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Abstract

Three new Runge–Kutta methods are presented for numerical integration of systems of linear inhomogeneous
ordinary differential equations (ODEs) with constant coefficients. Such ODEs arise in the numerical solution of
partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant
coefficients reduces the number of conditions which the coefficients of the Runge–Kutta method must satisfy. This
freedom is used to develop methods which are more efficient than conventional Runge–Kutta methods. A fourth-
order method is presented which uses only two memory locations per dependent variable, while the classical
fourth-order Runge–Kutta method uses three. This method is an excellent choice for simulations of linear wave
phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require
five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient.
These methods are an excellent option for use with high-order spatial discretizations. 1999 Elsevier Science B.V.
and IMACS. All rights reserved.
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1. Introduction

We consider the numerical integration of large linear inhomogenous systems of ordinary differential
equations in the form

du

dt
=Au− g(t), (1)

whereA is anM by M matrix whose elements depend on neitheru nor t , andu andg(t) are vectors
of lengthM . Such essentially autonomous systems arise in the numerical solution of partial differential
equations (PDEs) governing linear wave phenomena after application of a spatial discretization such as
a finite-difference, finite-volume, or finite-element method. Examples of such PDEs are the linearized
Euler equations governing acoustic waves and the Maxwell equations governing electromagnetic waves.
The elements ofA depend on the PDE and the spatial discretization. The inhomogeneous termg(t) is

∗ Corresponding author. E-mail: dwz@oddjob.utias.utoronto.ca.

0168-9274/99/$20.00 1999 Elsevier Science B.V. and IMACS. All rights reserved.
PII: S0168-9274(98)00129-9



228 D.W. Zingg, T.T. Chisholm / Applied Numerical Mathematics 31 (1999) 227–238

associated with either a source term or the boundary conditions. In the context of wave propagation, the
system of ODEs is often mildly stiff with the eigenvalues ofA typically lying near the imaginary axis.

The system of ODEs arising from the application of a spatial discretization to a system of PDEs
can be very large, especially in three-dimensional simulations. Consequently, the constraints on the
methods used for integrating these systems are somewhat different from those which have driven much
of the development of numerical methods for initial value problems. Due to their high accuracy and
modest memory requirements, explicit Runge–Kutta methods have become popular for simulations of
wave phenomena [7–9,18,20]. The classical fourth-order Runge–Kutta method requires three memory
locations per dependent variable [1,6], but low-storage methods requiring only two memory locations
per dependent variable can be derived [4,16,17]. This property is easily achieved by a third-order
Runge–Kutta method [17], but an additional stage is required for a fourth-order method [4]. Since the
primary cost of the integration is in the evaluation of the derivative function, and each stage requires
a function evaluation, the additional stage represents a significant increase in expense. For the same
reason, error checking is generally not performed when solving very large systems of ODEs arising from
the discretization of PDEs.

There have been several attempts to develop efficient methods for integrating linear systems of
ODEs [5,12–14]. The basic premise of these methods is that the major cost in evaluating the derivative
function is in forming the matrixA and the vectorg(t). In the application considered here, the simulation
of linear wave phenomena, the matrixA is never explicitly formed or stored. Hence the methods
previously proposed for linear systems are not appropriate for this application.

It is well known that a Runge–Kutta method withp stages has an order of accuracy not exceedingp [2,
3]. Forp 6 4, methods of orderp can be derived withp stages. However, fifth-and sixth-order methods
require at least six and seven stages, respectively. Nine stages are required for seventh-order accuracy
and eleven for eighth-order accuracy [2]. Since the cost for our application is roughly proportional to the
number of stages, this represents a significant limitation of higher-order Runge–Kutta methods.

Several authors have considered various approximations to reduce the number of stages and the storage
requirements of high-order Runge–Kutta methods. Shanks [15] was able to develop schemes with a
reduced number of stages by requiring only that the accuracy conditions be approximately satisfied.
Zingg et al. [19,20] propose methods with low storage requirements which are of high order for linear
homogeneous ODEs but second-order otherwise. A similar idea was proposed previously by Lorenz [11].

