freedom are gradually

increased, starting with solely section shape and sweeping up to a highly dimensional case permitting large scale

deformations of the geometry. The cases were selected to be representative of both preliminary and detailed design.

Cases more typical of conceptual design were not a focus as these are not generally examined with high-fidelity tools.

Each case is denoted by a five digit code of the form GGG_GG, where each digit refers to a potential degree of freedom
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Table 3 ADODG CRM multimodality study results

Test Successful
Tests

Optima Best
(counts)

Range
(counts)

'

CRM 29 1 191.9 0.0 0%
CRM(MT) 15 2 194.5 7.6 7%

(a) CRM (b) CRM(MT)

Fig. 4 Spanwise twist distributions for ADODG CRM wing-only cases. Best optimum in black

and takes either a 0 or 1 to denote whether that freedom is active. From left to right each digit corresponds to twist,

taper, section, and then the two examined axial degrees of freedom - sweep and dihedral. A quick reference guide for

which DOF are active in each case is provided in Table 11 in the Appendix. No additional constraints are enforced,

apart from a projected area constraint requiring ( = 3.407 where applicable. It should be noted that the 101_00 case

corresponds to the standard ADODG case examined above. The complete results are provided in Table 4.

Based on this data, the risk of multimodality scales with DOF. The first five cases in Table 4 permit only various

combinations of section shape, twist, and chord modification and present with a low to moderate risk of lost performance

from multimodality. An appreciable range of performance values are apparent even in these relatively limited problems,

with ranges as low as 0.1 drag counts but as high as 3.5 in one case - however, the low risk value in the latter case

indicates that this outlying local optimum is attracted by a small region of the design space, and so is less likely to

accidentally trap a local optimizer. Risk too shows a wide range of values across these cases; one presents without any

detectable multimodality, another is slightly multimodal, while the remaining three cross-sectional cases are somewhat

multimodal, two of those approaching the upper end of the “somewhat multimodal” range in Table 1. These results

show that there can be an appreciable risk of lost performance from multimodality even in cases with limited geometric

freedom. The risk increases when the wing shape is permitted more geometric freedom, as shown by the last two cases
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Table 4 Degree of Freedom multimodality study results: M=0.85, Re=5 million. Each test is identified using a
five digit code of the format xxx_xx. From left to right each digit indicates whether twist, taper, section shape,
sweep, or dihedral freedom is permitted. DVs are the total number of design variables.

Test DVs Successful
Tests

Optima Best
(counts)

Range
(counts)

'

001_00 141 12 2 195.1 1.3 17%
011_00 148 13 2 181.8 3.5 8%
101_00 147 29 1 191.9 0.0 0%
110_00 14 33 2 199.7 0.1 3%
111_00 154 11 3 181.0 1.0 18%
111_01 162 14 4 176.2 4.6 43%
111_11 170 10 7 174.1 24.6 90%

in Table 4, which permit all of the previously discussed DOF but add, respectively, dihedral and sweep with dihedral.

In both of these cases a steep growth in risk is observed. Relative to 111_00, adding dihedral control as in 111_01

produces a nearly five-fold increase in performance range and more than double the ' value, a moderately multimodal

design space with large potential for lost performance. Adding sweep in addition to dihedral in 111_11 increases both

metrics again by similar proportions and yields a highly multimodal design space. This increased multimodality in

preliminary design studies can be observed in Figures 6, 7, and 8; it should again be emphasized that the lack of variable

planform shapes in 111_00 and 111_01 does not conclusively prove the non-existence of such optima, but does suggest

that if they exist they are not highly dominant in the design space.

The importance of su�cient optimization convergence in a study such as this cannot be overstated, as insu�cient

convergence will artificially inflate the apparent multimodality in the design space with false local optima. An exhaustive

presentation of the convergence histories of all cases is not practical here, but for illustrative purposes convergence

histories for representative cases are provided in Figures 5a to 5g. These highlight the convergence which was required

in all cases, characterized by an optimality reduction of one to two orders of magnitude, feasibility of 1 ⇥ 10�5 or less

and the merit function changing by fewer than 0.03 drag counts.

