AER336: SCIENTIFIC COMPUTING (Spring 2006)

Instructor: Professor D. W. Zingg

University of Toronto Institute for Aerospace Studies (UTIAS) Phone: 416–667–7709 E-mail: dwz@oddjob.utias.utoronto.ca

Course Description

This course provides an introduction to numerical methods for scientific computation which are relevant to engineering problems. Topics addressed include interpolation, integration, linear systems, least-squares fitting, nonlinear equations and optimization, initial value problems, partial differential equations, and relaxation methods. The assignments make extensive use of MATLAB. Assignments also require knowledge of FORTRAN or C.

<u>Textbook</u> :	Introduction to Scientific Computing
	by C. F. Van Loan
	2nd Edition, Prentice-Hall, 2000

Teaching Assistant: Alistair Wood		
	Phone: (416) 667-7887,	
	E-mail: a.wood@utoronto.ca	
Assignments:	Assignment #1, Due: January 31	
	Assignment $\#2$, Due: February 9	
	Assignment $\#3$, Due: March 2	
	Assignment $#4$, Due: March 16	
	Assignment $\#5$, Due: March 30	
	Assignment #6, Due: April 11.	
Marks:	5% for several mini assignments (bonus marks)	
	25% for the six assignments (listed above)	
	12.5% for term test #1, Date: February 14	
	12.5% for term test #2, Date: March 28	
	50% for final exam	
	All tests and exams are type X ("open book") and	

Web Site: http://oddjob.utias.utoronto.ca/dwz/

permit use of type 1 calculators.

Outline

1. Introduction

- What is Scientific Computing?
- Learning to Use MATLAB

2. Interpolation

- Global Polynomial Interpolation
 - * Lagrange Polynomials
- Piecewise Polynomial Interpolation
 - * Cubic Splines

3. Integration

- Newton-Cotes Rules
 - * Trapezoidal Method
 - * Simpson's Method
- Composite Rules and Adaptive Quadrature
- Gauss Quadrature
- Spline Quadrature

4. Linear Systems of Equations

- LU Decomposition
 - * Pivoting

5. Least Squares Fitting

- Linear Regression
- Normal Equations
- QR Factorization

6. Nonlinear Equations and Optimization

- Roots of Scalar Nonlinear Equations
 - * Bisection Method
 - * Newton's Method
 - * Secant Method
- Systems of Nonlinear Equations
- Minimizing Univariate Functions
 - $\ast\,$ Golden Section Search

- * Newton's Method
- Minimizing Multivariate Functions
 - * Method of Steepest Descent
 - * Newton's Method

7. Numerical Solution of Ordinary Differential Equations

- Initial and Boundary Value Problems
- Systems of ODEs and Higher-Order ODEs
- Time Marching Methods
 - * Representative Linear First-Order ODE
 - $\cdot\,$ Exact Solution
 - * Ordinary Difference Equations
 - $\cdot\,$ Converting Time Marching Methods to Ordinary Difference Equations
 - $\cdot\,$ Solution of Ordinary Difference Equations
 - * Accuracy and Stability of Time Marching Methods
 - * Linear Multistep Methods (LMMs)
 - $\cdot\,$ Explicit and Implicit Euler Methods
 - \cdot Trapezoidal Method
 - $\cdot\,$ Adams-Bashforth and Adams-Moulton Methods
 - * Predictor-Corrector Methods
 - · Heun's (MacCormack's) Method
 - $\cdot\,$ Burstein Method
 - * Runge-Kutta Methods

8. Numerical Solution of Partial Differential Equations

- Finite-Difference Methods
 - * Taylor Tables
 - * Compact Schemes
- Model Equations
 - * Linear Convection (Advection) Equation
 - * Linear Diffusion Equation
- Semi-Discrete Approach and Reduction of PDEs to ODEs

9. Relaxation Methods

- Classical Relaxation Methods
 - * Point-Jacobi
 - * Gauss-Seidel
 - * Successive Overrelaxation (SOR)

References

- <u>**Textbook**</u>: Introduction to Scientific Computing, 2nd Edition, by C. F. Van Loan, Prentice-Hall, 2000.
- <u>Useful Reference</u>: Fundamentals of Computational Fluid Dynamics, by H. Lomax, T. H. Pulliam, and D. W. Zingg, Springer, 2001.
- Analysis of Numerical Methods, by E. Isaacson and H. B. Keller, Dover, 1966.
- Numerical Methods for Scientists and Engineers, by R. W. Hamming, Dover, 1973.
- Computer Methods for Mathematical Computations, by G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Prentice Hall, 1977.
- An Introduction to Numerical Computations, by S. Yakowitz and F. Szidarovszky, Macmillan Publishing, 1989.
- FORTRAN 77 and Numerical Methods for Engineers, by G. J. Borse, PWS-Kent, 1991.
- Numerical Methods for Engineers and Scientists, by J. D. Hoffman, McGraw-Hill, 1992.
- Numerical Recipes in FORTRAN, The Art of Scientific Computing, Second Edition, W. H. Press, S. A Teukolsky, W. T. Vetterling, and B. P. Flannery, Cambridge University Press, 1992.
- Scientific Computing and Differential Equations, by G. H. Golub and J. M. Ortega, Academic Press, 1992.
- Applied Numerical Methods for Digital Computation, Fourth Edition, by M. L. James, G. M. Smith, J. C. Wolford, HarperCollins College Publishers, 1993.
- Applied Numerical Methods for Engineers, by T. J. Akai, Wiley, 1993.
- FORTRAN 77 and Numerical Methods for Engineers and Scientists, by L. Nyhoff and S. Leestma, Prentice Hall, 1995.
- Numerical Methods for Engineers, by B. M. Ayyub, Prentice Hall, 1996.
- Numerical Methods for Engineers, With Programming and Software Applications, by S. C. Chapra and R. P. Canale, McGraw-Hill, 1998.
- Numerical Methods, Second Edition, by J. D. Faires and R. L. Burden, Brooks/Cole Publishing, 1998.
- Numerical Analysis, 7th Edition, by R. L. Burden and J. D. Faires, Brooks/Cole Publishing, 2000.