In this paper, we develop Runge–Kutta methods specifically for linear ODEs with constant coefficients.
By removing the constraints imposed by nonlinearity in the derivative function, high-order Runge–Kutta
methods can be derived which are more efficient in some respect than the classical methods. In the next
section, we present a fourth-order method which requires less memory than the classical fourth-order
Runge–Kutta method. We then present fifth- and sixth-order methods requiring fewer derivative function
evaluations per time step than fifth- and sixth-order Runge–Kutta methods applicable to nonlinear
problems.

2. General form of an explicit Runge–Kutta method

Without loss of generality, we consider the following scalar ODE:

du

dt
= f (t, u). (2)
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A generalp-stage explicit Runge–Kutta method can be written as

k1= f (tn, un),

ki = f
(
tn + cih, un + h

i−1∑
j=1

aij kj

)
, i = 2, . . . , p, (3)

un+1= un + h
p∑
i=1

biki,

whereh=1t is the time step,tn = nh, andun is an approximation tou(tn).

3. Low-storage fourth-order method

We consider first the casep = 4. With the constraints

c2= a21,

c3= a31+ a32, (4)

c4= a41+ a42+ a43

there remain ten parameters. For fourth-order accuracy, there are eight conditions which must be satisfied.
Four of these arise even for linear homogeneous constant-coefficient ODEs. A further three conditions
must be met if the ODEs are inhomogeneous. The final condition is associated with non-constant
coefficients or nonlinearity. Therefore, fourth-order Runge–Kutta methods are a two-parameter family
of which the classical method is a particular choice.

If we restrict our attention to linear constant-coefficient ODEs, the number of conditions is reduced to
seven. They are

4∑
i=1

bi = 1,

4∑
i=2

cibi = 1
2,

c2a32b3+ b4(c2a42+ c3a43)= 1
6,

c2a32a43b4= 1
24, (5)

4∑
i=2

bic
2
i = 1

3,

4∑
i=2

bic
3
i = 1

4,

b3c
2
2a32+ b4

(
c2

2a42+ c2
3a43

)= 1
12.
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These conditions can be derived in the same manner as the classical conditions. The eighth condition is
eliminated by exploiting the fact that, for linear ODEs,

∂2f

∂u2
= ∂2f

∂u∂t
= 0.

The reduction in the number of conditions to be satisfied does not permit us to reduce the number of
stages. However, we can obtain reduced storage requirements.

Following the approach of Wray [17], the requirement that only two memory locations be used imposes
the following three constraints:

b1= a41= a31,
(6)

b2= a42.

With these constraints, only two memory locations are required for both the dependent variable and the
value of the time derivative. Hence the method requires minimal storage even when compact or spectral
methods are used for the spatial discretization. With the memory locations denotedA andB, the method
proceeds as follows:

1. Initially, un is stored inA, andB is empty.
2. The termk1= f (tn, un) is evaluated and stored inB.
3. The quantityun + ha31k1, is calculated and stored inA.
4. The quantityun + ha21k1 is calculated and stored inB.
5. The termk2= f (tn + c2h, un + ha21k1) is evaluated and stored inB.
6. The contents of the two memory locations are linearly combined to formun + h(a31k1+ a32k2),

which is stored inB.
7. With a41= a31, another linear combination givesun + h(a41k1+ a42k2), which is stored inA.
8. The termk3= f [tn + c3h, un + h(a31k1+ a32k2)] is evaluated and stored inB.
9. The contents of the two memory locations are linearly combined to formun + h(a41k1+ a42k2+
a43k3), which is stored inB.