The first five cases in Table 4 are typical of aerodynamic shape optimization problems arising during the detailed

design phase, having limited geometric freedom. For all of these cases, the optimization converges to the best local

optimum from the baseline CRM geometry, which is a well designed aircraft wing with limited room for improvement.

This supports the idea that the risk associated with multimodality is low for such problems, althought it is important to

bear in mind that the best local optimum found via the limited sample size used here is not guaranteed to be the global

optimum. It is expected that the behaviour of the baseline geometry is not specific to the CRM, but to any case where a

well-designed initial geometry is available and is likely to lie close to the best optimum in the design space. If this is

true then as design spaces become larger and expected variations from the initial design increase, then the ability of
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(a) 001_00 sample convergence (b) 011_00 sample convergence (c) 101_00 sample convergence

(d) 110_00 sample convergence (e) 111_00 sample convergence (f) 111_01 sample convergence

(g) 111_11 sample convergence

Fig. 5 Representative convergence histories

even a relatively well-engineered design like the CRM to consistently located the best local optimum would be expected

to decrease. This is exactly what is observed in last two cases in Table 4, which are more typical of preliminary design

and for only one of which the baseline geometry locates the best local optimum. While this is only a sample size of

two, it will be shown in the following section that the influence of the baseline geometry is consistently reduced in

preliminary design problems.

Therefore in detailed design problems primarily modifying cross-sectional shape or twist there is still the potential

for lost performance due to multimodality; however, this risk is reduced by the common availability of a well-designed

initial geometry. When larger shape changes are permitted, failing to adequately address multimodality significantly

reduces the probability of locating the global optimum. Beyond these general trends one must be very cautious extracting
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(a) Taper optima (b) Twist optima

Fig. 6 Local optima for 111_00 DOF case. Best optimum in black.

(a) Taper optima (b) Dihedral optima

Fig. 7 Local optima for 111_01 DOF case. Best optimum in black.

specific relationships from the data. There are no clear trends between specific DOF and the amount of risk in a design

space, making an a priori assessment of the risk of multimodality in a given optimization problem di�cult. Nevertheless,

the general trends observed here give the designer a good idea of what to expect with respect to the risk of multimodality

in the optimization of wings.

C. Constraint Study

The previous study has shown significant potential for multimodality in high-dimensional, exploratory aerodynamic

shape optimization. However, while exploratory optimization cases are characterized by large geometric freedom,

they are also often subject to a number of constraints which could potentially have a major impact on the degree of

multimodality found in the design space. For this reason, a detailed study of constraints in transonic optimization is

presented.
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(a) Taper optima (b) Dihedral optima

Fig. 8 Local optima for 111_11 DOF case. Best optimum in black.

This study uses the 111_11 case, with 170 design variables, from the DOF study as a baseline and varies the

constraints enforced. Each case is again denoted by a five digit code of the form GGG_GG where each digit corresponds

to a degree of freedom - twist, taper, section, sweep, and dihedral - though here each digit can take one of several

values to indicate what, if any, constraint is enforced on that degree of freedom. “L” defines a linear distribution,“C”

requires a constant distribution, and “M” enforces a strict minimum value. A “P” appended to a case denotes that the

pitching moment constraint is not enforced. The additional constraints active for each case are listed in Table 12 in the

Appendix. It should be noted that in the case of linear distributions, they are required to be linear only within a given

FFD structure. As the two constituent FFD volumes meet at the crank of the baseline geometry this permits discrete

inboard and outboard distributions. The tests are further broken down into four broad categories based on the degree of

constraint placed on the leading and trailing edges of the wing, these are: baseline cases, with few if any constraints

whatsoever, cases with no constraints on the leading and trailing edges, cases with some edge constraints - requiring

them to be straight in either the dihedral or sweep dimensions - and cases with “full” edge constraints - requiring them

to be entirely straight, save for the crank. The leading and trailing edge constraints are highlighted for two reasons:

first, requiring a straight leading or trailing edge is a common quasi-structural constraint during practical optimization;

second, since these constraints represent a significant limitation on two of the clearest contributors to multimodality -

sweep and dihedral - it is useful as a proxy for the overall “amount” of constraint in the problem. The results are broken

down along these lines in Table 5, along with averages for each category of problem.
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Table 5 Constraint study results: M=0.85, Re=5 million. 000_00 case corresponds to transonic 111_11. “L”
requires a design variable to have a linear distribution, “C” requires a constant distribution, “M” enforces a
strict minimum value, and “-P” denotes that a pitching moment constraint is not enforced.

