2004 - AER 307 F - Test 1

Friday, October 8
Time: 90 minutes
Format: Closed-book, no aids, non-programmable calculators
(At sea level, the density of the standard atmosphere is $1.226 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and the temperature is $288^{\circ} \mathrm{K}$. For air, $\mathrm{R}=287 \frac{\mathrm{~m}^{2}}{s^{2} \mathrm{~K}}$. For a thermally-perfect gas, $p=\rho R T$ and for a perfect gas, $a^{2}=\gamma R T$.)

Last Name	
First Name	
Student Number	

Question 1	
Question 2	
Question 3	
Total	

1. Given the Navier-Stokes equations in the compact form:

$$
\frac{\partial}{\partial t}\left[\begin{array}{c}
\rho \tag{1}\\
\rho \vec{v} \\
\rho E
\end{array}\right]+\vec{\nabla} \cdot\left[\begin{array}{c}
\rho \vec{v} \\
\rho \vec{v} \otimes \vec{v}+p \overline{\bar{I}}-\overline{\bar{\tau}} \\
\rho H \vec{v}-k \vec{\nabla} T-\overline{\bar{\tau}} \cdot \vec{v}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\rho \vec{f}_{e} \\
W_{f}+q_{H}
\end{array}\right]
$$

identify the flux and source terms as fluxes or sources of mass, momentum, or energy, and give the physical process described. [20 marks]

$\rho \vec{v}$	
$\rho \vec{v} \otimes \vec{v}$	
\bar{p}	
$-\bar{\tau}$	
$\rho H \vec{v}$	
$-k \vec{\nabla} T$	
$-\overline{\bar{\tau}} \cdot \vec{v}$	
$\rho \vec{f}_{e}$	
W_{f}	
q_{H}	

2 (a). Define the Reynolds number, $\mathcal{R} e$. What is it a ratio of in terms of forces? [4 marks]

2 (b). Define the flight Mach number, \mathcal{M}. For a perfect gas, why is easier to break the sound barrier at a higher altitude? [4 marks]

2 (c). Starting from the Navier-Stokes equations, list the two key approximations that give you the full-potential equations. What are two options for making the full-potential equations linear? [6 marks]

2 (d). Starting from the Navier-Stokes equations, what is the key approximation that gives you the Euler equations? While this approximation virtually eliminates any possibility of drag prediction for two-dimensional flow, what drag-generating phenomenon can still be predicted and what form of the equations is necessary to predict it? What is the boundary condition for velocity at a solid body when using the Euler equations? [$\mathbf{6}$ marks]

3 (a). Sketch the following following boundary layer profiles (y vs. u): (i) attached flow, (ii) flow at the point of separation, and (iii) separated flow. Note that y is the normal coordinate to the body surface. [9 marks]

3 (b). List four conditions for boundary-layer flow. [4 marks]

3 (c). Consider the boundary-layer momentum equation for steady incompressible flow in two dimensions:

$$
\begin{equation*}
\rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial y}=-\frac{\mathrm{d} p_{e}}{\mathrm{~d} x}+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right) \tag{2}
\end{equation*}
$$

Assume the viscosity, μ, to be constant. What does this equation reduce to at a solid surface? Based on this result and your sketches in (a), is a boundary layer more likely to separate in a favourable pressure gradient (pressure decreasing) or an adverse pressure gradient? [7 marks]
(extra space)

