FINAL TEST

AER 1316H - FUNDAMENTALS OF CFD
120 minutes

1. Consider the fourth-order noncompact finite-difference approximation to a first derivative given in (3.54). Using this operator to approximate the spatial derivative in the linear convection equation, write the semi-discrete form obtained with periodic boundary conditions on a 5 -point grid $(M=5)$. Write out all matrices and vectors in full. (15 marks)
2. The 2nd-order backward method is given by

$$
u_{n+1}=\frac{1}{3}\left(4 u_{n}-u_{n-1}+2 h u_{n+1}^{\prime}\right) .
$$

(a) Write the $\mathrm{O} \Delta \mathrm{E}$ for the representative equation. Identify the polynomials $P(E)$ and $Q(E)$.
(b) Derive the $\lambda-\sigma$ relation. Solve for the σ-roots and identify them as principal or spurious.
(c) Find $e r_{\lambda}$.
(d) Find the particular solution if the forcing term is fixed $(\mu=0)$.
(25 marks)
3. Consider the following time-marching method:

$$
\begin{aligned}
\tilde{u}_{n+1 / 3} & =u_{n}+h u_{n}^{\prime} / 3 \\
\bar{u}_{n+1 / 2} & =u_{n}+h \tilde{u}_{n+1 / 3}^{\prime} / 2 \\
u_{n+1} & =u_{n}+h \bar{u}_{n+1 / 2}^{\prime}
\end{aligned}
$$

Find the difference equation which results from applying this method to the representative equation. Find the $\lambda-\sigma$ relation. Find the solution to the difference equation, including the homogeneous and particular solutions. Find $e r_{\lambda}$ and the c_{0} term in the $e r_{\mu}$ calculation. What order is the homogeneous solution? Find the particular solution if the forcing term is fixed. (25 marks)
4. Using Fourier analysis, analyze the stability of first-order backward differencing coupled with explicit Euler time marching applied to the linear convection equation with positive a. Find the maximum Courant number for stability. (15 marks)
5. A second-order backward difference approximation to a first derivative is given as a point operator by

$$
\left(\delta_{x} u\right)_{j}=\frac{1}{2 \Delta x}\left(u_{j-2}-4 u_{j-1}+3 u_{j}\right) .
$$

(a) Express this operator in banded matrix form (for periodic boundary conditions), then derive the symmetric and skew-symmetric matrices that have the matrix operator as their sum. (See Appendix A. 3 to see how to construct the symmetric and skew-symmetric components of a matrix.) (10 marks)
(b) Using a Taylor table, find the derivative which is approximated by the corresponding symmetric and skew-symmetric operators and the leading error term for each. (10 marks)