Test Successful
Tests

Optima Best
(counts)

Range
(counts)

'

Baseline Cases

000_00 10 7 174.1 24.6 90%
000_00-P 14 12 173.7 156.3 93%

Average 12 10 173.9 90.5 92%

No LE/TE Restrictions

L00_00 11 7 174.4 6.8 91%
0L0_00 12 8 174.1 39.2 83%
00M_00 12 6 178.6 18.7 67%
0LM_00 15 11 180.3 18.7 87%
LL0_00 11 7 174.4 13.0 91%
LLM_00 12 8 180.3 42.6 67%

Average 12 8 177.0 23.2 81%

Some LE/TE Restrictions

000_C0 12 5 175.9 19.4 42%
000_0C 11 6 178.4 94.5 45%
0L0_0C 14 7 179.6 23.3 93%
0L0_C0 10 6 176.9 13.9 80%
0LM_C0 10 7 190.2 48.0 60%
LL0_0C 11 5 179.4 30.9 36%
LL0_C0 11 6 177.2 24.0 91%

Average 11 6 179.7 36.3 64%

Straight LE/TE

0L0_CC 15 6 181.0 26.6 67%
LL0_CC 15 5 180.9 29.2 47%
LLM_CC 16 2 195.6 17.7 50%

Average 15 4 185.8 24.5 55%
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This study was in part motivated by the interesting result observed earlier, where multimodality was introduced into

the design space by enforcing a stricter minimum thickness constraint on the ADODG case 5 problem. Examining the

average values reported in Table 5 one can see that, by certain metrics, the opposite trend is apparent here. Moving from

the baseline cases through the Straight Leading Edge/Trailing Edge (LE/TE) results at the bottom of the table, there

are steady reductions in the number of optima and in ', together suggesting a declining risk from multimodality as

large planform shape changes become increasingly restricted. However, no such trend is visible with the performance

range, which varies randomly across the reported averages. The lack of a decline in range along with the reduced

number of optima and smaller ' values suggests that the apparent decline in risk may be deceptive, driven largely by

relatively clustered optima coalescing into a single point while significant outlying optima remain largely una�ected.

This behaviour can be observed visually by plotting the local optima for the three Straight LE/TE cases, as in Figures 9

and 10. While the number of optima varies across the three sub-problems under discussion, the geometric families

represented remain consistent: forward- and back-swept wings with clear breaks at the crank and dihedral distributions

ranging from flat to clearly negative. The flow direction in these figures is from left to right, so observant readers will

notice a consistent tendency in the straight LE/TE cases to remove the trailing edge crank in favour of a less-common

leading-edge crank. This is a side-e�ect of the constant sweep constraint, which is enforced at the trailing edge and

therefore forces the trailing edge to be straight, while the optimizer can insert a leading edge crank as a result of the

linear taper constraint, which permits di�erent taper ratios in the two adjoining FFD volumes. While such designs

may not be desirable in backswept configurations, this has no e�ect on the multimodality in these cases nor on our

conclusions drawn regarding them. The geometric consistency seen in these cases reinforces that the constraints are

primarily reducing multimodality by consolidating nearby optima without fundamentally changing the shape of the

design space. The persistent presence of multimodality in optimization problems with large degrees of geometric

freedom, even when substantially constrained, has significant implications for exploratory optimization. It is likely,

based on the available data, that many such problems will be unavoidably multimodal.

The LL0_CC case, despite being contained within the 0L0_CC design space, locates a slightly better local optimum

than the latter. This is merely due to the finite nature of the number of initial geometries used, which cannot guarantee

that every optimum within the design space will be located; starting an 0L0_CC optimization with the best LL0_CC

optimum as the initial geometry rapidly converges to a superior local optimum that was not found by the original set of

15 initial geometries. This should serve to reinforce the nature of these studies as representative, rather than exhaustive.