10. Withb1= a41 andb2= a42, another linear combination givesun + h(b1k1+ b2k2+ b3k3), which
is stored inA.

11. The termk4= f [tn + c4h, un + h(a41k1+ a42k2+ a43k3)] is evaluated and stored inB.
12. The contents of the two memory locations are linearly combined to formun+1.
With the additional constraints imposed by the low-storage requirement, we are left with seven

parameters to satisfy the seven conditions given in Eq. (5). Although this system may possess more
than one solution, the only solution we have found is

a21= c2= 0.69631521002413, c3= 0.29441651741,

c4= 0.82502163765, b1= a41= a31= 0.07801567728325,

a32= 0.21640084013679, b2= a42= 0.04708870117112,

a43= 0.69991725920066, b3= 0.47982272993855,

b4= 0.39507289160708.
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4. Five-stage fifth-order method

For the casep = 5, we have, in addition to the constraints given in Eq. (4), the following condition:

c5= a51+ a52+ a53+ a54. (7)

Consequently, adding the fifth stage has produced five additional parameters for a total of fifteen. The
coefficients must satisfy the following eleven conditions in order to produce fifth-order accuracy for
linear constant-coefficient ODEs:

5∑
i=1

bi = 1,

5∑
i=2

cibi = 1
2,

c2a32b3+ b4(c2a42+ c3a43)+ b5(c2a52+ c3a53+ c4a54)= 1
6,

c2a32a43b4+ b5
[
c2(a42a54+ a32a53)+ c3a43a54

]= 1
24,

c2a32a43a54b5= 1
120,

5∑
i=2

bic
2
i = 1

3, (8)

5∑
i=2

bic
3
i = 1

4,

b3c
2
2a32+ b4

(
c2

2a42+ c2
3a43

)+ b5
(
c2

2a52+ c2
3a53+ c2

4a54
)= 1

12,

5∑
i=2

bic
4
i = 1

5,

(b4a42+ b3a32+ b5a52)c
3
2+ (b5a53+ b4a43)c

3
3+ b5a54c

3
4 = 1

20,

b5
[
a54
(
a42c

2
2+ a43c

2
3

)+ a53a32c
2
2

]+ b4a43a32c
2
2 = 1

60.

Thus a four-parameter family of solutions is obtained. Several different criteria can be applied in order
to choose a method from this family. The following values have been found by minimizing theL2 norm
of a vector containing the coefficients of the method:

a21= c2= 0.21, c3= 0.43, c4= 0.68, c5= 0.85,

a32= 0.47418546365915, a42= 0.13437223603429,

a52= 0.26302355344001, b2= 0.16574368303091,

a43= 0.57068167533284, a53= 0.10434139625551,

b3= 0.41041645692809, a54= 0.39377303853165,

b4=−0.04092124960122, b5= 0.37240141154501,

b1= 0.09235969809721
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with

a31= c3− a32, a41= c4− a42− a43, a51= c5− a52− a53− a54.

5. Six-stage sixth-order method

With p = 6, the following condition must be satisfied in addition to the constraints given in Eqs. (4)
and (7):

c6= a61+ a62+ a63+ a64+ a65. (9)

Therefore, there remain twenty-one free coefficients. The requirement of sixth-order accuracy for linear
constant-coefficient ODEs produces the following sixteen conditions:

6∑
i=1

bi = 1,
6∑
i=2

cibi = 1
2,

c2a32b3+ b4(c2a42+ c3a43)+ b5(c2a52+ c3a53+ c4a54)+ b6(c2a62+ c3a63+ c4a64+ c5a65)= 1
6,

c2a32a43b4+ b5
[
c2(a42a54+ a32a53)+ c3a43a54

]
+b6

[
a65(a54c4+ a53c3+ a52c2)+ a64(a43c3+ a42c2)+ a63a32c2

]= 1
24,

b6
(
a65
[
a54(a43c3+ a42c2)+ a53a32c2

]+ a64a43a32c2
)+ b5a54a43a32c2= 1

120,

c2a32a43a54a65b6= 1
720,

6∑
i=2

bic
2
i = 1

3,

6∑
i=2

bic
3
i = 1

4,

b3c
2
2a32+ b4

(
c2

2a42+ c2
3a43

)+ b5
(
c2

2a52+ c2
3a53+ c2

4a54
)