The data presented here, and in all the cases in this work, is therefore best viewed in the context of the discussed

trends: even extremely strict constraints are ine�ective at ameliorating the risk associated with multimodality in high

dimensional design spaces. The one potential exception is the pitching moment constraint, as its removal generates a

marked increase in multimodality across every reported metric. This suggests that flow-dependent constraints have a

greater impact on multimodality than geometric constraints, but a more thorough exploration of this question must await
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(a) 0L0_CC (b) LL0_CC (c) LLM_CC

Fig. 9 Planform shapes for straight LE/TE cases. Best optimum in black.

(a) 0L0_CC (b) LL0_CC (c) LLM_CC

Fig. 10 Dihedral shapes for straight LE/TE cases. Best optimum in black.

a future work.

Returning briefly to the discussion in Section III.B regarding the behaviour of the baseline geometry, these results

further reinforce the conclusions drawn there. In this sample of optimization problems that are typical of preliminary

design in terms of their geometric freedom, the ability of the CRM initial geometry to locate the best optimum reliably

is significantly reduced; its failure rate has grown from one in seven in the DOF study to six out of eighteen here. For

such problems, the risk incurred by performing a single optimization from one initial geometry, even a well-designed

one, is substantial and can be greatly reduced through a multistart approach.
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Table 6 Multipoint CRM results: three operating points

Test DVs Successful
Tests

Optima Best
(counts)

Range
(counts)

'

CRM (MT) Case

Single-Point 147 15 2 194.5 7.6 7%
Multi-point 147 26 1 202.9 0.0 0%

LLM_CC Constraint Case

Single-Point 170 16 2 195.6 17.7 50%
Multi-point 170 11 3 202.8 25.6 45%

D. Multi-point CRM

One largely unresolved region of the literature is the impact of multi-point optimization on multimodality. To

study this, two cases - the CRM (MT) case from the ADODG Case 5 study and the LLM_CC constrained case - were

re-optimized as multi-point problems. Each used the same three operating points: M = 0.82, M = 0.85, M = 0.88. The

Reynolds numbers at each point are 4.82 million, 5 million, and 5.18 million, with lift targets of 0.537, 0.500, and 0.466.

Additionally, the pitching moment constraint is applied at the second operating condition. These operating points were

previously applied to the CRM geometry by Lee et al.[36]. Results from both studies are provided in Table 6; as well the

results from single point versions of both cases are replicated. In the multi-point cases performance as reported for the

Best and Range metrics, as well as that used in ' are calculated using the average drag across all three operating points.

The provided results show that while multi-point optimization may change the nature of any multimodality present

in the design space, it does not appear to play a significant role in either expanding or mitigating the risk presented by

that multimodality. The single-point CRM (MT) case was on the low-end of the “somewhat multimodal" range while

the multi-point case presents no apparent multimodality; however, this reduction was entirely due to the elimination

of a single, rare local optimum and both design spaces are heavily dominated by the best optimum. In the LLM_CC

case, the multi-point problem introduced a new local optimum, increasing the number from two to three and the range

by nearly eight drag counts. However, the risk declined slightly, from 50% to 45% - in the single-point case the best

optimum was found by eight out of 16 initial geometries, but six out of 11 in the multi-point case. Overall, from a purely

risk-based perspective, the additional local optimum does not render the design space much more di�cult to navigate

than it already was for a gradient-based optimizer, though it should be noted that the increased performance range in the

multi-point case increases the maximum potential lost performance represented by ', if not the value of ' itself.

Therefore, these results lead to the conclusion that multipoint optimization does not have a large impact on

multimodality-associated risk in gradient based optimization, though it may impact gradient-based optimization in other

ways by changing the shape of the design space.
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Table 7 HWB mesh parameters

Nodes 1,220,736
Blocks 128

O�-Wall Spacing 4.9 ⇥ 10�7

H+ 1.2

E. Hybrid Wing Body

This case is based on work by Reist et al. [3] and explores the lift-constrained drag minimization of the baseline

Hybrid Wing Body (HWB) shown in Figure 11, subject to moment, volume, and cabin shape constraints. The numerical

mesh is shown in Figure 11b with parameters as tabulated in Table 7. All dimensions are scaled by the MAC and

optimization occurs at a Mach number of 0.78 with a Reynolds number of 76 million. The optimization problem may be

formalized as

minimize ⇠⇡(

w.r.t. E

subject to ⇠!( = 0.12 MAC2

+ � 0.0786 MAC3

⇠" ( = 0

(2)

where ( is the projected area. A cabin shape constraint requires that the shape of the body region of the aircraft be able

to contain a cabin of pre-defined shape and size. This ensures that there is su�cient cabin volume to satisfy passenger

capacity requirements. The geometry control system is shown in Figure 11c; as axial freedom is not used in this case

the axial control points are not displayed. Twist, taper, and section shape modification are permitted throughout the

geometry, while sweep, span, and dihedral are held fixed, yielding 350 design variables. A linear taper distribution is

required everywhere except for the transition region between the fuselage and inner wing. The results from this study

are reported in Table 8 : four local optima were located within the first 16 converged initial geometries and so the sample

was not expanded to a full 33 points. A full quarter of the converged initial geometries located optima significantly

underperforming the minimum, yielding an ' value of 25% and a moderately multimodal problem. Combined with a

performance range of over four drag counts, this is a problem for which ignoring multimodality carries considerable risk.
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(a) Baseline geometry (b) Baseline mesh

(c) FFD system

Fig. 11 Geometry, mesh and control for HWB baseline design

(a) Twist distributions (b) Planform shapes

Fig. 12 Local optima for HWB case. Best shown in black.
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Table 8 Hybrid Wing/Body results: M=0.78, Re=76 million.

Successful Tests 16

Optima 4

Best (drag counts) 96.6

Range (drag counts) 4.4

' 25%

Figure 12 shows that multimodality in taper is largely confined to the region connecting the fuselage and the wing

where the linear taper constraint is not applied, while large amounts of multimodality are found in twist distributions.

Multimodality had previously been noted in more exploratory, inviscid variations of this problem [16], and the degree

of multimodality seen here is compatible with that seen in the comparable 111_00 wing optimization case from the

earlier DOF study. This is further evidence that multimodality in aerodynamic shape optimization is not a quirk of a

particular problem, nor a particular mesh, but is endemic in many optimization problems, and as demonstrated earlier,

only becomes more prominent as more freedom is allowed.

IV. Mesh Sensitivity Study
It is known that optimization in general can be sensitive to the computational mesh used, particularly if the mesh

does not accurately capture the physics of the problem. This study investigates whether similar sensivity exists for

multimodality in aerodynamic shape optimization. To do so, GBMS studies were repeated on two di�erent cases with

the computational meshes refined by a factor of 1.26 in each direction, producing a finer mesh with parameters as

listed in Table 9. The two cases are the ADODG(MT) case from the ADODG study and the LLM_CC case from the

constraint study; these represent very di�erent problems, with di�erent DOF and constraints, and while both present as

multimodal the nature of that multimodality is extremely di�erent. The former case found a single additional optimum,

located by just a single initial condition, while the latter was evenly split between two significantly di�erent local optima

with highly di�erentiated geometries.

The top-level results for both fine-mesh cases and their coarse-mesh equivalents - re-solved on the finer mesh - are

given in Table 10. In both test cases there is excellent agreement across both meshes on the geometry and performance

of the best optimum, number of located optima, and ', and for the LLM_CC case the secondary local optimum is nearly

identical as well. One outlier in the data is the secondary local optimum from the ADODG(MT) case. While on both

meshes one outlying optimum is located by a single initial geometry, the performance of that optimum is considerably

worse when optimized on the coarse mesh than the fine one. It is apparent that the multimodality in these cases is not an
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Table 9 CRM fine mesh parameters

Nodes 1,983,520
Blocks 40

O�-Wall Spacing 6.6 ⇥ 10�7 MAC
H+ 0.09

Table 10 Optimization mesh independence results. All values computed on fine mesh.