+b6
(
a65c

2
5+ a64c

2
4+ a63c

2
3+ a62c

2
2

)= 1
12, (10)

6∑
i=2

bic
4
i = 1

5,

(b4a42+ b3a32+ b5a52+ b6a62)c
3
2+ (b5a53+ b4a43+ b6a63)c

3
3

+ (b5a54+ b6a64)c
3
4+ b6a65c

3
5 = 1

20,

b6
[
a65
(
a52c

2
2+ a53c

2
3+ a54c

2
4

)+ a64
(
a42c

2
2+ a43c

2
3

)+ a63a32c
2
2

]
+b5

[
a54
(
a42c

2
2+ a43c

2
3

)+ a53a32c
2
2

]+ b4a43a32c
2
2= 1

60,

6∑
i=2

bic
5
i = 1

6,

b6(a62c
4
2+ a63c

4
3+ a64c

4
4+ a65c

4
5)+ b5(a52c

4
2+ a53c

4
3+ a54c

4
4)+ b4(a42c

4
2+ a43c

4
3)+ b3a32c

4
2 = 1

30,

c3
2

[
b6(a65a52+ a64a42+ a63a32)+ b5(a54a42+ a53a32)+ b4a43a32

]
+ c3

3

[
b6(a65a53+ a64a43)+ b5a54a43

]+ c3
4b6a65a54= 1

120,

b6
[
a65a54

(
a43c

2
3+ a42c

2
2

)+ a64a43a32c
2
2

]+ b5a54a43a32c
2
2 = 1

360.
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Using the same criterion as for the fifth-order method, the following coefficients have been chosen from
the five-parameter family of solutions to the above conditions:

a21= c2= 0.15, c3= 0.36, c4= 0.57, c5= 0.75, c6= 0.90,

a32= 0.45818181818182, a42= 0.09769454545455,

a52= 0.10861879806510, a62= 0.20874226393025,

b2= 0.24971305394585, a43= 0.48766666666667,

a53= 0.04655817933320, a63= 0.12686271445897,

b3= 0.11278150363005, a54= 0.44703799502007,

a64= 0.02734417934727, b4= 0.35718962665957,

a65= 0.37591957583530, b5=−0.00478351095633,

b6= 0.24659027402511, b1= 0.03850905269576

with

a31= c3− a32, a41= c4− a42− a43,

a51= c5− a52− a53− a54, a61= c6− a62− a63− a64− a65.

6. Stability contours

The stability contours of the three new methods are shown in Fig. 1. Satisfaction of the first four
conditions in Eq. (5) ensures that the new fourth-order method has the same stability contour as the
classical fourth-order Runge–Kutta method. Similarly, the stability contours of the five-stage fifth-order

Fig. 1. Stability contours for the fourth-order (—), fifth-order(- - -), and sixth-order(· · ·) methods.
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method and the six-stage sixth-order method are uniquely defined and do not depend on which members
of the respective families are selected.

Although the stable regions of the fifth- and sixth-order methods are somewhat larger than that of
the fourth-order method, the increase is not sufficient to compensate for the cost of the additional stages.
Therefore, the fourth-order method is a better choice if the time step is limited by stability considerations.
It should be emphasized that the present fourth-order method has exactly the same properties with respect
to stiff ODEs as the classical fourth-order Runge–Kutta method.

The stable regions of the fifth- and sixth-order methods do not include the imaginary axis. Systems with
pure imaginary eigenvalues are obtained when central differencing is applied to the spatial derivatives
in partial differential equations governing wave propagation phenomena with no physical dissipation,
in the absence of boundary conditions. However, Zingg et al. [20] have demonstrated that by adding a
small amount of numerical dissipation to the spatial discretization, stable schemes can be obtained using
such methods. The amount of dissipation required is sufficiently low that the overall accuracy of the
scheme is not compromised. The stability contour of the method successfully used in [9] for simulations
of the propagation and scattering of electromagnetic waves is identical to that of the present sixth-order
method.