Test Successful
Tests

Optima Best
(counts)

Range
(counts)

'

ADODG(MT)

Fine 16 2 192.7 3.5 6%
Coarse 15 2 192.7 7.3 7%

LLM_CC

Fine 15 2 193.0 17.7 53%
Coarse 16 2 193.4 18.1 50%

artifact of the mesh and its overall characteristics are not highly sensitive. Nevertheless, it is possible for mesh density

to impact the shape of the design space, particularly in outlying regions like that in the ADODG(MT) case, and even at

refinement levels more than su�cient for e�ective optimization.

V. Conclusions
Multimodality is often present in aerodynamic shape optimization problems typical of detailed, preliminary, and

exploratory design. In problems typical of detailed design, the risk presented by this multimodality lies between 0

and 17%, typical of slightly to somewhat multimodal problems, though this is mitigated by the consistent ability of a

well-designed initial geometry, which is often available for such problems, to locate a high-quality local optimum. In

problems typical of preliminary design, which are characterized by increased geometric freedom and consequently a

greater di�erence between the baseline geometry and the best local optimum, the risk associated with multimodality is

much higher, ranging from 18-90%, which in our classification system identifies most of these problems as moderately

to highly multimodal. Therefore, in the case of exploratory design of novel unconventional aircraft, where design

experience is limited and a great deal of geometric freedom must be permitted, multimodality is very likely to occur. For

preliminary and exploratory design, allocating resources to an examination of multimodality can significantly reduce

the risk of overlooking a superior optimum. GBMS has been shown, in this work and previously, to be an e�ective tool

for evaluating and addressing such multimodality without requiring the full cost of gradient-free optimization. For

future work, it is recommended that the risk of multimodality be examined in the context of multidisciplinary design

optimization based on high-fidelity analysis methods, where substantial geometric freedom is almost always present.
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Table 11 Degree of freedom study code reference

Test DVs active degrees of

freedom

001_00 141 section

011_00 148 taper, section

101_00 147 twist, section

110_00 14 twist, taper

111_00 154 twist, taper, section

111_01 162 twist, taper, section,

dihedral

111_11 170 twist, taper, section,

sweep, dihedral

Appendix: Case Codes and Descriptions
This appendix provides a quick reference for the meaning of each test code for the degree of freedom (Table 11) and

constraint (Table 12) studies. As a reminder, for the degree of freedom study, each test code is a five-digit sequence of

the form GGG_GG where each digit corresponds to a degree of freedom and takes a zero or one to denote whether it

is active, with 0 denoting the degree of freedom is inactive and 1 denoting it is active. From left to right, each digit

corresponds to twist, taper, section, sweep, and dihedral. For the constraint study, each case again has a five digit code

of the form GGG_GG, and again from left to right each digit corresponds to twist, taper, section, sweep, and dihedral, but

now may take one of several values to denote which constraint (if any) is being enforced on that degree of freedom.

The possible values are “L” - requiring a degree of freedom to have a linear distribution -“C” - requiring a constant

value, as in a constant sweep angle - and “M” enforces a strict minimum value. The CRM geometry control system is

divided into two FFD volumes, one inboard from the crank and one outboard; to permit distinct inboard and outboard

distributions to develop, “L” constraints are only enforced within each FFD volume, not across them.

26



Table 12 Constraint study code reference

Test Active constraints

000_00 No additional constraints

000_00-P No additional constraint, no pitching moment

L00_00 Linear twist

0L0_00 Linear taper

00M_00 Minimum thickness

0LM_00 Linear taper, minimum thickness

LL0_00 Linear twist, linear taper

LLM_00 Linear twist, linear taper, minimum thickness

000_C0 Constant sweep

000_0C Constant dihedral

0L0_0C Linear taper, constant dihedral

0L0_C0 Linear taper, constant sweep

0LM_C0 Linear taper, minimum thickness, constant sweep

LL0_0C Linear twist, linear taper, constant dihedral

LL0_C0 Linear twist, linear taper, constant sweep

0L0_CC Linear taper, constant sweep, constant dihedral

LL0_CC Linear twist, linear taper, constant sweep, constant

dihedral

LLM_CC Linear twist, linear taper, minimum thickness, constrant

sweep, constant dihedral
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