7. Fourier error analysis

Using Fourier analysis we can determine the errors produced by an integration method when applied
to a linear homogeneous ODE. Since our interest is in wave propagation, we consider a scalar ODE of
the form

du

dt
= iωu, (11)

whereω is a real constant. The Runge–Kutta methods developed here produce a solution in the form

un = σ nu0, (12)

where

σ =
p∑
k=0

1

k!(iω)
k (13)

andp is the number of stages. The local amplitude and phase errors are determined fromσ as follows:

era= |σ | − 1, (14)

erp=− tan−1(σi/σr)

ωh
+ 1, (15)

whereσr andσi denote the real and imaginary parts ofσ .
Figs. 2 and 3 show the local amplitude and phase errors produced by the three new methods. In order

to account for the number of stages, the errors are plotted versusωh/p. Hence the errors shown are for
approximately equal computational effort. Since the time step is thus proportional top, the amplitude
error shown is|σ |1/p − 1. The figures show that each increase in the order of the method produces an
increase in accuracy even though the extra work has been accounted for. Hence the fifth- and sixth-order
methods can be more efficient than the fourth-order method if a sufficiently accurate spatial discretization
is used.
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Fig. 2. Amplitude error produced by the fourth-order (—), fifth-order(- - -), and sixth-order(· · ·) methods.

Fig. 3. Phase error produced by the fourth-order (—), fifth-order(- - -), and sixth-order(· · ·) methods.

8. Application to the numerical solution of a PDE

We now apply the new methods to the numerical solution of the linear convection equation given by

∂u

∂t
+ ∂u
∂x
= 0, (16)
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Fig. 4. Root-mean-square error as a function of the number of grid nodes for the numerical solution of the linear
convection equation.

whereu = u(x, t) and 06 x 6 1. This equation is commonly used as a model equation in the study
of numerical algorithms for the solution of hyperbolic systems of PDEs. The boundary condition is
u(0, t) = sinωt with ω = 16π . We run until a periodic steady state is obtained. The spatial operator
is seventh-order, with a nine-point stencil and suitable boundary operators. The error is displayed as a
function of the number of grid nodes in Fig. 4. The ratio1t/1x is unity in all cases. The three methods
presented here are designated “linear”. In addition, the classical fourth-order Runge–Kutta method is
shown, along with a six-stage fifth-order method [3, p. 202] and an eight-stage sixth-order method [10,
p. 122]. The error produced by the new low-storage fourth-order method is indistinguishable from that
produced by the classical fourth-order method. The linear fifth-order method produces somewhat more
error than the six-stage fifth-order method, but is much more accurate than the fourth-order methods. The
two sixth-order methods produce comparable errors, with the linear method requiring two fewer stages.
Overall, these results confirm the validity and usefulness of the new methods for use in the numerical
solution of linear systems of hyperbolic PDEs, such as the time-domain Maxwell equations.

9. Conclusions

Three new Runge–Kutta methods have been presented for the integration of linear systems of ODEs
with constant coefficients. If the time step size is limited by stability, then the new fourth-order method
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is the most suitable of the new methods. This method requires less memory than the classical fourth-
order Runge–Kutta method and less computational effort than the low-storage method proposed in [4].
In any application to linear ODEs where the classical fourth-order Runge–Kutta method is currently
the method of choice, the new fourth-order method provides the same stability characteristics and
equivalent accuracy with reduced memory requirements. If the time step is limited by accuracy, and
memory is a secondary concern, then the new fifth- and sixth-order methods present an efficient new
alternative. Since the expense of the methods is roughly proportional to the number of stages for the
problems of interest here, the new fifth- and sixth-order methods are significantly more efficient than
their counterparts for nonlinear ODEs. The sixth-order method is a particularly good choice for use with
high-order spatial discretizations in the numerical solution of partial differential equations governing
linear wave phenomena.
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